Deriving prototypes from UML 2.0 sequence
diagrams

Zbigniew Huzar! and Grzegorz Loniewski’

Institute of Applied Informatics, Department of Computer Science and Management,
Wroclaw University of Technology, Poland
zbigniew.huzar@pwr.wroc.pl, grzegorz.loniewski@student.pwr.wroc.pl

Abstract. Executable prototypes generated on early stages of software
development bring many benefits, first of all they help to develop and
validate system’s specification. The paper presents an approach to au-
tomatic system prototype generation based on a collection of UML 2.0
scquence diagrams. In the approach a set of sequence diagrams represent-
ing behavior of a specified system is transformed into a state machine
and next a Java code is generated for the state machine. The trans-
formations arc described informally by presentation of simple examples.
Architecture of the system implementing the transformation is briefly
described.

Keywords: Sequence diagram, state machine, prototype,
code generation

1 Introduction

Sequence diagrams are very often used as behaviour specification of developed
systems. They become very popular with advent of the UML specification lan-
guage. UML scquence diagrams were adopted from message sequence charts that
were known already in other visual languages developed long ago by the Interna-
tional Telecommunication Union. UML 2.0 also uses other diagrams to specify
bchaviour, e.g. communication and collaboration diagrams. All those diagrams
express similar although not identical information and show it in a way different
from the sequence diagrams. Sequence diagrams are used to specify scenarios as
sequences of messages passing between objects. A sequence diagram represents
an interaction - a set of communications among objects arranged visually in time
order. They can exist in a descriptor form (describing all possible scenarios) and
in an instance form (describing one actual scenario). In the paper we deal with
an instance form only.

Sequence diagrams have some practical limitations. Nevertheless, they are used
at very early stage of software development for rapid but usually partial speci-
fication of system’s behaviour. For developers the most important factor should
be quick validation of system’s behaviour defined by a given set of sequence di-
agrams. Sequence diagrams still have an informal semantics, therefore the most

74 Z. Huzar and G. Loniewski

effective way of such a validation is generating system prototype and next its
intensive testing.

The aim of the paper is presentation of an approach [3] to generating the system
prototype on the basis of a set of sequence diagrams. The paper is organized
as follows. Section 2 explains our definition of software system specification. In
Section 3 the algorithm transforming such a specification into a state machine is
described. Section 4 outlines the structure of a programming system generating
prototypes, and describes generation of Java code. The last Section 5 evaluates
the obtained results and points out some future works.

2 Systems specification

Specification of a system consists of two parts [7][8].

The first one representing static aspect of the system, consists of two elements:
a class diagram and an object diagram. The class diagram reflects the set of po-
tential configurations of the system - a sct of linked objects. The object diagram
refers to an initial configuration of the system.

The second one represents dynamic aspect of the system and includes a set SD
of sequence diagrams. The set is partially ordered by relation <, which is defined
as follows: for sdi, sdy € SD, sd; < sdp means that interaction represented by
sdy should occur before interaction represented by sds.

The dynamic part should be consistent with static part of the specification. It
entails that each scquence diagram should be consistent with class diagram, i.c.
the objects that appear in the sequence diagram are to be elements of an object
diagram being an instance of the class diagram. At least one sequence diagram
should act in accordance with the initial object diagram.

We use UML 2.0 sequence diagrams [6] with the following restrictions:

— only asynchronous messages are allowed,
— combined fragments only with three main operator types: alt, loop and
strict.

Additionally, to maintain consistency of the specification the following conditions
should be hold:

— objects belonging to the initial object diagram are not crcated on nonc of
scquence diagrams,

— other objects may be created only once via create operation and on one of
the sequence diagrams, otherwise they are considered to be different objects,

— objects and their messages can not cause inconsistencies, e.g. they have to
keep the time ordering resulting from objects creations and destructions
times,

— at least one guard condition in a combined fragment should always be ful-
filled,

— conditions in nested combined fragments should not be contradictory.

Specification example is presented in Fig. 1. The oval areas on the figure
that represent some objects’ activities will be used further to explain the idea of
sequence diagrams transformations.

Deriving Prototypes from UML 2.0 Sequence Diagrams 75

ares 1o be transforme
into state

Fig. 1. Example of a sequence diagram

3 Transformation of sequence diagrams into state
machines

Deriving of system prototype consists of two phases: first a state machine is
created and next Java code is generated. The transformation of a set of sequence
diagrams into a single state machine should preserve determinism as well as
consistency. The transformation works in the following steps:

— For each sequence diagram [rom the given specification and for each object
on this diagram a state machine is gencrated. The machine represents a
fragment of behaviour of the class to which the object belongs. The machines
arc represented in form of UML statecharts.

— The state machines generated for the same class instances appearing on
different scquence diagrams arc merged into a single, global state machine.
The merging has to maintain transitions between states located on each of
composite machine. States of the whole system are represented by states of
the global state machine.

— The sct of states of the resulting state machine is minimized.

The idea of the first step of the transformation is explained for the speci-
fication example from the previous section. Messages on the sequence diagram
which can change the object state are recognized. It is assumed that only re-
ceiving events on the object lifeline may causc changing of its state. The areas
between marked messages (oval areas in Fig. 1.) are distinguished and states
from these arcas are derived.

Incoming messages become cvents triggering transitions between states, whereas
the outcoming messages become actions executed as entry actions of a particular
state. There are also other sequence diagram elements that produce new states
like statc invariant (e-transition, i.c. internal transition, with state invariant con-
dition!), and combined fragment (for object that begins the interaction within

! State invariant condition - an interaction may be continued by the object provided
if the state satisfies the invariant condition

76 Z. Huzar and G. Loniewski

State machine for object ,,A™ State machine for object ,.B” State machine for object ,,C”
A 80 J [so] Fa— 1) 3
Lenty/el. . Fersnsprn \entry/en
AN e
dlcondition=trug] \z{condition=tfaise] a1

N
v\‘(

Ei:"éntg/es \j (.)

Fig. 2. Example statecharts for derived from sequence diagram

the fragment e-transition with operand condition for other objects taking part
in the combined fragment interaction new states triggered by a proper events).
Statecharts created by the algorithm possess only simple states (simple - in sense
of UML statecharts), and therefore they are called flat statecharts. Example of
state machines generated out of a given scenario from Fig. 1. is shown in Fig. 2.
The sccond step of the transformation merges state machines representing
behaviour of the same class. The transformation has to maintain partial ordering
between state machines which results from sequence diagrams.
The state machine for a given class is constructed as follows. First, the state
machine derived from a scenario which possesses objects in their default states
(i.e. objects belonging to the initial object diagram) is taken as an initial state
machine. Second, other state machines are attached to the initial one. The syn-
thesis proceeds as follows. At the beginning equivalence between initial states of
the initial state machine and the joining state machine is examined.
If state machines can not be joined by their initial states system looks for other
states in the initial state machine that arc similar to the initial state of the
merged machine. If there are two cquivalent states? and joining them will not
cause indeterminist situation a synthesis decision can be taken.
However, a situation when no merging state has been found might occur. In
such a casc a new transition between the initial state of the initial state ma-
chine and the initial state of the merging state machine is added and marked
as A-transition®. This sort of transition can be exccuted if no other transitions
are triggered and user will decide to continue the prototype execution with the
A-transition path. Two state machines merging procedures of aforementioned
description are shown on simple examples in Fig. 3.

2 states described by equal attributes values of the corresponding class and equal set
of executing actions

3 A-transition - transition triggered only by the user decision about execution path if
no other transitions are possible

Deriving Prototypes from UML 2.0 Sequence Diagrams 77

A B) 0 D)
MUK N HIUM

Fig. 3. State machine synthesis process:

A) initial statc machines M1 and M2;

B) merging through equivalent initial states;

C) merging through equivalent states (state machines ordered);
D) merging by adding new A-transition

The third step of transformation is the minimization process. State machines
generated for objects on the base of different sequence diagrams may possess
similar states. Such states are derived from identical interactions which were
located on different sequence diagrams. For that reason applying the concept
of interaction use is recommended. When creating system specification similar
interactions can be designed on a separate sequence diagram. Synthesis process
docs not deal with removing similar states. To improve the state machine effi-
ciency redundant states should be removed but still maintaing the state machine
deterministic.

4 Code generation and system design

Code generation out of statechart diagrams is based on the following schema:

— state is transformed to a class where its behaviour consists of methods de-
rived from actions that state activity consists of,

— events and respective actions are transformed into method calls,

— for each class a statc variable indicating current state of its instances is
implemented; assignments of that state variable correspond to transitions
from a statc machine,

— transitions conditions are converted into if-else statements in generated event
methods, etc.

Gathering of a behaviour associated with a single state and its encapsulation in
one class is an idea taken from state design pattern [5] of which created system
makes use. It gives flexibility while performing some changes in specification
(states activities) which results in code modifications. State design pattern also
provides the architccture of Java classes.

UML state machines and Java programming language are based on different con-
cepts. For that reason code generation is not an casy, straightforward mapping
of state machine elements into the code. However, object-oriented programming
and design patterns enable generation the code skeleton of executable prototype.

78 Z. Huzar and G. Loniewski

Eomare Suis

+ State state; State Context context;

+ $0s0; + abstract void entry(}

+81s81;

+S1°s1 °

+ 8282 - J

+ 833 | | | ;

5 $0 s1 s .82 L83

+ (,o‘::';lxexlg£a "

+ void setState(); e
+ S00); + S1(): +810; + 82(); + S3(): .
+ void entry(); + void entry(}; + void entry(); + void entry(); + void entry(j:
+ void e1{); + void ed(); + void e7(): + void e8();

+ void e8(); + void e9():

Fig. 4. Example of classes structure based on state pattern

An cxample of such a skeleton for the state machine for object ”A” from Fig.
2., is shown in Fig. 4.
Methods deriving from state transitions are implemented as follows:

public void transitionMethod() throws Exception {
if (condition == TRUE) {
executeStateTransition();
} else {
throw new Exception();
}
}

Testing condition in if-else statement is derived from a transition condition.
If satisfied the transition is executed, otherwise an exception arises.

On the basis of above mentioned code generation and transformations rules,
system for prototypes automatic generation was created[3]. It gets as an input
system specification and produces executable Java code as an output. Function-
ing of the system described by UML activity diagram is presented in Fig. 5.
Each action from the activity diagram corresponds to a system module. These
modules work in a cascade cach of which taking as its input the output of the
previous module demonstrates the data flow on demonstrated activity diagram.
The system includes also a graphical user interface for sequence diagrams creat-
ing and editing.

ad System wor|

stane
spacecitication |

(Seq

| dingrams imo
| State Machine

\transtgrmation

S pud

State machines
XML

\% 4{ B \57, e ’

:.-“qu-"c- ' | i State Machine |
grams into | iointo XML H

\XML ‘var\kcblfﬂ?rﬁ {transiation

i Sequence
diwgrume

JAVA code
generation
v

Fig. 5. System workflow activity diagram

Deriving Prototypes from UML 2.0 Sequence Diagrams 79

All the necessary data present during its transformation process is stored in XMI
format. This enables exchanging the specification information with other UML
modelling tools.

5 Summary

The main motivation for automatic prototype generation is constructing a sys-
tem that supports developing process in software. First of all, executable proto-
type enables validation of a specification on a preliminary stage of the project.
Additionally, it provides the first vision of the developed system that can be fur-
ther expanded and modified. It can also help project managers in project time
estimations.

The system presented in the paper was tested by a set of simple specification
examples. [t appears that current version of the system may be effectively used
only for non-complex specifications. This is not caused by the transformation
algorithm that may cope with the system complexity but by clarity of generated
code skeleton. The skeletons in present forms are not easy for extension or mod-
ification as their structure reflects final, minimally integrated state machine but
there is not clear tracing to sequence diagrams or component state machines -
machines representing individual classes. Solution of this discrepancy seems to
be possible by another structuring of state machine intergration.

In addition it seems that within future works the system may be enhanced by
new functionalities. Here are examples of issues worth to be considered:

— Providing system input not only with behavioural specification but also with
prototype structurc skeleton. Applied in created system state pattern for
structuralizing the implementation is clear to understand but lack of readable
class structure leads to illegibility of gencrated code. Providing the system
with additional information about prototype architecture can facilitate its
further expansion or modification.

— Such system should have a testing module which after generation of the
final state machine will test its correctness regarding all the execution paths
located on the scenarios provided as system input. On the basis of that
module Java unit testing procedures can be created in order to ensure that
generating based on state machines code executes properly as designed on
sequence diagrams.

— The idea of expanding the system with gencrating graphical user interface
can be taken into account. In [1] exists an approach of describing GUI by
sequence diagrams. That work shows the power of UML sequence diagrams
in describing systems complete specifications.

— Other idea is taking into consideration synchronous messages in the system
specification. This approach allows only asynchronous messages which under
certain assumptions facilitates the algorithm of constructing state machines.
Objects synchronization is not necessary assuming that all objects are in
proper states to receive messages from other objects (especially important
when entering combined fragments).

80 Z. Huzar and G. Loniewski

There are also other methods that use sequence diagrams for specification of
developed systems. Within them construction of state machine and further code
generation often rely either on specification of additional assumptions or on a
dialog with the system user providing ad hoc decisions. Such complcte system
(SCED) is presented in [2]. Morcover, to facilitate the process certain notation
besides the UML standard is frequently used.

Whittle and Schumann in their work [9] make the most of OCL for messages
pre- and post-conditions which makes the specification creation process much
morc intricate. An algebraic approach presented by Ziadi, Helouet and Jezequel
in [10] expects that not only particular scenarios are described, but also one
scquence diagram that collects and shows the connections between all other sce-
narios provided. In fact the final state machine is transformed from one sequence
diagram. This is again the kind of user limitation to be applicd when preparing
system specification. Another statechart generation basing on sequence diagrams
1s presented by Makinen and Systa in MAS project [4]. This approach proposes
interaction with user in accepting or rejecting generated state machines.

One of the aims of this work was making the system as self-reliant as possible
which is to effect in limiting the system interaction with the user to the min-
imum, at the same time being in full compliance with the UML 2.0 notation
standard.

References

1. P. Biecek and Z. Huzar. Graphical user interface and sequence diagrams in proto-
type generation. In Z. Huzar and Z. Mazur, editors, Problemy i metody inynierii
oprogramowania. WNT, 2003.

2. K. Koskimies, T. Ménnistd, T. Systd, and J. Tuomi. SCED: A tool for dynamic
modelling of object systcms. Technical Report A-1996-4, 1996. Available from:
citeseer.ist.psu.edu/koskimies96sced.html.

3. G. Loniewski. State machine prototype generation on the basis of uml 2.0 sequence
diagrams. Master’s thesis, Wroclaw University of Technology, Poland, September
2006.

4. E. Makinen and T. Systa. Mas - an interactive synthesizer to support behav-
ioral modeling in uml. In 23rd International Conference on Software Engineering
(ICSE’01), pages 0-15, 2001.

5. I. A. Niaz and J. Tanaka. Mapping uml statecharts to java code, 2004. Available
from: citeseer.ist.psu.edu/635242.html.

6. Object Management Group. UML 2.0 OMG Specification, 2005. Available from:
www.omg.org/technology /documents/formal /uml.htm.

7. T. Pender. UML Bible. John Wiley & Sons, 2003.

P. Roques. UML in Practice. John Wilcy & Sons, 2005.

9. J. Whittle and J. Schumann. Generating statechart designs from scenarios. In
International Conference on Software Engineering, pages 314-323, 2000. Available
from: citeseer.ist.psu.edu/whittleO0generating. html.

10. T. Ziadi, L. Helouet, and J.-M. Jezequel. Revisiting statechart synthesis with an

algebraic approach. In 26th International Conference on Software Engineering
(ICSE 04), Edinburgh, UK, page 242251, 2004.

*®

