The Analysis of UML State Machine Formal
Checking Methods

Gundars Alksnis

Department of Applied Computer Science, Riga Technical University, Meza icla 1/3,
Riga, LV-1048, Latvia
galksnis@cs.rtu.lv

Abstract. The purpose of this paper is to discuss current trends of
such UML statc machine model checking methods, where model check-
ing is performed by translation into formal notations. Formal methods
have shown their advantages for functional requirements’ inconsistency
checking and their climination at early stages of development and for
cnriching graphical notations to reveal vagueness and inaccuracies as
discussed in this paper.

Keywords: UML state machines, model checking, formal notations and
methods.

1 Introduction

The design of system models and their modeling is widely used practice at the
early stages of software devclopment life cycle. Models provide better under-
standing of proposed system and allow making correct decisions concerning the
implementation. For such purposes, the diagrams, which are based on some
graphical notations, are used most common. To enable communication between
developers, model diagrams have particular (standardized) underlying graphi-
cal notations. Among such graphical notations is Unified Modeling Language
(UML) [1]. Additionally, the model driven development approach has becn put
forward to cnable creation, validation and transfer of syntactically and semanti-
cally complete models, such that the source code generation can be automated
and hidden from devclopers, thus, promoting modecls as the main artifact of
software development.

However, currently available tools arc mostly immature in a sense, that gener-
ated code must be manually refined to implement algorithms and system behav-
lor conccived by the devcloper. The most essential barrier to implement model
driven devclopment vision is incomplete syntax and semantics of such graphical
technologies, which can yield to inconsistent interpretations even at the initial
stages of system design.

Even current UML 2.0 specification allows semantically incomplete model
specifications for use in scenario “UML-As-Sketch”, and trends show that this
situation will remain such also in the future. This means, that UML models can

132 G. Alksnis

and will be designed both formally and informally. The only requirement is that
formal UML semantics must be a subset of the full UML semantics.

On the other hand, there are tools, which provide automated code generation
(usually only framework) directly from UML models, and vice versa. However,
code gencrated in this manner, cither must be manually refined with algorithms
that UML modeling tools cannot express explicitly or the generated code is not
sufficiently effective for production.

Nevertheless, to make confidence about correctuess of designed model and
gencrated code (even partial), there must be done additional checks, which are
in higher abstraction levels than code in high level programming languages.
Namely, model checking must be carricd out, to check whether particular model
is semantically complete and self-consistent. Such checks, for example, can be
done with the help of formal methods. Wherewith, there is a need for translation
of graphical notations into some formal specification notation, which afterwards
is analyzed and executed in the appropriate tools.

This is even more important for system’s dynamic or behavioral models, when
developer needs assurance, that the model expresses proposed system’s behavior
appropriately. For such cases, there are developed methods and their supporting
tools, the brief survey and analysis of which is discussed in this paper.

The paper discusses current trends of such UML state machine model check-
ing methods, where models are translated into formal notations. The compara-
tive analysis of four such formal model checking methods is given. Finally, the
paper concludes with the outline of current possibilities for formal model check-
ing of UML state machine models with the help of formal methods.

2 Motivation

Formal model checking has proved to have a number of benefits, which gives de-
tailed view about the system being implemented at the stages of system analysis
and design. For example, modcl checking allows to:

e Validate behavior at the initial stages of system’s design;

* Reveal and eliminate functional requrements errors before implementation:

¢ Obtain (automatically generate) formally “executable” model specification
(i.e. system’s prototype);

¢ Validate consistency and completeness of model specification, and more.

To make model checking effective and automated, model formal syntax and
semantics must be defined. Otherwise, model can be viewed only as a sketch,
and inconsistencies and contradictions must be validated manually by using de-
veloper’s knowledge.

The most important thing in model checking is that models allow system
analysis at high abstraction levels, where nondeterministic and parallel actions
may take place. Thus, executable code generation from the model and checking
of such code may not always give expected results. Developer must not only
analyze cach model’s node interconnections with other nodes, but also, and more

The Analysis of UML State Machine Formal Checking Methods 133

importantly, look at the model as a whole and even in connection with other
models, where the same artifact is viewed from different aspects or viewpoints.

It is especially important in modeling system’s behavior. Even if the model
reflects system’s behavior in time, usually it is shown in the form of static dia-
gram. If such models are “cxccuted” before they arc transformed into code, it
is possible to reveal some deficiencies, which may show up only in the run-time,
but not in the compile-time.

The next scction discusses in detail the possibilities of checking system’s be-
havior from UML state machines [2], which are based on David Harcl statecharts
[3] and extended with object oriented propertics.

3 Comparative Analysis of Formal Model Checking
Methods

As the subject for comparison and analysis, we chose four formal model checking
methods (approaches), which provide means of translating state machine models
into formal notations for actual model checking. The methods are the following:

e Fernandez-Toval rewrite logic;

e Zhao graph transformation;

e Knapp-Merz Hugo/RT tool,

e Sekerinski-Zurob abstract machine notation and B;

This decision is based solely on a variety of implementation forms. The only
common thing among chosen methods is that they formalize UML state machine
notation by transforming models into formal specifications with which formal
model checking is performed. From the implementation viewpoint, these methods
are completely independent from each other. There are many other methods
available, but the sclection for this resecarch was based on the degree of involved
formal mecthods and notations.

José Luis Fernsndez Alemdn and Ambrosio Toval Alvarez propose UML
metamodel based method, which formalizes UML state machine diagrams in
rewrite logic [4]. To accomplish this, they apply rewrite logic and the specifica-
tion language Maude.

Yu Zhao with colleagues [5] suggest to perform transformation and checking
of models in Petri nets. The motivation for selecting Petri nets formalism is that
it allows comprehensive and automated model checking.

Alexander Knapp and Stephan Merz propose model checking approach based
on relations between different UML diagram types [6]. Namely, they take into
account connections between UML state machine diagrams and UML interaction
(i.e., collaboration and sequence) diagrams. They have developed tool Hugo/RT,
which allows verifying if two models are consistent.

The last of the reviewed methods is proposed by Emil Sekerinski and Rafik
Zurob. In it, the statechart diagrams are translated into Abstract Machine No-
tation (AMN) of B method [7]. Although they are speaking about statecharts

134

G. Alksnis

Table 1. Summary of reviewed UML state machine formal model checking methods

Method Fernandez-Toval Zhao Knapp-Merz Sekerinski-
Zurob
. . . Graph
Underlying Rewrite logic / . AMN and B
theory / tool Maude transfomatlons and Hugo/RT method / iState
M Petri nets
Has support
for static Yes Yes Yes Yes
semantic
Has support Partly Partly
for dynamic No Yes (by translating into | (by translating
semantic Java code) into code)
Model can Only for checking In any tool Wh'.Ch Yes . Yes
. . supports execution | (for demonstration | (as final product
be executed | of static semantics .
of Petri net models purposes only) code)
Uses UML Yes Yes Yes Yes
metamodel
f::ttox:ta;lfc Partly Partly Partly Partly
ml()) del (only for static (must use Petri net (only for static (only for static
errors semantics) debugging) semantic) semantic)
Can Yes
generate No No (for demonstration Yes
source code purposes only)

in Harel’s notation, but taking into account the origins of UML statc machine
diagrams, their method can be modified for application to UML state machines.

Summary of reviewed methods is given in Table 1. First column lists com-
parative properties and the rest of columns contain property values for each
method. Chosen comparison characteristics are based on semantics (both, static
and dynamic) handling and analysis of model checking results.

Review of the methods revealed, that the main problem to handle, is the
formalization level of UML state machine operational semantics (mathematical
foundation for interpretation and execution sequence), which is not, fully defined
by UML designers. This means, that formalization may be different from one
method to another and thus made incompatible, and lead to different interpre-
tations, especially in the aspect of execution.

Possible solution to this problem could be the translation of UML state ma-
chines into hierarchical finite state automata. However, it does not provide means
for description of some essential UML state machine properties, for cxample, ac-
tivities, input and output actions, finishing events and transitions, historical and
branching pseudostates, and adaptation of them are not trivial.

All reviewed methods supports checking of static semantics—they can give
answer to whether model is complete—with entry, initial state, intermediate
states and final state and exit, but cannot give answer whether it is logical.
Checking of dynamic semantics is allowed in methods with exccutable formal
specifications.

The Analysis of UML State Machine Formal Checking Methods 135

The purpose of checking of dynamic semantics is to clarify, whether model
clements are well connected. This is accomplished by selection of appropriate
formal notation, as in Zhao’s method, where formalization in Petri nets and tool
availability enables more throughout model checking. Model execution is explo-
ration of model state space. Because state space can be infinite, model execu-
tion strategics (especially for nondeterministic and concurrent states) determine
whether results will be adequate.

However, all reviewed methods have common characteristic. Namely, they all
are based on UML metamodel, which cnables caser refinements of the method,
when UML state machine metamodel definition change. Additionally, metamodel
inconsistencies and missing definitions must be corrected.

However formal or automated model checking may be, inevitably, there are
situations in which decisions must be made by the model developer. Neverthe-
less, his or her decision may largely depend on information about current model
and further refinement. For such cases, the tool must output appropriate model
checking results. All reviewed methods output inconsistencies of model static se-
mantics, nonetheless, model behavior correctness and inconsistency elimination
is solely on developers’ competence and intuition.

Finally, in the context of model driven development, comprehensive code
generation from the model is essential step, which gives confidence that trans-
formation is performed with strict rules and that code indeed reflects developed
model. Unfortunately, in reviewed methods this step is still immature, if sup-
ported at all. The result is whether inefficient from run-time viewpoint (Knapp-
Merz’s method) or define restrictions against model properties and programming
languages (Sekerinski-Zurob’s method).

4 Conclusions

In this paper wec outlined selection of formal model checking methods, the main
distinction of which is their use of model translations into formal notations and
formal specification languages particularly, with the aim to utilize advantages
of formal specifications in rccovery of inconsistencies and their eliminations.
The paper outlined main problems developer must deal with when UML state
machine diagram model checking is performed.

The common conclusion is that there are many different methods available,
but none of them covers all aspects of bchavioral model checking—cach has its
own advantages and disadvantages. However, the most notable shortcoming is
that current UML specification is not fully formalized, which, in turn, makes
method creators do their own formalization, which may differ from other for-
malization approaches, though slightly.

This topic is also important in the context of model driven development,
where models are supposed to be the main artifact of system’s design. In fact,
the more elaborated tools developers will have the more high-level abstraction
checks they will be able to perform, the more precise models will be developed
and generated code will be more effective.

136 G. Alksnis

This research was conducted as part of ongoing research for implementation
of framework for Modecl Driven Architecture extension with formal methods [8].
In this UML metamodel based framework the formal specification languages
are used for Platform Independent Model transformations and refinements into
Platform Specific Models.

The common conclusion is that the model checking still is mainly guided
by the developer, and for automatically generated code to be fully optimized
for particular model, therc is the nced for further rescarch. In addition, formal
methods are subject to critique for their large learning curve and missing effective
tool support; however, formal methods applications has proved as advantageous
in functional requirement inconsistency checking and their elimination at early
stages of system’s development, and for enriching graphical notations to reveal
vagucness and inaccuracies, as was discussed in this paper.

This work has been partly supported by the European Social Fund within the
National Programme “Support for the carrying out doctoral study program’s and
post-doctoral researches” project “Support for the development of doctoral studies
at Riga Technical University”.

References

1. OMG: Unified Modeling Language. //Internet: http://www.umnl.org/

2. Dan Pilone, Neil Pitman: UML 2.0 in a Nutshell. A Desktop Quick Reference.
O’Reilly Mcdia, Inc., USA, California, 2005.

3. David Harel: On Visual Formalisms. ~ Communications of the
ACM, volume 31, number 5, May 1988, pp. 514-530. //Internet:
http://doi.acm.org/10.1145/42411.42414

4. José Luis Ferndndez, Ambrosio Toval: Can Intuition Become Rigorous? Founda-
tions for UML Model Verification Tools. Proceedings of the 11th International
Symposium on Software Reliability Engineering (ISSRE 2000), IEEE Press, 2000,
pp. 344-355.

5. Yu Zhao et al.: Towards Formal Verification of UML Diagrams Based on Graph
Transformation. Proceedings of the E-Commerce Technology For Dynamic E-
Business International Conference, Volume 00, IEEE Computer Socicty, Wash-
ington, DC, USA, 2004, pp. 180-187. //Internct: http://dx.doi.org/10.1109/CEC-
EAST.2004.70

6. Alexander Knapp, Stephan Merz: Model checking and code generation for UML
state machines and collaborations. D. Hancberg, G. Schellhorn, and W. Reif, edi-
tors, 5th Workshop on Tools for System Design and Verification, Technical Report
2002-11, Institut fur Informatik, Universitat Augsburg, 2002, pp. 59-64.

7. Emil Sekerinski, Rafik Zurob: Translating statecharts to B. M. J. Butler, L. Petre,
and K. Sere, editors, 3rd International Conference on Integrated Formal Methods
(IFM), Lecturc Notes in Computer Science, Springer-Verlag, May 2002, pp. 128~
144.

8. Gundars Alksnis: Formal Methods and Model Transformation Framework for
MDA. Proceedings of the 1st International Workshop on Formal Models
(WFM’06), Dusan Kolar and Alexander Meduna (Eds.), Ostrava: MARQ, 2006,
pp- 87-97.

