
Research on Software Project Developer
Behaviors with K-means Clustering Analysis

Xiaozhou Li

Tampere University
Kalevantie 4 33100, Tampere, Finland

xiaozhou.li@tuni.fi

Abstract. Research on technical debt and community smell have drawn
increasing attention in the academia of software engineering in the lat-
est decade. Furthermore, data mining methods have been widely applied
in the very domain as well. However, limited studies have contribute
to the understanding of software project community using data mining
methods, especially regarding the analysis of developer behaviors. Us-
ing K-means clustering, this study provides a preliminary analysis on
the classification of open source software project developers based on
the statistics of their behaviors related to technical debts. The results
show that developers can be categorized into three different behavior
groups, including, Veterans, Vulnerability Creators, and Fault Inducers/
Commoners.

Keywords: Developer Behaviors · Data Mining · K-means · Clustering
· Technical Debt · Code Smell · Community Smell

1 Introduction

Technical debt (TD) refers to the technical compromises made postponing soft-
ware maintenance activities that can yield short-term benefit but may sabotage
the long-term health of a software system [7]. Many studies have contributed
to the domain of TD management in terms of a number of perspectives [18].
Code smell, as a type of TD and also a TD identification technique, has been
also studied regarding its relation to fault induction and impact on maintenance
efforts [27, 37, 12, 22, 29]. However, technical factors, e.g., TD, are not always the
key factor for software failures. Social and technical debt, as well as code and
community smells are deeply connected [24, 33]. Thus, investigating the software
projects as communities and research on developer behaviors shall contribute to
the understanding of the social factors towards software success [21, 11]. On
the other hand, towards the improvement of software productivity and qual-
ity, data mining methods have been increasingly applied in various sub-domains
[35]. Regarding TD and code smell, many studies have also adopted data mining
methods, towards various perspectives [10, 6, 14, 26]. However, limited studies
have contributed to investigating the phenomena of community smell using data
mining methods.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons 
License Attribution 4.0 International (CC BY 4.0)



2 Xiaozhou Li

This study focus on the analysis of project developers based on their TD
related behavior statistics, answering the research questions of RQ1. What are
the different kinds of project developer behaviors? and RQ2. How to classify the
project developers based on their TD related behaviors?. It aims to provide an
approach to classify the software project developers using K-means clustering.
The data used herein is adopted from the Technical Debt Dataset, which provides
the measurement of the over 100k commits of 33 projects [15]. This study aims
to contribute to the understanding of the open source project developer groups
and the future studies on community smell.

The reminder of the article is organized as follows. Section 2 introduces the
related work regarding TD, code and community smell, and using data mining
methods in such domains. Section 3 describes the data used hereby. Section 4
introduces the method used to analyze the data while Section 5 presents the
results. In addition, Section 6 provides further discussion on the limitation and
future work of this study. Section 7 concludes the article.

2 Related Work

Regarding TD in the domain of software engineering, many studies have been
conducted regarding its identification [37], measurement and monitoring [27, 20],
and management [4, 17]. Specially regarding code smell, which is closely related
to TD, has also been widely studied regarding the above mentioned perspectives
[23, 29]. Studies on community smell emerge from the research on software com-
munities evolution [8] and the contrast concept of social debt towards the TD
counterpart [32, 31]. Focusing on the social factors toward community smells,
recent empirical studies have contributed to the research on the effect of com-
munity diversity [5] as well as the ways of promoting community inclusiveness
[9]. The general research regarding the social aspect of software community dates
back to earlier [11]. Regarding categorizing developer behaviors, Nakakoji et al.
propose an ’onion model’ as well as a developer classification including periph-
eral developers, active developers, core members and project leaders [21]. Yu and
Ramaswamy also present a classification of core and associate project member
based on interaction frequency [36].

On the other hand, data mining methods have been applied in the research on
TD as well. Many studies have used natural language process (NLP) techniques
in self-admitted TD detection and identification [28, 14]. Agarwal et al. apply
multiple machine learning methods in developing a contexual learning system
tackling TD issues [1]. Baylor et al. propose a TensorFlow-based general-purpose
machine learning platform to standardize the components, simplify the platform
configuration and reduce the TD of platform creation and maintenance [3]. How-
ever, the studies regarding community smell analysis with data mining methods
are still limited.



Title Suppressed Due to Excessive Length 3

3 Data Description

The dataset used in this study is the Technical Debt Dataset originally presented
by Lenarduzzi et al. [15]. It selected 33 Java projects from the Apache Software
Foundation (ASF) repository1, which are older than three years and developed
in Java, contain more than 500 commits and more than 100 classes, and use Jira
issue tracking systems with at least 100 issues. The data collection tools include
PyDriller [30], Ptidej [16], Refactoring Miner [34] and SonarQube2. Specifically,
to identify the fault-inducing commits from a project’s version history, the SZZ
algorithm is used via the implementation of OpenSZZ [25].

The Technical Debt Dataset contains the following tables shown in Table 1.

Table 1. The Technical Debt Dataset Tables

Table Name Description

COMMITS Commit information retrieved from the git log
COMMITS CHANGES Changes performed in each commit
FAULT INDUCING COMMITS Results from the execution of SZZ algorithm
JIRA ISSUES Jira issues for the analyzed projects
PROJECTS Links to the GitHub repository and Jira issue tracker
REFACTORING MINER List of refactoring activities
SONAR ISSUES SonarQube issues, anti-patterns and code smells
SONAR MEASURES Measures SonarQube analyses from the commits
SONAR RULES Rules monitored by SonarQube

As this study focus on the analysis of project developer behaviors, only the
tables directly related to faults, issues and TD are selected, including Commits,
Fault inducing commits and Sonar issue. The Commits table contains 128375
commits ranging from 2000-10-01 to 2018-11-01 committed by 915 unique devel-
opers (identified by committerIDs). The Fault inducing commits table contains
the 27340 unique faults with the according inducing and fixing commits identi-
fied by the CommitHash, via which the developers who induce or fix the faults
can be identified. The Sonar issue table contains the 1949899 issues’ information
regarding the developers who create the issues via their commits, as well as the
according severity, TD, and issue types (including code smell, bug, and vulner-
ability). Therein, 1869397 reported issues are code smell (95.9%) when bug and
vulnerability cover respectively 57812 (3.0%) and 22690 (1.1%)

4 Method

4.1 Preprocessing

Focusing on identify each developer’s project committing behavior, the originally
selected datasets are processed towards a collection of individual developers with

1 http://apache.org
2 https://www.sonarqube.org/



4 Xiaozhou Li

the according set of behavior data as features. Firstly, a set of unique developers
are identified by concatenating the ‘CommitterId’ column of the Commits table
and the ‘author’ column of the Sonar issue table. By doing so, 407 unique
developers are selected.

Thereafter, for each selected developer, the calculated features regarding
his/her committing behavior include Commit number, Active days, Induced fault
number, Fixed fault number, TD, Issue Number, average issue severity, Code
smell issue rate, Bug issue rate, and Vulnerability issue rate. Therein, Commit
number is counted directly from the Commit table. Active days are the day
counts from each developer’s first commit date to the last. TD is the sum of
those of the developer related issues recorded in the Sonar issue table, from
which issue number and the rate of each issue type for each developer can be
also calculated. To calculate the average severity of issues for each developer,
the severity levels (i.e., Blocker, Critical, Major, Minor, and Info) are quantified
into ratings from 5 to 1 (5 being the most severe).

Fig. 1. Sample of the Developer Dataset

Furthermore, due to the difference in developers’ active periods, the Commit
number, Induced fault number, Fixed fault number, TD, and Issue Number will
be firstly normalized by the Active days. Then the above mentioned data, as well
as the average issue severity, will be further normalized into values in [0, 1]. As
the three issue type rates are originally between 0 and 1, the according values
will remain. A sample of the preprocessed dataset is shown as Figure 1.

4.2 K-means Clustering

In order to classify the unlabelled data shown above, in this study K-means
clustering is used. K-means clustering was used to extract clusters from the
dataset. K-means, as a partitional clustering method, has been widely adopted
in various data mining related domains due to its ease of implementation and
efficiency in application [13]. K-means clustering takes in an m ∗ n data matrix
(i.e., m data points, n features) to create k clusters. The cluster number k must
be pre-defined when each data point will be assigned to one of the k clusters. The
iterative process starts by assigning k random data points each to one cluster
as the cluster center. Each of the remaining m− k data points will be assigned
to the cluster whose center is closest to it. Thereafter for each iteration, the



Title Suppressed Due to Excessive Length 5

center of the obtained k clusters will be relocated when each data point will be
adjusted to the cluster of the closest newly defined center. The k clusters are
finalized when no data point will change clusters. For this study, the number
of clusters k is determined using the Silhouette Analysis [19] when the initial
seeding is optimized using k-means++ algorithm [2].

5 Results

The optimized number of clusters k is determined by the Silhouette Analysis.
The average Silhouette score is calculated for each k from 2 to 10, with the result
shown in Figure 2.

Fig. 2. The Average Silhouette Scores of Different Cluster Number

Accordingly, the highest score obtained from 2 to 10 clusters is 0.6567 at
k = 3, which is selected as the number of clusters. With the selected k, the K-
means clustering is performed on the preprocessed data, obtaining three clusters
containing respectively 20, 12, and 375 data points. Differences between the
clusters of developers regarding each feature can be seen in Figure 3.

By observing such results, the different developer behaviors (i.e., each cluster)
can be summarized as follows.

Veteran (Cluster 1) Veteran developers contribute the highest number of com-
mits per active day (avg. 2.75 compared to 0.12 of Cluster 2 and 0.3 of Cluster 3).



6 Xiaozhou Li

Fig. 3. Feature Differences for Clusters

With a relevantly high fault inducing rate (avg. 0.03), Veterans have the highest
fault fixing rate (nearly 10 times the others). Importantly, they create the high-
est TD (avg. 1877.96 compared to 82.83 and 42.48) and the number of issues
(avg. 87.58 compared to 8.44 and 2.88) of all developer groups. Despite only 20
out of 407 developers belong to this group, they inject the most issues (923949),
including 883549 code smell issues, 10449 bugs, and 29951 vulnerability issues.
Nonetheless, the average severity of their created issues is the lowest, but cannot
be significantly distinguished. 94 percent of the issues created are code smells.
Surprisingly, Veterans have the lowest active day duration (avg. 277.5 days).

Vulnerability Creator (Cluster 2) Vulnerability Creators have the highest vul-
nerability issue rates of all groups (avg. 0.41). Accordingly, they have also the
lowest code smell rate and bug rate. Vulnerability Creators have also the lowest
commits per active day (avg. 0.12), lowest fault inducing (avg. 0.0004) and fix-
ing rate (0.01). However, the average issue severity level of them is the highest
among the groups. They have, on average, nearly 3 times the active period length
compared to Debt Creators (avg. 725.0 days). 12 out of 407 developers belong
to this group. However, compare to the other behavior groups, they inject the
lowest number of issues in total (6475).

Fault Inducer/Commoner (Cluster 3) Fault Inducer/Commoner is statistically
the most common developer behavior group, as 375 out of the 407 developers



Title Suppressed Due to Excessive Length 7

belong to this behavior group. Compared to the other groups, they have the
highest fault inducing rate (avg. 0.05 compared to 0.03 and 0.0004) while the
similarly low fault fixing rate compared to Vulnerability Creators. On the other
hand, they have the lowest TD and number of issues created but the highest
code smell percentage. They also have the longest active period length of all
groups (avg. 1061 days). Despite being the majority based on behaviors, the
total number of issues (620241) injected by this behavior group is less than that
of the 20 veteran developers, as well in each issue type.

To summarize, project developers can be classified into three different developer
behavior groups, including Veterans, Vulnerability Creators, and Fault Inducers/
Commoners. The most common developers are the Fault Inducers/Commoners,
who most likely induce faults despite of the low commit rates. But the Common-
ers seldom create TD and issues. A small group of developers (i.e., Veterans) cre-
ate the most TD and issues (over 40 times those of the Commoners). They also
the highest commit rates, fault fixing rates and the lowest active duration. The
third group of developers (i.e., Vulnerability Creators) have the lowest commit
rate and fault inducing rate, but twice the TD created compared to the Com-
moners. They also have the highest vulnerability issue creation rate, despite of
the lowest issue injection number.

6 Discussion

This study provides a preliminary analysis on software developer classification
based on their committing behaviors using K-means clustering. It contributes
to the larger domain of data-driven software engineering [35]. By classifying the
different project developers and identifying their similarities regarding commit-
ting behaviors, proactive mechanisms can be deployed for different developers
accordingly towards tackling issues like code smell and community smell effec-
tively.

One of the limitations of this study is that only limited perspectives of the
developer behavior are taken into account. More details of the sonar issues con-
tained in the Sonar measures table can be mapped to each commit in the Com-
mits table, which leads to adding more features to the developer data points.
Furthermore, despite that K-means being the most commonly adopted clustering
method, other clustering methods, e.g., Agglomerative Hierarchical Clustering
and Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
[13] can be used in the future for comparison. Evaluation of the obtained clus-
tering results is not conducted in this study. It can be done using purity metrics
[38] when ground truth of the developer labeling is obtained. In addition, a
worth noticing phenomena in the original dataset is that, when the Commit-
terID in Commits table and that of Commit Changes table are mapped via
CommitHashes, all the mappings are not unique (meaning one developer email
can be mapped to more than one developer names, and vice versa). It indicates
the the results can be to some extent inaccurate by considering each Commit-
terID/email representing only one individual developer.



8 Xiaozhou Li

The future work of this study include the continuous exploratory research on
software developer analysis using larger volume of data. Other clustering meth-
ods shall be used for comparison. Furthermore, based on the current clustering
results, further investigation of each unique type of developer behavior can be
conducted with the text mining on e.g., the messages in Commits table and
Sonar issue table via NLP techniques.

7 Conclusion

This study presents a preliminary analysis on the classification of software project
developers based on their committing behaviors using K-means clustering. Three
unique developer behavior groups are obtained, including Veterans, Vulnerabil-
ity Creators, and Fault Inducers/ Commoners. The different developer behaviors
are distinguishable in terms of their differences in commit rates, fault inducing
and fixing rates, technique debts, issues creating, active periods and so on. This
study contributes to the larger picture of data-driven software engineering and
also specifically the research on TD and community smell.

References

1. Agarwal, A., Bird, S., Cozowicz, M., Hoang, L., Langford, J., Lee, S., Li, J.,
Melamed, D., Oshri, G., Ribas, O., et al.: Making contextual decisions with low
technical debt. arXiv preprint arXiv:1606.03966 (2016)

2. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In:
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms. pp. 1027–1035. Society for Industrial and Applied Mathematics (2007)

3. Baylor, D., Breck, E., Cheng, H.T., Fiedel, N., Foo, C.Y., Haque, Z., Haykal, S.,
Ispir, M., Jain, V., Koc, L., et al.: Tfx: A tensorflow-based production-scale ma-
chine learning platform. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 1387–1395. ACM (2017)

4. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., MacCor-
mack, A., Nord, R., Ozkaya, I., et al.: Managing technical debt in software-reliant
systems. In: Proceedings of the FSE/SDP workshop on Future of software engi-
neering research. pp. 47–52. ACM (2010)

5. Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A., Ferrucci, F.: Gender
diversity and women in software teams: How do they affect community smells? In:
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Society. pp. 11–20. IEEE Press (2019)

6. Codabux, Z., Williams, B.J.: Technical debt prioritization using predictive analyt-
ics. In: Proceedings of the 38th International Conference on Software Engineering
Companion. pp. 704–706. ACM (2016)

7. Cunningham, W.: The wycash portfolio management system. ACM SIGPLAN
OOPS Messenger 4(2), 29–30 (1993)

8. Datta, S., Sindhgatta, R., Sengupta, B.: Evolution of developer collaboration on
the jazz platform: a study of a large scale agile project. In: Proceedings of the 4th
India Software Engineering Conference. pp. 21–30. ACM (2011)



Title Suppressed Due to Excessive Length 9

9. Ford, D., Milewicz, R., Serebrenik, A.: How remote work can foster a more inclusive
environment for transgender developers. In: Proceedings of the 2nd International
Workshop on Gender Equality in Software Engineering. pp. 9–12. IEEE Press
(2019)

10. Fu, S., Shen, B.: Code bad smell detection through evolutionary data mining. In:
2015 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). pp. 1–9. IEEE (2015)

11. Goeminne, M., Mens, T.: Analyzing ecosystems for open source software developer
communities. Software Ecosystems: Analyzing and Managing Business Networks
in the Software Industry pp. 247–275 (2013)

12. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature
review on fault prediction performance in software engineering. IEEE Transactions
on Software Engineering 38(6), 1276–1304 (2011)

13. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)
14. Huang, Q., Shihab, E., Xia, X., Lo, D., Li, S.: Identifying self-admitted technical

debt in open source projects using text mining. Empirical Software Engineering
23(1), 418–451 (2018)

15. Lenarduzzi, V., , Saarimäki, N., Taibi, D.: The technical debt dataset.
In: The Fifteenth International Conference on Predictive Models and
Data Analytics in Software Engineering (PROMISE’19) (Sept 2019).
https://doi.org/10.1145/3345629.3345630

16. Lenarduzzi, V., Sillitti, A., Taibi, D.: A survey on code analysis tools for software
maintenance prediction. In: International Conference in Software Engineering for
Defence Applications. pp. 165–175. Springer (2018)

17. Letouzey, J.L., Ilkiewicz, M.: Managing technical debt with the sqale method.
IEEE software 29(6), 44–51 (2012)

18. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. Journal of Systems and Software 101, 193–220 (2015)

19. Lletı, R., Ortiz, M.C., Sarabia, L.A., Sánchez, M.S.: Selecting variables for k-means
cluster analysis by using a genetic algorithm that optimises the silhouettes. Ana-
lytica Chimica Acta 515(1), 87–100 (2004)

20. Marinescu, R.: Assessing technical debt by identifying design flaws in software
systems. IBM Journal of Research and Development 56(5), 9–1 (2012)

21. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye, Y.: Evolution patterns
of open-source software systems and communities. In: Proceedings of the interna-
tional workshop on Principles of software evolution. pp. 76–85. ACM (2002)

22. Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N.: The evolution and impact
of code smells: A case study of two open source systems. In: 2009 3rd interna-
tional symposium on empirical software engineering and measurement. pp. 390–
400. IEEE (2009)

23. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshyvanyk,
D.: Detecting bad smells in source code using change history information. In: Pro-
ceedings of the 28th IEEE/ACM International Conference on Automated Software
Engineering. pp. 268–278. IEEE Press (2013)

24. Palomba, F., Tamburri, D.A., Serebrenik, A., Zaidman, A., Fontana, F.A., Oliveto,
R.: How do community smells influence code smells? In: 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering: Companion (ICSE-Companion).
pp. 240–241. IEEE (2018)

25. Pellegrini, L., Lenarduzzi, V., Taibi, D.: Openszz: A free, open-
source, web-accessible implementation of the szz algorithm (2019).
https://doi.org/10.5281/zenodo.3337791, https://zenodo.org/record/3337791



10 Xiaozhou Li

26. Rubin, J., Henniche, A.N., Moha, N., Bouguessa, M., Bousbia, N.: Sniffing android
code smells: an association rules mining-based approach. In: Proceedings of the 6th
International Conference on Mobile Software Engineering and Systems. pp. 123–
127. IEEE Press (2019)

27. Seaman, C., Guo, Y.: Measuring and monitoring technical debt. In: Advances in
Computers, vol. 82, pp. 25–46. Elsevier (2011)

28. da Silva Maldonado, E., Shihab, E., Tsantalis, N.: Using natural language pro-
cessing to automatically detect self-admitted technical debt. IEEE Transactions
on Software Engineering 43(11), 1044–1062 (2017)

29. Sjøberg, D.I., Yamashita, A., Anda, B.C., Mockus, A., Dyb̊a, T.: Quantifying the
effect of code smells on maintenance effort. IEEE Transactions on Software Engi-
neering 39(8), 1144–1156 (2012)

30. Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: Python framework for mining
software repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 908–911. ACM (2018)

31. Tamburri, D.A., Kazman, R., Fahimi, H.: The architect’s role in community shep-
herding. IEEE Software 33(6), 70–79 (2016)

32. Tamburri, D.A., Kruchten, P., Lago, P., Van Vliet, H.: Social debt in software
engineering: insights from industry. Journal of Internet Services and Applications
6(1), 10 (2015)

33. Tamburri, D.A., Palomba, F., Serebrenik, A., Zaidman, A.: Discovering commu-
nity patterns in open-source: A systematic approach and its evaluation. Empirical
Software Engineering 24(3), 1369–1417 (2019)

34. Tsantalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D., Dig, D.: Accurate
and efficient refactoring detection in commit history. In: Proceedings of the 40th
International Conference on Software Engineering. pp. 483–494. ACM (2018)

35. Xie, T., Thummalapenta, S., Lo, D., Liu, C.: Data mining for software engineering.
Computer 42(8), 55–62 (2009)

36. Yu, L., Ramaswamy, S.: Mining cvs repositories to understand open-source project
developer roles. In: Fourth International Workshop on Mining Software Reposito-
ries (MSR’07: ICSE Workshops 2007). pp. 8–8. IEEE (2007)

37. Zazworka, N., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F., et al.: Com-
paring four approaches for technical debt identification. Software Quality Journal
22(3), 403–426 (2014)

38. Zhao, Y., Karypis, G.: Criterion functions for document clustering: Experiments
and analysis (2001)


