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Abstract. Technical dept metaphor is widely discussed topic in research, but 
there is no common model on how to manage technical dept [3]. Companies in-
vest a lot of money in maintenance and in commercial software system mainte-
nance it is typical to have some penalties on missing the SLA deadline on bug 
resolution times. Adding technical dept can be understandable, in order to be 
quicker in markets with new features, but in order to manage it effectively, it is 
mandatory to understand the risks and impacts of the interest of it. In this re-
search machine learning technology was used to evaluate whether SonarQube 
technical dept KPIs can be used to predict bug resolution times. The fact that 
the data was collected only from open source projects was limitation, but the re-
sults were encouraging. Accuracy approximately of 90% was reached. As it was 
seen that number of lines of code is also a valid indicator of bug resolution 
times, it was concluded, that it would be best to repeat this study in environ-
ment of commercial company which maintains many projects of similar size. 

Keywords: Machine Learning, SonarQube, Technical dept, SLA, Software 
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1 Introduction 

Technical dept metaphor is found attractive to practitioners as it communicates to 
both technical and nontechnical audiences that if quality problems are not addressed, 
things may get worse. In their research, Ernst et al. concluded that the even though 
technical dept is widely known and accepted, making it visible and measurable is a 
big gap in practice. Tools are installed, but the complexity of configuring them or 
interpreting results meant that they were unused. Only very small minority of business 
managers were actively managing technical debt. [3] 
  This paper focuses to investigate whether technical depth KPIs could be used to-
gether with machine learning in order to manage technical dept in software mainte-
nance project in controlled manner.  
  Dataset [7] which was collected from various open source projects was used together 
with machine learning technologies in order to see, if it is possible to estimate based 
on technical dept KPIs, whether the bug fixing SLA thresholds are kept or not. 
  Limitations of this paper include the fact that strict SLA policies are more common 
in commercial software products under maintenance than in open source projects. 
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Also, the open source software products which were used in dataset [7] are collected 
from various stages of the software products lifecycle.  

However, results indicated, that machine learning methodologies could estimate 
quite accurately, when bug fixing times start to have big probabilities of growing too 
big and outside of SLA limits. When using ROC-AUC as measure of how good the 
estimation is, excellent correlation was found. When simple number of lines variable 
was removed from variables, still good and close to excellent AUC numbers were 
found.  

2 Background 

Software maintenance has dramatically evolved in the last four decades in order to 
cope with the continuously changing development models. Maintenance is also an 
increasingly popular research topic, with an increasing number of new models and 
approaches being proposed. Interestingly, the number of models proposed is increas-
ing rather than consolidating. The fact highlights that more research effort is needed 
to identify reusable and tunable models that can be applied in different contexts.[5]  

In their work Lenarduzzi et al., presented results of a Systematic Literature Re-
view, highlighting the evolution of the metrics and models adopted in the last forty 
years. Key findings included, that there is increase in the size of the data analyzed. 
One reason is due to the availability of an enormous open source code base that can 
be easily used to build maintenance models. Despite the open source ideology, it is 
nearly impossible to replicate the studies, because almost all papers are based on pri-
vate data sets and/or used custom tools that are not available to other researchers to 
support the replication.[5] 

2.1 Technical Debt Dataset 

Researchers and industry are adopting various tools for static code analysis to meas-
ure technical dept and evaluate the quality of their code [7]. SonarQube is one of the 
most commonly used tools to support software maintenance [6]. When Lenarduzzi et 
al. compared it to other commonly used tools, it was found as an exception compared 
to other tools due to its increasing trend in popularity [6].  
 Empirical studies on software projects are expensive because it takes a lot of time 
to analyze the projects. Also, the results are difficult to compare as studies commonly 
consider different projects. In their work, Lenarduzzi et al [7] proposed the “Tech-
nical Debt Dataset”, a set of measurement data from 33 Java projects from the Apache 
Software Foundation. They analyzed all commits from separately defined time frames 
with SonarQube to collect Technical Debt information and with Ptidej to detect code 
smells. The Dataset includes also all available commit information from the git logs 
and fault information reported in the issue trackers (Jira). That information was used 
together with SZZ algorithm to identify the fault-inducing and -fixing commits. In the 
resulting dataset, one can find information about more than 78K commits from the 
selected 33 projects, approximately 1.9M SonarQube issues, 38K code smells, and 
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28K faults. The analysis took more than 200 days. In their paper, researchers also 
describe the data retrieval pipeline together with the tools used for the analysis. The 
dataset is available in CSV format as well as in SQLite database format to facilitate 
queries on the data. Aim of The Technical Debt Dataset is to open diverse opportuni-
ties for Technical Debt research, enabling researchers to compare results on common 
projects. [7] 

3 Reasoning 

At the level of IT management in industry, organizations are interested in the eco-
nomic consequences of technical debt and risks that they may pose. Technical debt 
can decrease efficiency of running software systems and create difficulties in extend-
ing them. Cost overhead in fixing issues or adding new functionality caused by tech-
nical debt is considered as the interest of technical debt. In economic perspective, 
technical debt is defined as the cost of repairing quality issues in software systems to 
achieve an ideal quality level. An ideal quality level is the highest achievable level of 
quality defined in a quality model adopted by an organization. The amount of debt is 
the gap between the current and the ideal level. Interest is defined as the extra mainte-
nance cost spent for not achieving the ideal quality level. Maintenance activities in-
clude adding new functionality and fixing bugs. Maintenance and technical quality 
repair action is different in that former involves visible changes and their impacts are 
immediately visible. Extra effort spent on new functionality or fixing bugs are exam-
ples of interest on technical debt. Interest of technical debt is not the same as mainte-
nance costs, because systems without technical issues will still spend some effort on 
maintenance.[7]  

In software development and maintenance cost point of view, the earlier bugs are 
found, the cheaper it is. On the other hand, companies want to be fast in market. But 
faster time-to-market and quick user feedback also implies less time for testing and 
bug fixing in early stages [2]. 

Code with bad quality is more expensive to maintain, but also refactoring is risky. 
It requires changes to working code that can introduce subtle bugs. Refactoring, if 
done wrongly, can set you back days or weeks. Refactoring becomes riskier when 
practiced informally or ad hoc.[1] 

If there is a way to apply machine learning techniques to identify problems earlier, 
there is a good motivation to include it already in CI/CD pipeline, using the So-
narQube metrics and technical Dept information to forecast problems. This could help 
organizations to balance between time to refactor an be fast in time-to-market. Using 
the open dataset described collected from various open source projects [7], this paper 
is focusing on SonarQube technical dept metrics and their relationship to actual bug 
resolution times reported to issue tracking tool JIRA.  

If the technical dept KPIs can predict future bugs, those can be used as good indi-
cator for refactoring purposes. RQ: Can SonarQube technical depth KPIs be used 
to estimate increasing bug resolution times? 
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3.1 Study Design 

In this study, the dataset [7] collected from various open source projects was used. 
Machine learning methods were used to figure out, if the technical dept KPIs can be 
used to estimate longer bug resolution times. Bug resolution time, in commercial 
maintenance processes, usually have SLAs, which set limits on how quickly bugs 
should be fixed. For this reason, in this study bug resolution time was used as inde-
pendent variable. Several Technical dept KPIs were used as dependent variables and 
python scripts were run against the data in order to get the results with prediction 
KPIs to determine whether the prediction was accurate.  

3.2 Data collection 

Technical depth, by definition, impacts to the time which is used to add features or fix 
bugs. In the used dataset [7], faults table includes the JIRA issues with “bug” as a 

type. The timestamps, which are available are the creation time in JIRA as well as the 
resolution time in JIRA. With those timestamps, elapsed time from the moment bug 
was reported in JIRA, to the moment when the bug was closed in JIRA was calculat-
ed. Each bug was given a resolution time with this method. 30 days resolution time 
was used to represent SLA violation, too long resolution time. This research only 
investigates bugs reported in JIRA, as those would best represent the problems in 
commercial software in sense that the more severe the bug is, the quicker it will get 
fixed. In their research on technical dept diffuseness, Saarimäki et al [4] interestingly 
pointed out that in technical dept items, the more severe the finding is, the longer in 
remained unresolved. 
  The dataset [7] includes table named “sonar_measures”, where one can find the 
technical depth KPIs. For technical dept KPIs, monthly figures were used, because 
there is no single number to represent the dept for the period of bug fixing. Monthly 
figures included: the analysis month, max sqaleindex, max sqaledebtratio, max scal-
erating, max lines of code, max securityremediationeffort, max reliabilityremediation-
effort and the security and reliability remediation effort per 1000 lines of code. 

Since number of lines of code is easy KPI to predict longer resolution times, it was 
decided to execute the python scripts with lines of code included as one KPI and then 
collecting another set of data with same methodology and taking away the number of 
lines of code, in order to verify if the results differ when the most evident single KPI 
which predicts bug resolution times was removed. 

4  Limitations 

This study is using big dataset [7] as input for collecting variables for machine learn-
ing algorithms use. However, the projects used for the dataset are all open source 
projects with different ways of working different policies on how quick to fix bugs. 
Also, the selected open source projects are from projects which vary a lot in terms of 
size of the project and the products phase in its lifecycle. 
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The research also relies on monthly averages of technical dept measures while it 
would be best to analyze the dept KPIs from the exact moment when bug is found. As 
the data comes from various phases of the products lifecycle, one can find very short 
bug resolution times, which are due to the fact which can be seen on commit dates 
compared to bug opening and closing times, that some bugs are probably found dur-
ing development, fixed at the same time and the bug is reported afterwards. 

5 Results 

First executions of the python scripts against the data was executed three times. The 
dataset was balanced so, that there was just as many very long bug resolution times 
included as there were bugs with resolution times less than 30 days. Random forest 
classifier algorithm was used. Three executions gave following results:  
 
1st run:  

TN: 86 - FP: 26 - FN: 2 - TP: 111 

Precision: 0.8756; MCC: 0.7686 

F1: 0.8756; AUC: 0.8976% 

2nd run: 

TN: 82 - FP: 22 - FN: 1 - TP: 120 

Precision: 0.8978; MCC: 0.8062 

F1: 0.8978; AUC: 0.9197% 

3rd run: 

TN: 89 - FP: 27 - FN: 6 - TP: 103 

Precision: 0.8533; MCC: 0.7206 

F1: 0.8533; AUC: 0.8952% 

Area under curve (AUC) shows that the random forest classifier gave predictions, 
which were between 90 and 92% accurate. This gives an idea, that technical dept 
KPIs do have strong impact to the bug resolution times. However, one of the used 
KPIs from dataset [7] was the number of lines of code. It can be obvious, that the 
bigger the project grows, the more it takes to implement changes. Therefore, the sec-
ond set of executions were using the exact same parameters, except the number of 
lines of code was removed from the list of dependent variables. 
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1st run: 

TN: 76 - FP: 35 - FN: 7 - TP: 107 

Precision: 0.8133; MCC: 0.6458 

F1: 0.8133; AUC: 0.8836% 

2nd run: 

TN: 72 - FP: 38 - FN: 9 - TP: 106 

Precision: 0.7911; MCC: 0.6001 

F1: 0.7911; AUC: 0.8849% 

3rd run: 

TN: 72 - FP: 34 - FN: 12 - TP: 107 

Precision: 0.7956; MCC: 0.5969 

F1: 0.7956; AUC: 0.8569% 

When comparing the results against the values with the number of lines of code iclud-
ed, the AUC number is still giving quite good accuracy from 86 to 88 percentages. 
MCC number shows also, that the classifier can be used in estimations. However, 
lines of code do boost the accuracy of the estimation, which was also logical guess at 
the beginning of the study. 

 

Fig. 1. Best AUC of first tests included AUC = 0.92, while the other two runs had AUC 0.90 
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Fig. 2. Best AUC of second execution set was 0.88, while the other runs gave AUC = 0.88 and 
AUC = 0.86 

6 Discussion 

One can make conclusion from the results, that with the help of machine learning 
classifiers one can build a model to predict SLA violations. Research question was: 
Can SonarQube technical dept KPIs be used to estimate increasing bug resolu-
tion times? Research shows that technical dept KPIs can be used for this purpose, 
however, technical dept KPIs by themselves did not work as good as used together 
with simple number of lines of code KPI. Results are encouraging, taking into con-
cern that all bugs were treated equal and that sizes of the projects did not impact the 
results too much. 

It is obvious that the size of the project impacts on the bug resolution times. Also, 
it is normal that severity of the bug impacts on SLAs on commercial products. There-
fore, in following research the projects themselves should be classified by size and 
bugs separately based on severity. Then machine learning models could be trained 
against the set which includes data from similar sized projects. This way the model it 
could be possible to build logic in CI/CD pipeline to predict SLA violations. Further 
research is needed to replicate similar study in environment, which includes several 
similarly sized commercial software products under maintenance. As a result, it could 
be possible to build model which gives good reasons for refactoring. 
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7 Conclusion 

Technical dept, by definition, impacts to the time which is used to add features or fix 
bugs [7]. Sometimes it is good to have technical dept, because it is important to focus 
resources on new features and to be quick in market [2]. The interest of technical dept 
can be seen in bug resolution times and in commercial software systems, it is typical 
to have SLAs which needs to be kept in order to avoid penalties. There is no industry 
standard way of fixing technical dept issues and fixing those ad-hoc is also risky [1]. 
One way of managing the costs of technical dept could be utilizing machine learning 
models in CI/CD pipeline and use the predictions which algorithms give as triggers 
for paying technical dept. 
 Dataset, which consist of 33 projects, approximately 1.9M SonarQube issues, 38K 
code smells, and 28K faults [7] was used to form a dataset for random forest classifi-
er, which was used to study, whether it is possible for model to learn predict SLA 
violations. Various technical dept KPIs were used together with number of lines of 
code and bug resolution times to teach the model. 
 Results showed, that the model can predict bug resolution times to pass or meet 30 
days threshold quite accurately. With all the selected KPIs included, the model pre-
dicted correct results with 90 – 92 percentage accuracy. Lines of codes was obvious 
easy single KPI to predict the resolution times, since it is assumed that the bigger the 
project is, the more time it takes to make changes. When the impact of number of 
lines of codes was taken away, accuracy remained high, 86 – 88 percentages. Re-
search concludes, that machine learning models could be used to predict software 
products bug resolution times. 
 Limitations were seen also. Even the dataset [7] is big, it consists only of open 
source projects and open source projects may not have as strict SLA handling as 
commercial products may do. Also, the projects may have different ways of working 
compared to other projects and therefore the best possible environment for this kind 
of study would be a set of data from one company, consisting from various software 
products with similar size. 
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