
Managing Open-source Microservices Projects

Tom Gustafsson1 and Andrey Saltan1

Lappeenranta-Lahti University of Technology LUT, Finland
{tom.gustafsson,andrey.saltan}@student.lut.fi

Abstract. This study intends to understand the project management
practices and collaboration principles of participants who contribute to
developing open-source microservices projects. Through the lens of Con-
ways Law within this study, we empirically analyze the participation
roles of developers with a high number of commits across three projects
in GitHub, an open-source software developing platform and repository.
We generalize this case study research and hypothesize how the segrega-
tion of duties among participants, as well as commits number and dis-
tribution, depends on the size of a repository network and the presence
of a hub. The paper concludes with suggestions on further investigation
of this topic using large-scale research.

Keywords: Open-source · Microservices · Conways Law · Project man-
agement

1 Introduction

Since the first open-source software (OSS) development projects were intro-
duced, this phenomenon received sufficient attention in both project manage-
ment and software engineering research domains. A wide range of studies pro-
vides a comprehensive analysis of this novel software development paradigm [2].
Open-sourcing assumes a higher level of freedom and flexibility for project par-
ticipants, while a number of participants considerably determines success and
quality. At the same time, it appeared that there is no silver bullet solution, and
a lot depends on the project and team characteristics, as well as the technology
used [9]. As a result, a clear and comprehensive answer on how OSS development
should be organized with the classification of affecting factors and typology of
recommendations is missing.

Back in 1967, Melvin Conway introduced the law, which states that organi-
zations which design systems. . . are constrained to produce designs which are
copies of the communication structures of these organizations [3]. To a certain
extent, the critical logic behind this Conways Law is that communication is one
of the prime determinants of the system/module development success. A wide
range of existing studies aimed to empirically verify Conways law for various
types of software development organizations, project setups, development team
characteristics. It appeared that there is a variety of opinions regarding what
this law encompasses, and studies showed mixed results on its feasibility [1].

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0)



2 Tom Gustafsson and Andrey Saltan

A special issue is the applicability of Conways law to the projects developed
in the OSS environment. The ambiguity of the situation is that, on the one
hand, it could be incorrect to consider an open community of people involved in
an open-source project as a software development organization as it lacked for-
mal structure, goal, and other important artifacts. Similarly, OSS projects with
plenty of modules, forks, and modifications are also hardly can be considered as
unified systems. However, on the other hand, since Conways law primarily con-
cerns communicative principles rather than formalities, we can expect that the
law can work, albeit with certain reservations and updates. While recent stud-
ies on these issues started to appear [6], existing literature does not extensively
explore this matter and does not provide reliable findings on it.

Within this study, we focus on a particular type of OSS — microservices
OSS. Micro-service architecture is the latest trend in software development that
promises a sufficient increase in software development agility as each micro-
service becomes an independent unit of development, deployment, operations,
versioning, and scaling [4]. According to Conways Law, developing a system as
a portfolio of microservices in an ideal organization should lead to the situation
when most of the developers are distributed across multiple developing teams,
each of which works on one micro-service [5].

Within this study, we investigate the project management practices and col-
laboration principles of participants who contribute to developing microservices
OSS projects through the lens of Conways law. We analyze development prac-
tices, project-related processes, collaboration patterns of several existing and
available on GitHub microservices OSS projects. Further, we generalize the re-
sults of our case-study investigation in the form of assumptions that could be
further explored using large-scale research.

2 Background

The issue of managing microservices OSS projects as a research area lies at the
intersection of three broad research areas: Open-source software development,
Microservices architecture and Software Engineering and Project Management.
Independently, the research in all these areas is rapidly growing, and there is a
diverse range of academic studies that explore topics on the intersection of any
two of these areas. However, we could not find any study that touches all three
areas. An overview of two studies that form the background for our research is
presented below.

The first study investigates project management of Small- and Medium-sized
Open-source projects [10]. More precisely, this research focuses on understanding
project developer roles that can be divided into two categories: core members and
associate members. In this study, interaction frequencies and complete-linkage
hierarchical clustering methods were applied to determine which developers were
the core members and which developers were the associate members. Based
on conducted case-study, this research outline similarity in core members and
associate members characteristics.



Managing Open-source Microservices Projects 3

Another study that was used as a basis for our research explored the appli-
cability of Conways Law to the OSS environment [6]. The prime aim of that
research was to provide metrics to verify Conways law for open-source projects,
which are already known for the complex nature of developer collaboration net-
works. The study denied Conways law, which advocated the separation of code
and staff into well-isolated groups, which would guarantee efcient code updates,
and was, therefore, claimed to be a cornerstone for successful projects. Although
Conways Law hardly holds, the examined projects were successful. The research
proposed the following explanation to the paradox:

1. There may exist efcient organizational structures alternative to the one than
found and explained by Conway;

2. Conways law holds, however, not for module dependencies but task depen-
dencies.

3 Research Design

The overall goal of this research is to obtain a deep understanding of how the
development of the microservices OSS project should be organized thought the
prism of Conways law. More formally, the following research questions drive our
investigation:

– What do we know about project management/teamwork in microservices
OSS?

– How are the microservices OSS development teams structured and organized
in terms of Conways law?

To answer these two research questions, we conduct an exploratory case-
study analysis using data from GitHub on available microservices OSS projects.
The data set was collected from three different open-source projects, which are
all implemented using microservice architecture. The aim is to find projects
which are all using microservice architecture, still different in terms of size and
structure.

While [10] proposes a model on how to categorize open source developers as
Core and Associate members, within this research, we considered participants
as Core members if they are responsible at least for 2% of total contribution to
particular micro-service based on GitHub statistics. All the other participants
were categorized as Associate members. The aim is to identify how the OSS
projects using microservice architecture are organized. We intend to determine
if there is a pattern, which can be used for figuring out whether microservices
OSS teams are following Conways Law recommendations.

The amount of three chosen OSS projects available for public audits on
GitHub is limited. We selected the following three projects that provide enough
data for the required analysis: Internet of Things Platform Lelylan1, Multi-
cloud Continuous Delivery Platform Spinnaker2 and Platform for the Internet of

1 https://github.com/lelylan/lelylan
2 https://github.com/spinnaker



4 Tom Gustafsson and Andrey Saltan

Table 1. Characteristics of the involved projects

Project
# of # of Changed Changed

Committers Commits # of Files # of Lines

Spinnaker 122 10 800 62 002 1 808 915
Sitewhere 17 2 315 30 449 581 659
Lelylan 7 2 077 13 994 1 840 982

Things SiteWhere3. From these three chosen projects, we collected all available
data. That includes the changed files, a number of lines added and deleted, times-
tamps, among others. The collected data set was stored in the SQLite database.
Further, we cleaned the data set from the records, which can be seen as erro-
neous or which were clearly irrelevant to the purpose of our study (i.e., we re-
moved commits by noreply@github.com). SQL queries were executed against the
database to get a summary of the history for each Microservice OSS project. The
summary included the committer e-mail, a number of changes done by project
participants, and the percentage of all the changes in certain Microservice done
by each committer.

4 Results

First, we get an overview of project participants involvement across project
evolution. We observed the number of microservices within each project and how
this number changed over time, how many and in which way project participants
have been contributing to the development of these microservices, and what is
their distribution based on Core/Associate membership classification.

The largest project out of the three considered is Spinnaker, which had 122
committers doing 10 800 commits, 62 002 file changes, and 1 808 915 changed
lines in files. Lelylan and Sitewhere are much smaller projects. Lelylan has seven
committers doing 2077 commits, 13 994 file changes, and 1 840 982 changed lines
in files. Sitewhere has 17 committers doing 2315 commits, 30 449 file changes,
and 581 659 changed lines in files.

While analyzing the Spinnaker project further, it appeared that out of the
122 project participants, 32 could be seen as Core developers at least in one
microservice (responsible for at least 2% of all changes to that microservice).
When looking this way, each microservice, Core developers are committing at
least 80% of all changes in microservice. Venn diagram was drawn from this
data, in order to visually see how Conways law is obeyed. In the Venn diagram,
one can see that some microservices are not overlapping with some of the oth-
ers. For example, Echo is not overlapping with Rosco, which means that those
microservices have no common core developers in them. While one can see that
each microservice is overlapping with some others, one can understand that none

3 https://github.com/sitewhere/sitewhere



Managing Open-source Microservices Projects 5

Fig. 1. Intersection of Core developers working on different microservices within the
Spinnaker project

of the microservices has a team of core developers that only concentrate on one
service as a team. However, in Spinnaker, which is the largest project, there are
many areas without overlapping each other, which tells that there some teams
core developers of the microservice, which consist of developers who are not core
developers of all other microservices (see Fig. 1). That behavior is missing in
smaller projects (see Fig. 2), where all the teams had a member, who is a core
developer in all microservices.

When analyzing the other two projects, other characteristics were seen. For
Lelylan, out of those seven committers, two could be seen as core developers
following the rule that core developers must commit at least 2% of all changes,
and the core team commits more than 80% of changes. Out of 14 microservices
in Lelylan, 13 were done more than 98% by one developer while the same person
did 96% of the changes in the last remaining one. Depending on whether the one
committing barely over 2% could be seen as a core member, Venn diagram would
show 100% 14 or 13 overlapping circles and maybe one of halfly overlapping all
the other 13 circles. The same behavior can be seen with Sitewhere, one person
would be the core member, and the rest are associated members.

5 Discussion and Conclusion

The prime aim of this research was to investigate the project management prac-
tices and collaboration principles of participants who contribute to developing
microservices OSS projects through the lens of Conways law.

Results indicate that Conways Law has a lower limit of applicability both
regarding project size and maturity. Our findings show that small teams with
less than twenty developers, as in two explored cases, do not follow the logic
of Conways Law. Core developers in small and newly established projects are



6 Tom Gustafsson and Andrey Saltan

Fig. 2. Lelylan (left) and Sitewhere (right) microservices are both developed by teams
consisted of one person and two persons respectevly

working on all microservices within the project. However, when a project is ma-
turing and becoming large enough, it starts to follow the logic of Conways Law.
Development teams are becoming more focused on particular microservices, and
the overlap between their members is reducing. Still, the full implementation of
Conways Law is the OSS environment in general, and in the case of microservices
OSS, in particular, is hardly possible. Conways law is not natural, so without
efficient project management leadership that is not possible within the OSS en-
vironment, the full correspondence of project and organization (team) structures
couldnt be reached.

While Conways law states that each team works on its software module, and
only on that module [6], it contradicts other research related to large teams.
Moore and Spens [8] focused on scaling agile in large software teams. They
considered teams with more than 30 developers, and one critical characteristic
for successful developers was to ability to operate outside team walls. Also, [7]
describes the scalable agile framework in Spotify company, where team size was
growing from 25 to 250 in a few years. Much focus was put on communication,
information sharing, and freedom to change anything, even though teams were
made as independent as possible. It was interesting to find similar behavior
naturally happening in open-source projects. Specialized teams start to form,
but some core developers are still deeply involved in almost all projects. The
example of Spotify highlights that co-located people collaborating and focusing
on one area is in place, but so is the idea that anybody interested can join the
collaboration.

In a certain sense, the conducted study can be considered as a pilot for
an extensive study of the project management practices in misconceives OSS
projects.



Managing Open-source Microservices Projects 7

References

1. Bailey, S.E., Godbole, S.S., Knutson, C.D., Krein, J.L.: A decade of Conway’s
Law: A literature review from 2003-2012. International Workshop on Replication in
Empirical Software Engineering Research, (RESER) Proceedings pp. 1–14 (2013).
https://doi.org/10.1109/RESER.2013.14

2. Crowston, K., Wei, K., Howison, J., Wiggins, A.: Free/Libre Open-Source
Software development: What we know and what we do not know (2012).
https://doi.org/10.1145/2089125.2089127

3. Herbsleb, J.D., Grinter, R.E.: Architectures, coordination, and dis-
tance: Conway’s law and beyond. IEEE Software 16(5), 63–70 (1999).
https://doi.org/10.1109/52.795103

4. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices:
The journey so far and challenges ahead. IEEE Software 35(3), 24–35 (2018).
https://doi.org/10.1109/MS.2018.2141039

5. Kalske, M., Makitalo, N., Mikkonen, T.: Challenges When Moving from Monolith
to Microservice Architecture. In: Lecture Notes in Computer Science. pp. 32–47
(2018)

6. Kamola, M.: How to verify conway’s law for open source projects. IEEE Access 7,
38469–38480 (2019). https://doi.org/10.1109/ACCESS.2019.2905671

7. Kniberg, H., Ivarsson, A.: Scaling Agile at Spotify with Tribes, Chapters and Guilds
(2012),

8. Moore, E., Spens, J.: Scaling agile: Finding your agile tribe. Agile 2008 Conference
Proceedings (7), 121–124 (2008). https://doi.org/10.1109/Agile.2008.43

9. Sen, R., Singh, S.S., Borle, S.: Open source software suc-
cess: Measures and analysis. Decision Support Systems
52(2), 364–372 (2012). https://doi.org/10.1016/j.dss.2011.09.003,
http://dx.doi.org/10.1016/j.dss.2011.09.003

10. Yu, L., Ramaswamy, S.: Mining CVS repositories to understand open-source
project developer roles. International Workshop on Mining Software Repositories
(MSR) Proceedings (2007). https://doi.org/10.1109/MSR.2007.19


