
Qualitative Evaluation of Dependency 
Graph Representativeness

Tuomas Nurmela2, Petteri Nevavuori1, and Imran Rahman1

1 Tampere University, Korkeakoulunkatu 1, Tampere, Finland
2 Aalto University, Otakaari 24, Espoo, Finland

Abstract. Background: Enterprise application and open source soft-
ware (OSS) platform and infrastructure projects are often today agile
time-boxed projects. To enable project scaling, microservices software
architecture (MSA) is considered to enable autonomous cross-functional
teams. MSA results to loosely coupled services which communicate via
well-designed APIs. Previous research on automated extraction of Mi-
croservice Dependency Graphs (MDGs) could provide means of reducing
this documentation effort.

Aims: The aim of the study was to look at the MDG representativeness
of a Spinnaker OSS project micro-services-based software architecture
and MDG, providing assessment of possibilities in using MDGs for doc-
umenting microservices-based software architectures.

Method: The study uses a qualitative approach to evaluate the MDG rep-
resentativeness of software architecture description. Evaluation is done
through assessment of limitations, issues and future development possi-
bilities.

Results: MDG of Spinnaker OSS is extracted with an automation tool
and contrasted to the software architecture as described on OSS project
documentation. Compile-time MDG description and runtime focused
documented software architecture lead to limitations in MDG rpresen-
tativiness.

Conclusions: Focusing on a particular OSS microservices project, the
MDG extraction through static code analysis limits to compile-time in-
formation. Limitations in capturing inter-service communication at run-
time to describe key architectural views of software architecture lead to
a need to look for complementing approaches.

1 Introduction

Agile and devops projects are typical in enterprise applications and develop-
ment of open source software (OSS) infrastructure and platform software. These
projects are time-boxed, focused on working code over documentation [6]. These
projects have started to use microservices architectural style [8], to better sup-
port e.g. concurrent development and evolutionary architecture. These attributes
(time-boxed projects, focus on working code, evolution support with faster cy-
cle time) put pressure on documenting and communicating through architecture

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0)



2 I. Rahman et al.

descriptions. Therefore, the capability to automatically extract meaningful docu-
mentation that can be used towards multiple stakeholders to cover their concerns
is central. Architectural documentation is considered to be documentation that
takes into account different stakeholders and their concerns.

The focus of our research was to evaluate the implementation and the outputs
of the Microservice Dependency Graph (MDG) [3][10] by scrutinizing on a dis-
tinct microservice architecture. Effectively we perform verification and validation
by comparing the MDG outputs to a documented microservice architecture. The
evaluation architecture was drawn fromMicroservice Dependency Graph Dataset
(MDGDS) [4], a dataset of open-source software projects employing microser-
vice architecture hosted in Github. From MDGDS we chose Spinnaker [5] as the
evaluation architecture.

Microservices are independenently deployable and maintanable small services
often utilized via explicitly defined application programming interfaces (APIs).
They have well defined and constrained bounding contexts that enable reuse and
development without having to change the achitecture of the systems utilizing
them. The development of the microservice architecture paradigm has aided in
de-coupling the service-oriented tangled software architectures towards smaller
autonomous units. However, microservices in themselves are by no means a siler
bullet solution: the approach is fairly new with still evolving set of design pat-
terns [13]. At the same time multiple anti-patterns and bad-smells, whether
idenfied as design or architectural smells telling of recurring and possibly deeper
problems, manifest themselves in the projects [12].

The outline of the paper is as follows. Section 2 covers the target architecture.
In Section 3 we then describe the implementation of the MDG. The similarities
and discrepansies between the MDG outputs and the target architecture are
discussed in Section 4 and future development routes are for MDG are then
proposed in Section 5. Lastly, the findings are concluded in Section 6.

2 Evaluation Architecture

Software architecture is commonly considered to describe the system in terms of
its components, their basic operational principles and their interconnections [11].
In empiric studies, notions on software architecture vary in time orientation,
formality, detail, purpose of architect activity, objective of work and focus on
business and technology issues [11]. One way to represent software architecture is
through architecture descriptions. These describe a system, taking into account
stakeholder concerns framed from different viewpoints to address a particular
concerns [1]. However, with cloud native projects, the time-boxed agile and de-
vops approaches can be expected to reduce time for documentation of to satisfy
the different contexts and concerns of stakeholders.

For the purpose of this paper, we adopt the notions of 4+1 architecture
framework from Kruchthen [9]. Furthermore, given the current nascent arena
of CI/CD tools, we focus also on the support of extendibility or adaptability
of system. We extract the use case (Kruchten “+1”) for Spinnaker based on



Qualitative evaluation of dependency graph representativeness 3

available information, describing this in the next subsection. The architecture
figure and available description is then contrasted to the 4 architecture views
(physical, logical, development and process).

Spinnaker is a Netflix-initiated continuous delivery (CD) tool for modern
applications, with support for multiple cloud native infrastructures. The devel-
opers note seven key concerns with cloud native infrastructures, in particular 1)
credentials management, 2) regional isolation, 3) autoscaling, 4) immutable in-
frastructure, and 5) service discovery, 6) multi-cloud and 7) abstraction of cloud
operations from users [7]. Spinnaker’s design indicates a focus on CD taking
these concerns into account. This separates it from many of the other popular
CD tools (e.g. Jenkins, Gitlab), in which CD is extension of an existing continu-
ous integration tool. The Spinnaker runtime architecture elements are depicted
in Figure 1. This architecture mainly depicts high level elements which in them-
selves do not provide as much information as e.g. UML diagrams, yet provide
support for the process view (which covers runtime communication) and logical
view (high level functionality).

Fig. 1. The microservice dependencies as given by the Spinnaker documentation [2, 5].
Third party and configuration time services are omitted for clarity.

On the other hand, Spinnaker community has been discussing extending the
project to cover CI-aspects, as developers have been perceived to convert back
to familiar CI-tools which have CD features. Taking into account the context
of Spinnaker, its goals, use cases of distributions and central concerns of archi-
tecture descriptions for OSS products for which future proofing is important
in quickly changing environments, we can describe the Spinnaker architecture
elements as follows. The descriptions for the corresponding microservices are
provided in Table 1.

It should be noted not all of the developer key concerns noted previously are
encapsulated in projects but are more typically cross-cutting concerns. Also, the
above excludes a non-key elements of the Spinnaker, namely for runtime Kork
(for adapting NetflixOSS to Spring and Spring Boot) and Swabbie (clean up ser-



4 I. Rahman et al.

Element Description and architectural implication

Gate API Gateway used for basic Authentication (with Fiat) and routing into microser-
vices. Gate covers the common API gateway pattern [9] of the microservice system.

Igor Integration layer for CI. Architecturally allows extending product to different CI
systems.

CloudDriver Infrastructure abstraction layer. Architecturally allows extending product to dif-
ferent cloud platforms.

Orca Orchestrator engine. Key element to cover CD pipelines, stages and tasks.
Echo Event router. Key element to allow event-based microservices.
Front50 Metadata abstraction layer. Architecturally allows substitution in metadata data-

store, reducing dependence to default subsystem (Cassandra)
Rosco Bakery for images. Implemented on per cloud infrastructure basis. Relies on

Packer. Key element to support immutable infrastructure.
Kayenta Automated canary service. Key functional feature of CD pipelines to support seam-

less releases to end users.
Deck UI for Spinnaker. Key element to provide abstraction of cloud operations from

user.
Fiat Authorization service. Key element to support security.

Table 1. Microservice descriptions for the Spinnaker project [2, 5].

vice) as well as for configuration/deployment time element, Halyard (Spinnaker
installation, configuration and lifecycle manager tool).

3 Microservice Dependency Graph

Listing 3.1. A single service in Spinnaker’s Docker compose file.

i g o r :
container name : i g o r
e n v f i l e : . / compose . env
environment :
− SERVICES ECHO HOST=echo
− SERVICES CLOUDDRIVER HOST=c l oudd r i v e r

image : quay . i o / sp innaker / i g o r : master
l i n k s :
− r e d i s
− c l oudd r i v e r
− echo

por t s :
− ” 8088:8088 ”

The MDG project has been developed to be used for extracting intrapro-
ject microservice dependency relations with static code analysis. The implemen-
tation, with which the MDGDS has been produced as well, employs a single
modes for extracting dependencies as directed graphs using Docker compose
files for building the dependecy graph. The MDG implementation attempts
using the Docker compose file first as the mode of building the directed de-
pendecy graph. Given that microservice project contains a YAML-file called
docker-compose.yml/.yaml with either suffix, the file is located and read to a



Qualitative evaluation of dependency graph representativeness 5

corresponding class structure. The Docker compose file typically contains in-
formation about services, container runtime configuration, linked services and
networking configurations. An example of a Docker compose file contents are
given in Listing 3.1.

The graph is then formed using the root-level services as nodes and the
information about linked services as edges to other nodes. A general depiction
of linking the root nodes (services) via edges (links) is given in Fig. 2. Using the
example contents of Listing 3.1, the node would be igor and its corresponding
edges redis, clouddriver and echo. The dependecy graph for Spinnaker is
shown in Fig. 3.

Fig. 2. The directed graph of gen-
eral linked services is built using
Docker compose file and parame-
ters.

Fig. 3. The directed graph of microservice depende-
cies for Spinnaker as generated by the MDG.

4 Discussion

At the time of writing the implementation of the MDG considers only the con-
tents of a possibly available Docker compose file for extracting microservice de-
pendecies. As discussed in Sec. 2, however , there are multiple ways to view the
architecture. Comparing the the output of the MDG and the architecture of the
Spinnaker immediately shows that the two are not in mutual agreement. This
doesn’t need imply a contradiction or faulty implementation of the MDG. The
differing views can be consolidated, if both are considered as distinct vantage
points to the project’s architecture and dependencies. Considering the fact that
MDG used composition-time files for dependency inference, the MDG outputs
effectively a deployment-time microservice dependency graph.

5 Future Developments

In microservices architecture the inter-service communication is a key factor.
There are quite many ways to implement this communication but it should be



6 I. Rahman et al.

kept in mind that the endpoints are smart and pipes are dumb as Martin Fowler
has described in his article [8]. There are mainly two ways to communicate
between microservices: 1) synchronous and 2) asynchronous. To determine the
architectural pattern it is essential to know what type of communication is done
in the given microservice architecture. Albeit currently operating with Docker
compose files, the MDG analysis too could be developed further analyzing the
REST or synchronous calls between services in a microservice architecture.

From the vantage point of the architecture itself, relying only on REST or
synchronous calls, however, is not a good practice and has negative consequence
for future development of the architecture itself. For example, only depending
on the inner RESTful service calls introduces tight coupling between services.
Blocking is another issue to consider when only using REST calls. When invoking
a REST service, the service is blocked waiting for a response. This reduces
application performance because the thread might be processing other requests.

On the other hand, in asynchronous communication, the clients does not
need to wait for a response in a certain time. The asynchronous communication
between microservices is done with the use of a lightweight and dumb message
broker. The message broker is a centralized component with high availability and
does not have any business logic. Some of the major components in asynchronous
communication are the message event producer and the event consumer.

In the context of MDG and analyzing dependencies in microservices archi-
tecture it would be important addition to check the asyncchronous calls so that
any microservices architecture could be analyzed using this tool. To achieve this,
there are some features that can be implemented. First the tool should be able
to analyze which are the event producers in the microservices. Then it can map
the services according to the producers. After that it can look for the event
listeners for a specific producer forming a link-like a dependency. As there are
several technologies are used to implement the async communication such as
RabbitMQ or Kafka it would be a challenge for future work to analyze both
implementations in a project. But it can be solved if there is a general pattern
matched in both technologies. As the MDG is only analyzing the code statically,
a preferable addition would be the ability to determine the dependencies during
runtime. This way both static and dynamic analysis results could be combined
for increased accuracy in dependency graph of microservice architecture pattern.

6 Conclusions

In this paper we performed evaluation of an open-source microservice depen-
dency extractor tool called Microservice Dependency Graph (MDG). The eval-
uation was performed by selecting a single microservice project from the Mi-
croservice Dependency Graph Dataset (MDGDS), namely the Spinnaker. We
analyzed and described the extraction algorithm of the MDG and the docu-
mented microservice architecture of the Spinnaker project. Our focus was on
comparing the output of the MDG tool, the microservice dependecy graph, for
Spinnaker to its documented architecture. We found out that the inferred de-



Qualitative evaluation of dependency graph representativeness 7

pendencies were not in unanimous agreement with the documented architecture
due to the MDG extracting the deployment depencies and documentation stat-
ing the logical or runtime dependencies. Being a static code analysis tool, the
MGD produces effectively a view about microservice dependencies, albeit a view
limited to the scope of deployment. To have MGD produce a dependency graph
providing insights into runtime microservice dependencies the tool should be de-
veloped further to include analysis of inner workings of a project, i.e. intraproject
API-calls between microservices and message bus related event dispatchers and
listeners.



8 I. Rahman et al.

References

1. Systems and software engineering - architecture description. ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) pp.
1 –46 (1 2011). https://doi.org/10.1109/IEEESTD.2011.6129467

2. Architecture documentation (2019), https://www.spinnaker.io/reference/architecture/
3. Microservice dependency graph (2019), https://github.com/clowee/MicroDepGraph
4. Microservice dependency graph dataset (2019),

https://github.com/clowee/MicroserviceDataset
5. Spinnaker (2019), https://github.com/spinnaker/spinnaker
6. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M.: Manifesto for Agile Software Development (2001), http://agilemanifesto.org/
7. Burns, E., Feldman, A., Fletcher, R., Lin, T., Reynolds, J., Sanden, C., Wander, L.,

Zienert, R., Farnham, B., Tokyo, S., Boston, B., Sebastopol, F., Beijing, T.: Con-
tinuous Delivery with Spinnaker Fast, Safe, Repeatable Multi-Cloud Deployments.
O’Reilly (2018)

8. Fowler, M., Lewis, J.: Microservices (2014), https://martinfowler.com/articles/microservices.html
9. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12, 45–50 (11

1995). https://doi.org/10.1109/52.469759
10. Rahman, M.I., Panichella, S., Taibi, D.: A curated dataset of microservices-based 

systems. In: Joint Proceedings of the Inforte Summer School on Software 
Maintenance and Evolution. (2019)

11. Smolander, K., Rossi, M., Purao, S.: Software architectures: Blueprint,
literature, language or decision? EJIS 17(6), 575–588 (2008).
https://doi.org/10.1057/ejis.2008.48

12. Taibi, D., Lenarduzzi, V.: On the Definition of Microservice Bad Smells. IEEE
Software 35(3), 56–62 (2018). https://doi.org/10.1109/MS.2018.2141031

13. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: A sys-
tematic mapping study. CLOSER 2018 - Proceedings of the 8th International Con-
ference on Cloud Computing and Services Science 2018-January(Closer 2018),
221–232 (2018). https://doi.org/10.5220/0006798302210232


