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Abstract. Improving the performance of modern computing devices requires 

the adaptation of data processing algorithms for the efficient use of hardware 

resources. This article provides comparisons of existing database management 

systems and shows their disadvantages when used in conjunction with parallel 

processing algorithms. An approach to data storage is presented that can be 

used to optimize the execution of database queries using parallel processing. A 

method for constructing the proposed data structuring storage algorithm is de-

scribed. At the same time, the advantages of the algorithm and the ways of in-

teraction with it to achieve greater benefits in comparison with the existing ana-

logs are shown. 
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1 Introduction 

With increasing productivity of modern computing systems [6], it is necessary to 

adapt the software in such a way as to make optimal use of the available computing 

resources. Modern high-performance systems, including database management sys-

tems (DBMS), use the interfaces for controlling the threads and cores of the working 

CPU.  

In the article [19] there was considered the process of paralleling queries and exe-

cuting them on MySQL DBMS. The authors have established the fact that MySQL on 

the InnoDB engine does not work well with processing parallel queries and the use of 

parallelized queries is inconsequential compared to simple ones. 

In this article, for more efficient reading of data from the database, we propose the 

use of a modified tree algorithm. 

2 Problems using tree algorithms 

The most popular algorithm currently used by the DBMS is B + -tree. It belongs to 

the B-tree group, which are balanced trees. The main advantage of using B + tree in a 

DBMS is the method of data storage - all data is stored in the leaves of the tree, which 
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can be linked to each other. This allows storing data in adjacent blocks, which reduces 

the chances of missing a cache in the process of paging data from the main memory.  

Because of the fact that the number of reading operations from a disk decreases, the 

overall data reading speed will be increased. 

However, despite the increase in data reading performance when using B + -tree, 

the algorithms for their application are not optimal when processing a large number of 

database queries and when using multi-thread processing of query data[5]. This is 

because each thread will pass through the upper levels of the tree, and therefore will 

make many requests to the tree and do extra work. This problem is illustrated in Fig-

ure 1: 

 

Fig. 1. Processing queries in a database whose data storage is based on B + tree. 

Figure 1 shows the processing of two queries for data on a fragment of the B + tree. 

The first query reads data from node 4, and the second from node 5. As can be seen in 

the figure, for the successful execution of each of the query processes it is necessary 

that both must go through node 1, node 2 and node 3, and only after that, each of them 



52 

reaches the goal. 

Another type of tree that is used for parallel processing is the k-d tree. Its main ad-

vantage is the effective search for keys in a given range. Such a tree is useful to use in 

databases designed to store geometric data, for example, coordinates on a map. The 

authors of the article [1] created a STIG tree (Spatio-Temporal Indexing using GPUs) 

based on the k-d tree. This algorithm was designed to optimally process queries on the 

input spatial data. To make this possible, the authors included in the STIG physical 

storage of the keys of the tree according to the basic principles of the k-d tree, and the 

actual records are stored separately in the form of data blocks that will be processed 

by the cores of the graphical process. The results presented in the article [1] show the 

efficiency of the algorithm. However, the possibilities of using such a tree are severe-

ly limited. It may be useful in solving the problem of creating a database that stores 

spatial data; however, a more unified solution is required in commercial development. 

Thus, despite the obvious advantages of the STIG algorithm, it is not suitable for use 

in a data management system used in solving business problems. 

3 Proposed cw-tree algorithm 

The basic idea of creating a tree is that the tree should be distributed according to the 

number of physical cores available on the machine on which the DBMS is to be in-

stalled. 

The tree must comply with the rules: 

─ it must have a main vertex or root of a tree; 

─ the tree consists of subtrees, which we will call child trees, each of which has its 

own root, which we will call child roots; 

─ the root has connections with the child roots, each of which represents a root for its 

part of the tree; 

─ the number of daughter roots must be equal to the number of physical cores of the 

involved processor for more efficient use of resources; 

─ each subtree is traversed according to the rules of that subtree. Thus, all subtrees 

may not necessarily be of the same type, but on the contrary, each subtree can be 

implemented in accordance with various algorithms, including various traversal al-

gorithms of this subtree.  

Creating a tree is done in accordance with the rules: 

Before determining which of the subtrees should add a new element, it is necessary 

to find the necessary child root. For a uniform distribution, the direction of passage 

from the child root with index 0 to the child root with index N alternates with the 

opposite direction. At each iteration, the following algorithm is executed: 

start { 

if(one_of_child_trees_ is_empty) { 

if (current_ child_tree_ is_empty) { 

current_child_tree.Add(new_element); 
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sort(all_nodes); 

} 

else { 

go_to_next_in_order_child_root(); } } 

else if (more_than_one_of_child_trees_is_empty) { 

If (current_ child_tree_ is_empty) { 

current_child_tree.Add(new_element); } } 

else { 

If (current_direction_ equals_B) { 

function_1(); 

} 

else if (current_direction_ equals_A) { 

function_4(); } } 

} 

function_1 { 

If (new_element < maximum_of_current_node && new_element 

> minimum_of_current_node) { 
current_child_tree.Add(new_element); } 

function_2(); 

} 

function_2 { 

If (new_element < minimum_current_subtree AND new_element 

> maximum_of_next_subtree) { 

next_child_tree.Add(new_element); 

from узел_n to узел_0 { 

function_3 (node_i); } 

} 

else { 

go_to_next_in_order_child_root(); } } 

function_3 { 

If (size_of_current_subtree > 

Size_of_next_in_order_subtree) { 

next_child_tree.Add(minimum_of_current_subtree); 

current_child_tree.Remove(minimum_of_current_subtree); } 

} 

function_4 { 

If (new_element < maximum_of__current_subtree && 

new_element > Minimum_of_current_subtree) { 
current_child_tree.Add(new_element); } 

function_5 (); 

} 

function_5 { 

if (new_element > maximum_of_current_subtree AND 

new_element < minimum_of_next_subtree) { 
next_child_tree.Add(new_element); 
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from node_0 to node_n { 

function_6 (node_i); } 
} 

else { 

go_to_next_in_order_child_root(); } 

} 

function_6{ 

if (size_of_current_subtree > 

size_of_next_in_order_subtree) { 

next_child_tree.Add(maximum_of_current_node); } 

}                            (1) 

The operation «Add» involves adding an element to the appropriate subtree according 

to the rules of that subtree. Performing the above described algorithm spends addi-

tional time at the stage of storing data in the tree, however, it allows to sort the data in 

the corresponding subtrees. This reduces the number of reads from the tree, and there-

fore increases the overall read performance of the tree.  

The nodes should store the keys of each record without data. The target data set 

that the user expects to receive is to be stored in the leaves of the tree. This will min-

imize the number of reading operations from memory, thus speeding up queries.  And 

also, it separates the logic of finding the target element in the tree and accessing the 

memory. Thus it is possible to use various computer resources for each operation.  

For example, in article [1], the authors applied an algorithm to process only the bot-

tom level of the kd-tree tree, that is, database records using GPU tools. 

Based on the presented description of the algorithm, the scheme of the resulting 

tree is shown (see Fig. 2). 

Figure 2 shows an example of a created tree for working with data under the con-

trol of a processor that has 4 physical cores. The user configures the number of child 

roots during the creation of the database.  

The root of the tree from which the DBMS starts processing queries has connec-

tions with the child roots. At the first stage of processing, it is necessary to make a 

choice in which of the child trees to search for the requested data. Its physical proces-

sors must process each of the child trees. If one of the cores cannot be used on the 

computer, it is possible to use threads. Next, there is a need to make a pass through 

the corresponding subtree. Since there is an abstraction on subtrees, any tree structure 

can be applied to its subtree. However, the proposed use of B + - the tree is because it 

is well adapted to the storage of data of various types, in contrast to, for example, 

from k-d trees. 

In the article [2], the authors state that b-tree is suitable for parallel processing. In 

the article [2], the authors obtained experimentally that when using b-tree, the algo-

rithm for traversing a tree wide (BFS) is more suitable for parallel computing, unlike 

the types of algorithms for traversing a tree in-depth (DFS). Based on the conclusions 

that the authors have made, it is expected that using the B-tree together using the tree-

wide traversal algorithm is best suited for parallelized queries. 

The database created on the implementation of the proposed tree algorithm will 
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faster process queries for reading data on high-performance hardware. A special in-

crease in performance will be noticeable for databases in which read operations are 

most often performed. 

 

Fig. 2. The scheme of the resulting tree 

In order to optimize database queries, it is possible to use different types of trees. 

However, even the most frequently used ones have their drawbacks, which consist of 

poor adaptation to parallel processing. 

4 Conclusion 

A tree algorithm has been developed that will efficiently process database queries 

using the processing power of the processor, which performs the search for keys and 

also the processing power of the graphics device that searches for data records using 

the received key. 

Based on the proposed algorithm, it is planned to create a new database management 

system and create an experimental database in it in order to conduct an experiment. 
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As a result, temporary assessments and an assessment of the overall efficiency of the 

use of this tree will be obtained. 
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