
57

Stored Procedures as an Implementation Tool Business

Logic in Applications of Databases*

Tatyana N. Filimonenkova1[0000-0002-7968-9028]

1 V.I. Vernadsky Crimean Federal University, Yalta, Russia

 tafil-nik@yandex.ru

Abstract. The article discusses a database object such as a stored procedure and

the advantages of using such an approach when developing software in a client-

server architecture. The definition of stored procedures is given, the features of

their creation and compilation are listed. The syntax of creating stored procedures

in the client-server database management system MySQL is considered. The ex-

amples of stored procedures developed for the database for accounting student

performance, which demonstrate the feasibility of their use and advantages com-

pared with the usual queries are given. The article provides an example of using

the stored procedure on the client side of an application developed in the Embar-

cadero RAD Studio integrated environment using BDE (Borland Database En-

gine) technology as a tool for accessing the database.

Keywords: information systems, client-server architecture, databases, CASE,

ER-modeling, SQL-query, stored procedure, MySQL.

1 Introduction

In applications that implement the client-server architecture, and now, this is the most

common architecture for both web-based and desktop applications, data processing is

distributed in such a way that the data presentation program is located on the user's

machine (on the client), and the data management program and the data itself are placed

on the server. The server software accepts requests from client software and returns to

it the results of processing these requests.

The popularity of client-server technology is inextricably linked with IBM's inven-

tion of the query language to SQL relational databases – Structured Query Language,

which is currently the universal standard for working with databases. Despite the fact

that due to the growing amount of data and their complication, a new approach to data

storage and processing is being developed – the NoSQL technology [8], still in the

official DB-Engines rating (https://db-engines.com/en/ranking) as of May 2019, the

first four places are occupied by relational databases: Oracle, MySQL, Microsoft SQL

Server, PostgreSQL.

* Copyright 2019 for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

58

In client-server applications, it is the server that is responsible for managing the da-

tabase, and client machines may have different applications using this data. Specialized

software connects the client and the server, allowing the client to perform requests and

access the database. A comparative analysis of popular client-server database manage-

ment systems (DBMS) is given in [4]. One of the tools that provides the client-server

architecture is an element of the SQL language as stored procedures.

2 Stored procedures as a data processing tool

The stored procedure is a compiled routine and is part of the database metadata. The

stored procedure compiler is built into the server core. It is the use of stored procedures

that allows implementing most of the application's business logic at the server level,

which significantly improves application performance, centralizes data processing and

minimizes errors, ensuring data integrity [1].

Stored procedures are a SQL tool that allows you to create queries with parameters

first, because when creating a procedure, you can set a list of input parameters, which

ensures that the corresponding arguments are accepted when it is called. Stored proce-

dures can return information that the user expects, as well as in the case of incorrect

data - an error message. Considering the fact that the stored procedure is compiled be-

fore it is stored as an object in the database, the form of the procedure is saved each

time it is called. This fact reduces the amount of data involved in the exchange between

the client application calling the procedure and the database server. The use of stored

procedures significantly increases the level of security provided by the use of the

GRANT and REVOKE instructions, by which users are granted different access privi-

leges, since procedures can be used to control access authorization [9]. Thus, the user

on the client side performs only the functions that are allowed to him. This allows you

to tightly control the actions allowed by the client, what turn reduces the likelihood of

data integrity problems due to client application errors.

Stored procedures are used in other tasks besides the ones stated above. For example,

in [6], the use of MySQL stored procedures for working with iterators OCL (Object

Constraint Language), a language that serves to define constraints and is designed to

create navigation expressions, logical and other queries, is considered.

The syntax for creating and calling stored procedures is somewhat different in dif-

ferent client-server database management systems.

Consider the examples of stored procedures for the MySQL server, which is widely

used both in web-based applications and in desktop ones. Not only hundreds of thou-

sands of commercial websites work on this base, but also a large number of corporate

applications use MySQL as a server-based DBMS. The MySQL distribution contains

API (Application Programming Interface) modules for interacting with such program-

ming languages as C, C ++, Java, PHP, Python, etc. MySQL provides support for var-

ious character sets, including Cyrillic. To integrate into the operating system and to

access the database from the application software, the MySQL distribution kit contains

a set of Open Database Connectivity (ODBC) drivers.

59

Stored procedures, like other database objects, are created using the DDL (Data Def-

inition Language) language.

The general syntax for creating a stored procedure in MySQL is:

CREATE [DEFINER = { user | CURRENT_USER }]

PROCEDURE имя_процедуры ([параметры_процедуры[,...]])

[характеристики ...] тело_подпрограммы

параметры_процедуры: [IN | OUT | INOUT] имя_параметра

type

type: Любой валидный тип данных MySQL

характеристики: COMMENT 'string'

| LANGUAGE SQL

| [NOT] DETERMINISTIC

| { CONTAINS SQL | NO SQL | READS SQL DATA

| MODIFIES SQL DATA }

| SQL SECURITY { DEFINER | INVOKER }

тело_подпрограммы: Валидный оператор программы SQL

Call the stored procedure by the operator:

CALL имя_процедуры([параметры_процедуры[,...]])

3 Programming stored procedures on the server

As an example, consider the task of accounting student performance. The development

of an information system begins with the construction of a conceptual database model.

As a modeling tool, the model proposed by P. Chen in 1976 [5] is used. This model has

been called the “entity-relationship” – (ER-model) and is a set of concepts for describ-

ing the logical structure of the database. This model is used for a wide range of tasks,

as shown in [3, 7, 10] and for various DBMS [2].

The basic concepts of the ER-model – is the "entity" and "relationship." An entity is

any object in the real world or a process that is significant in the context of the task, in

fact it is a class of similar objects, information about which should be taken into ac-

count. Each entity is identified by a name and a set of attributes that characterize it. An

entity key is a set of attributes that uniquely identify each entity instance. An entity is

a projection of the notion “relation” of the relational model. Connection is a relationship

of entities that defines their functional dependence. In this case, one of the entities acts

as a parent in relation to the other, and the second – as a child. Between them there are

two main types of links – identifying and non-identifying. When the type of link is

identifying, the primary key of the parent entity becomes the primary key or part of the

composite primary key of the child. With a non-identifying relationship, the primary

key of the parent entity becomes the child's foreign key as one of the non-key attributes.

As it is known from the conceptual apparatus of the relational model, the primary key

of the entity is responsible for ensuring the categorical integrity of the database, which

by definition cannot have a NULL value, i.e. have an undefined value. Relationships

provide referential integrity, which means that no foreign key value in a child entity

can have a value that is missing among the primary key values of the parent entity.

60

Several methodologies for constructing "entity-relationship" models are known. The

most widespread methodology is IDEF1X.

The CASE-tool (Computer Aided Software / System Engineering) AllFusion ERwin

Data Modeler is used as a modeling tool.

The logical model of database "student" is presented below (Fig. 1).

Fig. 1. ER-diagram of database "student"

The model has five entities: student (student), department (faculty), discipline (disci-

pline), teacher (teacher), academic performance (exam). Relations between entities are

determined by the following rules: each student studies at a department, each teacher

works at a department, a teacher teaches every discipline, each student pass several

disciplines, and several students pass each discipline. This many-to-many relationship

is implemented as an entity "exam", which is identified through its foreign keys from

the student and discipline entities and is subordinate.

The AllFusion ERwin Data Modeler package allows you not only to build a database

model, but also to generate a database: tables with key fields and implement referential

integrity constraints on foreign keys. To do this, you can use the “Forward Engineer /

Schema Generation ...” command from the “Tools” menu.

The following are SQL instructions for creating tables of database "student".

CREATE TABLE discipline(

 id_discipline smallint NOT NULL,

 title varchar(20) NULL,

 id_teacher smallint NOT NULL);

CREATE UNIQUE INDEX PRIMARY ON discipline(

 id_discipline);

ALTER TABLE discipline ADD PRIMARY KEY (id_discipline);

CREATE INDEX id_teacher ON discipline (id_teacher);

61

CREATE TABLE exam(

 id_stud smallint NOT NULL,

 id_discipline smallint NOT NULL,

 _score smallint NULL);

CREATE UNIQUE INDEX PRIMARY ON exam(

 id_stud,

 id_discipline);

ALTER TABLE exam ADD PRIMARY KEY (id_stud,id_disci-

pline);

CREATE INDEX id_subj ON exam (id_discipline);

CREATE TABLE faculty(

 id_fac smallint NOT NULL,

 title varchar(15) NULL);

CREATE UNIQUE INDEX PRIMARY ON faculty(id_fac);

ALTER TABLE faculty ADD PRIMARY KEY (id_fac);

CREATE TABLE student(

 id_stud smallint NOT NULL,

 fio VARCHAR(40) NOT NULL,

 birthday date NULL,

 course smallint NULL,

 id_fac smallint NOT NULL,

 resume text(65535) NULL);

CREATE UNIQUE INDEX PRIMARY ON student(

 id_stud);

ALTER TABLE student

 ADD PRIMARY KEY (id_stud);

CREATE INDEX id_fac ON student (id_fac);

CREATE TABLE teacher(

 id_teacher smallint NOT NULL,

 fio VARCHAR(40) NULL,

 id_fac smallint NOT NULL);

CREATE UNIQUE INDEX PRIMARY ON teacher(

 id_teacher);

ALTER TABLE teacher

 ADD PRIMARY KEY (id_teacher);

CREATE INDEX id_fac ON teacher(id_fac);

ALTER TABLE discipline

 ADD FOREIGN KEY subject_ibfk_1 (id_teacher)

REFERENCES teacher(id_teacher);

ALTER TABLE exam

62

 ADD FOREIGN KEY exam_ibfk_3 (id_stud)

REFERENCES student(id_stud)ON DELETE CASCADE;

ALTER TABLE exam

 ADD FOREIGN KEY exam_ibfk_2 (id_discipline)

REFERENCES discipline(id_discipline);

ALTER TABLE student

 ADD FOREIGN KEY student_ibfk_1 (id_fac)

REFERENCES faculty(id_fac);

ALTER TABLE teacher

 ADD FOREIGN KEY teacher_ibfk_1 (id_fac) REFERENCES

faculty(id_fac);

The stored procedure is associated with a specific database, so before creating it, you

must go to this database using the standard instruction: "use database_name".

Consider an example of a procedure that allows you to get the results of intermediate

certification of a particular student by his last name, including the title of the disciplines

that he passed, and the resulting assessments.

delimiter ^

create procedure stud_fio_scores(in in_fio varchar(20))

begin

declare stud_id integer;

select id_stud into stud_id from student where

fio=in_fio;

select id_stud, title, _score from exam inner join disci-

pline using (id_discipline) where id_stud=stud_id;

end; ^

Since inside the procedure operators are separated by a semicolon, and in SQL this

character is a separator for closing an operator, the first instruction of the procedure sets

another separator character. In this case, this "^". Quite often, the symbol "//" or "$" is

used as a separator.

As an input parameter, the procedure takes the student's last name, according to

which the corresponding primary key of the student table id_stud is determined using

the query. This value is stored in a local variable, which is declared inside the procedure

by the declare statement. As students are identified in the table with the results of the

exams using the key field (id_stud), it is this calculated parameter that is transmitted to

the second query of the procedure body, allowing you to get the desired result.

63

The following stored procedure allows you to get a list of students who have passed

the session on the "good" and "excellent", which can apply for scholarships. The pro-

cedure displays information in the format of last name of student, course and name of

faculty.

delimiter ^

create procedure student_score_not3()

begin

select fio, course, title from exam inner join (student

inner join faculty using(id_fac)) using(id_stud) group by

id_stud having min(_score)>3;

end; ^

Below is an example of a stored procedure that determines the student with the highest

average score (if there are several such students, the entire list will be displayed) and

the student with the lowest score based on the results of the intermediate attestation.

delimiter ^

create procedure max_min_avg()

begin

declare min_ball double(6,4);

declare max_ball double(6,4);

select max(sr_b) into max_ball from sr_ball;

select min(sr_b) into min_ball from sr_ball;

 select fio, avg(_score) as max_sr from student, exam

where exam.id_stud=student.id_stud group by exam.id_stud

having max_sr >=max_ball;

 select fio, avg(_score) as min_sr from student, exam

where exam.id_stud=student.id_stud group by exam.id_stud

having min_sr <=min_ball;

end; ^

Creating a complex of procedures that implement the basic business processes ensures

reliable operation of the information system.

4 Using stored procedures in the client part of the application

The client-server MySQL DBMS, like other SQL servers, does not have a graphical

user interface. Consider the technology of using stored procedures in the client part of

the application for MySQL in the C++ programming language in the Embarcadero

64

RAD Studio integrated software development environment - the Rapid Application De-

velopment (RAD) environment. Combining powerful tools of the C ++ programming

language with the library of visual components provides the programmer with the tools

for the rapid development of a graphical interface [11].

Embarcadero RAD Studio provides a programmer with several technologies for de-

veloping database applications. Consider one of them - BDE (Borland Database En-

gine). The main components of the BDE technology that provide the data set are such

components as TTable (table), TQuery (query) and TStoredProc (stored procedure).

There is a large set of visualization and data management components, such as DBGrid

(grid), DBNavigator (navigator), DBText (label), DBEdit (input field), etc. The Data-

Source component is used to exchange information between data sets and visual com-

ponents. - data source. The connection of components providing access to the database

is shown in Fig. 2.

Fig. 2. The scheme of interaction of BDE components with the database

Consider a specific example of using a stored procedure in the client part of an ap-

plication.

As an example, take a procedure that displays information about student results of

the examination session. As shown above, the procedure is stored on the server under

the name stud_fio_scores. The input parameter of the procedure is the last name of the

student.

The data access technology through the StoredProc component requires setting the

following properties: DataBaseName — selected from the list of available databases;

in the StoredProcName property, the required stored procedure is selected from the set

of stored procedures of this database. Since stored procedures often have input param-

eters, it is necessary to select the parameter binding mode, for which the Pa-

ramBindMode property is responsible, in which the choice by name or index is availa-

ble. The data type and other characteristics of the parameters of the stored procedure

are available by the Params property, in which you can specify a specific value of the

parameter already at the application development stage. In most cases, the value of the

input parameter is set or calculated during program execution (runtime).

In this example, in addition to the StoredProc component, you will need to use the

TTable (TStudent) component to get a list of student names. This information will be

displayed in such a visual component as the ComboBox drop-down list (CBFio_stud).

This is implemented by the following code snippet.:

void __fastcall TForm1::FormActivate(TObject *Sender)

{

Database
Data Set:

Table, Query,

StoredProc…

Data Source:

DataSource

Elements of

visualization

and control

DBGrid,

DBText …

65

TStudent->First();

TStudent->Active=true;

CBFio_stud->Clear();

while(!TStudent->Eof)

{

 CBFio_stud->Items->Add(TStudentfio->AsString) ;

 TStudent->Next();

}

CBFio_stud->ItemIndex=0;

TStudent->First();

}

The selection of the input parameter, the call of the stored procedure and the display of

the results of its work is implemented by the following fragment:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

 StoredProc1->Active=false;

 StoredProc1->ParamByName("in_fio")->AsString =
CBFio_stud->Text;

 StoredProc1->Prepare();

 StoredProc1->Active=true;

}

In Fig. 3 shows an example of a call to a stored procedure that displays information

about a particular student's grades with an indication of the name of the discipline.

Fig. 3. An example of using a stored procedure

The presented information, considered examples clearly demonstrate the advantage

of using stored procedures as compared to the usual queries, since it allows you to re-

ceive data with any specific input parameter.

66

If using dynamic SQL, reusing a query with a different input parameter would be

difficult. In addition to improving performance, since stored procedures are usually

faster than regular SQL statements, they make it easier to perform repetitive tasks, al-

lowing you to output complex operations into a single object. The stored procedure

code is compiled once and then stored in compiled form.

Conclusion

Based on the considered examples of creating stored procedures on a server and their

use in client applications, it can be concluded that the use of a database object such as

a stored procedure in information systems simplifies program maintenance and changes

to it. Being independent of tables or any other database objects, stored procedures ac-

cumulate in themselves all integrity constraints in the form of rules and data processing

algorithms.

They are implemented on the server and the end user is provided only with the data

processing interface in the form of a call to certain stored procedures. The mechanism

for passing parameters to stored procedures provides the multifunctionality of the query

to obtain the necessary data.

References

1. Andreeva, Natalia Viktorovna. Database programming: SQL. Data selection [Electronic re-

source]: study guide / N. V. Andreeva, O. Yu. Sabinin; - St. Petersburg Polytechnic Univer-

sity of Peter the Great. St. Petersburg, 2018. Available at: http://elib.spbstu.ru/dl/2/s18-

64.pdf. (In Russian) DOI: 10.18720/SPBPU/2/s18-64

2. Babanov Alexey M., Petrov Alexander V. Implementation of the ERM-model repository in

CASE-system Oracle Designer. Vestnik Tomskogo gosudarstvennogo universiteta. Uprav-

lenie, vychislitel'naya tekhnika i informatika [Tomsk State University Journal of Control and

Computer Science], 2017. - No.41, pp. 47-54. (In Russian) DOI: 10.17223/19988605/41/6

3. Babanov, A. M. Database design prospects opening with application of modern semantic

data models. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya

tekhnika i informatika [Tomsk State University Journal of Control and Computer Science],

2015. - No. 2. pp. 73–80. (In Russian). DOI: 10.17223/19988605/31/8

4. Borovskoy I.G., Shelmina E.A. Comparative analysis of desktop and client-server databases.

Reports of Tomsk State University of Control Systems and Radioelectronics. 2017 - pp. 92-

94. (In Russian). DOI: 10.21293/1818-0442-2017-20-4-92-94

5. Chen Peter. The Entity-Relationship Model – Toward a Unified View of Data // ACM Trans-

actions on Database Systems, 1976, 1(1): 9–36. DOI: 10.1145/320434.32044

6. Egea M., Dania C., Clavel M. MySQL4OCL: A Stored Procedure-Based MySQL Code

Generator for OCL // Electronic Communications of the EASST. 2010. - vol.36, 16p.

DOI:10.14279/TUJ.ECEASST.36.445

7. Kharitonov D.I., Tarasov G.V., Leontiev D.V., Parakhin R.V. Modeling the subject area for

the formation of electronic collections. Territory of new opportunities. Bulletin of the Vla-

divostok State University of Economics and Service. 2018. - vol. 10, No.2. pp. 125–136. (In

Russian). DOI: 10.24866/VVSU/2073-3984/2018-2/125-136

http://elib.spbstu.ru/dl/2/s18-64.pdf
http://elib.spbstu.ru/dl/2/s18-64.pdf

67

8. Koroleva Yu.A., Maslova V.O., Kozlov V.K. Development of the concept of data migration

between relational and non-relational database systems // International Scientific and Prac-

tical Journal Software & Systems. 2019. - vol. 32, No. 1, pp. 063–067. (In Russian). DOI:

10.15827/0236-235X.125.063-067

9. Poltavtsev A.A. Dynamic structures in relational databases // International Scientific and

Practical Journal Software & Systems. 2015. - No. 2, pp.95-97. DOI:10.15827/0236-

235X.110.095-097

10. Posevkin R.V. Database semantic model application in natural language user interface de-

velopment process. Scientific and Technical Journal of Information Technologies, Mechan-

ics and Optics. 2018. - vol. 18, No. 2, pp. 262–267 (In Russian). DOI: 10.17586/2226-1494-

2018-18-2-262-267

11. Sazonov, A.D. Application of the MYSQL DBMS to create information systems in the cli-

ent-server architecture: final qualification work of the bachelor: 09.03.02 - Information Sys-

tems and Technologies, St. Petersburg Polytechnic University of Peter the Great. 2018. (In

Russian). DOI: 10.18720 / SPBPU / 2 / V18-6487

