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Abstract. The use of ultrasound local heating of human body tissues for the treat-

ment of cancer and other diseases is a promising direction in medicine because 

of its minimally invasive and cheap. The application of this method requires pre-

cise control of the localization of thermal effects in a given area. For this purpose, 

two main methods are used – ultrasonic thermometry and restoration of the ther-

mal field inside the body by measurements on its surface. In this article, we pre-

sent the results of our theoretical and experimental researches of the s method. 

The field was reconstructed at depth. This restoration was based on the results of 

measurements of the thermal imager from the surface of the body during high-

intensity focused ultrasound (HIFU) heating. At the same time, we were forced 

to digitize the graphic data of temperature distribution, which was given by the 

thermal imager. The results of the restoration were compared with the results of 

measurements by sensors which was located at different depths. As a result of 

the comparison, the error was less than 1°C. Subsequently, we took these results 

as exemplary for testing the accuracy of the ultrasonic thermometry (UST) pro-

gram. The average time difference between the temperature increase obtained by 

the UST program and the recovered data is 1.5 °C. We consider that these results 

are acceptable for further research on biological tissues. 

Keywords: ultrasonic thermometry method, focused ultrasound therapy, recon-

struction of the temperature field. 

1 Introduction  

 

To control the process of thermal effects in the application of focused ultrasound ther-

apy [1]  is a usually used method of ultrasonic thermometry [2-6]. To assess the accu-

racy of the ultrasonic testing method, we conducted an experiment in which HIFU heat-

ing of the test object was performed using the thermal imager measured the temperature 
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on its surface. According to the results of measurements of the temperature field on the 

surface of the test object, the field was restored at depth. Results recovery of tempera-

ture by depth were taken the sample of the test program UST. In this paper we present 

the results of the temperature field recovery in the test object. We compare these results 

with the results of measurements using sensors. 

2 Material and methods 

The experiment was carried out heating of the tissue-mimicking material (TMM) using 

the HIFU transducer. The scanning plane of the ultrasonic transducer is perpendicular 

to the axis of the HIFU transducer. The thermal imager was installed at a height of 15 

cm from the surface of the test object and recorded a video with thermal images of the 

surface of the material during heating and cooling, as well as with the temperature dis-

tribution along a 28mm long line passing through the heating center. To control the 

temperature inside the test object, we installed sensors at depths of 2mm, 4mm, and 

6mm and at a distance of 3mm from the center of focus. 

To process data from the thermal imager in Matlab, a program was written that al-

lows you to create a graph of the temperature distribution along the line drawn on the 

device screen. Work with it is as follows: first, the program is loaded with video data 

obtained by the thermal imager and is divided into frames. Next, the coordinates of the 

frame area from which the data should be read are set (in this case, the row with the 

minimum and maximum values of temperatures and the temperature distribution graph 

were set). Then the characters from the string corresponding to the data type specified 

in the program are formed into an array. Thus, the output is a table with the maximum 

and minimum temperature values from each frame of interest to us. At the same time, 

the original graph is cleared of noise so that the program image consists of a white 

"background" and a black line. The resulting images contain the temperature and coor-

dinate of each pixel belonging to the graph, that is, an array A[T, i] and length(n) is 

formed, where i is the frame number, n is the number of pixels on the x-axis. Since 

every 10th frame was taken in this experiment, the time interval between frames is 1 s, 

which means that it is possible to plot the temperature change of a fixed x over time 

(step – 1 s). 

The problem of restoring the temperature field induced by focused ultrasound from 

measurements on the surface of the test object can be solved in the first approximation 

in the entire space or in the half-space, neglecting the boundary effects. In this case, the 

error is minimal when the source is located in the depth of the material and small time 

intervals. 

The first substitution. In this production, the solution is sought throughout the space. 

This result can be used to restore the solution in the depth of the test object. According 

to [1], the temperature field in the tissues satisfies the equation  

 
∂𝑇

∂𝑡
= 𝐾Δ𝑇 − 𝑏𝑇 + 𝑆(𝑡, 𝐱) (1) 

 Here 𝑇 - the thermal field, 𝐾 - the coefficient of thermal diffusivity, 𝑏 - the coeffi-

cient reflecting the heat transfer of blood, 𝑆(𝑡, 𝒙) - ultrasonic heat source. 
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According to [1] in cylindrical coordinate system 𝑆(𝑡, 𝒙) = 𝑄(𝑡) 𝑒𝑥𝑝[ − 𝑟2/
𝛽𝑟] 𝑒𝑥𝑝[ − 𝑧2/𝛽𝑧]. The result is a solution of the form 

T(t, r, z)

= c ∫ Q(τ)
t

0

exp[ − b(t − τ)] 𝑒𝑥𝑝[ − r2/(4K(t − τ) + βr)] exp[ − z2/(4K(t − τ) + βz)]

√4K(t − τ) + βz(4K(t − τ) + βr)
𝑑𝜏 

In the case of a short-term ultrasonic pulse at the initial time, the density of the ul-

trasonic source is expressed in terms of the Delta function 𝑄(𝑡) = 𝑞𝛿(𝑡) 

𝑇(𝑡, 𝑟, 𝑧) = 𝑐𝑞
𝑒𝑥𝑝[ − 𝑏𝑡] 𝑒𝑥𝑝[ − 𝑟2/(4𝐾𝑡 + 𝛽𝑟)] 𝑒𝑥𝑝[ − 𝑧2/(4𝐾𝑡 + 𝛽𝑧)]

√4𝐾𝑡 + 𝛽𝑧(4𝐾𝑡 + 𝛽𝑟)
 

In the first approximation, we can ignore the boundary effects arising from the fact 

that the problem is solved in half-space, not in space. In this case, the error is minimal 

when the source is located in the depth of the material and small times. 

If a sequence of actions is performed, then, due to the linearity of equation (1), the 

total thermal field is represented as the sum of the thermal fields of the sources. 

S substitution. We will solve equation (1) in half-space. Replacement 𝑇(𝑡, 𝒙) =
𝑢(𝑡, 𝒙) 𝑒𝑥𝑝[ − 𝑏𝑡] equation (1) is given as 

 
∂𝑢

∂𝑡
= 𝐾Δ𝑢 + 𝑃(𝑡, 𝐱). (2) 

Here 𝑃(𝑡, 𝒙) = 𝑆(𝑡, 𝒙) 𝑒𝑥𝑝[ 𝑏𝑡].  
We will solve the problem (2) in the half-space −∞ ≤ 𝑥 < +∞, −∞ < 𝑦 <

+∞, 0 ≤ 𝑧 < +∞. Due to the fact that the thermal conductivity of the air is 25-30 times 

less than that of the test object, we take as a boundary condition 
𝜕𝑢

𝜕𝑧
= 0 by 𝑧 = 0. Then, 

according to [2] 

𝑢(𝑡, 𝑥, 𝑦, 𝑧) = ∫ ∫ ∫ ∫ 𝑃(𝜏, 𝜉, 𝜂, 𝜁)
+∞

0

+∞

−∞

+∞

−∞

𝑡

0
𝐺(𝑡 − 𝜏, 𝑥, 𝑦, 𝑧, 𝜉, 𝜂, 𝜁)𝑑𝜏𝑑𝜉𝑑𝜂𝑑𝜁, (3) 

where 𝐺(𝑡, 𝑥, 𝑦, 𝑧, 𝜉, 𝜂, 𝜁) =
𝑒𝑥𝑝[−

(𝑧−𝜁)2

4𝐾𝑡
]+𝑒𝑥𝑝[−

(𝑧+𝜁)2

4𝐾𝑡
]

8(𝜋𝐾𝑡)3/2 𝑒𝑥𝑝[ −
(𝑥−𝜉)2+(𝑦−𝜂)2

4𝐾𝑡
]. 

According to [1] 𝑃(𝑡, 𝑥, 𝑦, 𝑧) = 𝑒𝑥𝑝[ 𝑏𝑡]𝑄(𝑡) 𝑒𝑥𝑝[ − (𝑥2 + 𝑦2)/𝛽𝑟] 𝑒𝑥𝑝[ − (𝑧 −
𝑧0)2/𝛽𝑧]. Here 𝑧0 - depth of focus of ultrasonic action. 

Substituting in (3), receive 𝑢(𝑡, 𝑥, 𝑦, 𝑧) =
1

8(𝜋𝐾)3/2 ∫
𝑒𝑥𝑝[𝑏𝜏]𝑄(𝜏)

(𝑡−𝜏)3/2 ∫ 𝑒𝑥𝑝[ −
+∞

−∞

𝑡

0

(𝑥−𝜉)2

4𝐾(𝑡−𝜏)
] 𝑒𝑥𝑝[ − 𝜉2/𝛽𝑟]𝑑𝜉 ∫ 𝑒𝑥𝑝[ −

(𝑦−𝜂)2

4𝐾(𝑡−𝜏)
] 𝑒𝑥𝑝[ − 𝜂2/𝛽𝑟]𝑑𝜂

+∞

−∞
∫ (𝑒𝑥𝑝[ −

+∞

0

(𝑧−𝜁)2

4𝐾(𝑡−𝜏)
] + 𝑒𝑥𝑝[ −

(𝑧+𝜁)2

4𝐾(𝑡−𝜏)
]) 𝑒𝑥𝑝[ − (𝜁 − 𝑧0)2/𝛽𝑧]𝑑𝜁𝑑𝜏 

The last three integrals are calculated analytically. 
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∫ 𝑒𝑥𝑝[ −
(𝑥−𝜉)2

4𝐾(𝑡−𝜏)
] 𝑒𝑥𝑝[ − 𝜉2/𝛽𝑟]𝑑𝜉 =

+∞

−∞
2√

𝜋𝛽𝑟𝐾(𝑡−𝜏)

𝛽𝑟+4𝐾(𝑡−𝜏)
𝑒𝑥𝑝[ −

𝑥2

𝛽𝑟+4𝐾(𝑡−𝜏)
] ∫ 𝑒𝑥𝑝[ −

+∞

−∞

(𝑦−𝜂)2

4𝐾(𝑡−𝜏)
] 𝑒𝑥𝑝[ − 𝜂2/𝛽𝑟]𝑑𝜂 = 2√

𝜋𝛽𝑟𝐾(𝑡−𝜏)

𝛽𝑟+4𝐾(𝑡−𝜏)
𝑒𝑥𝑝[ −

𝑦2

𝛽𝑟+4𝐾(𝑡−𝜏)
] ∫ 𝑒𝑥𝑝[ −

(𝑧−𝜁)2

4𝐾(𝑡−𝜏)
] +

+∞

0

𝑒𝑥𝑝[ −
(𝑧+𝜁)2

4𝐾(𝑡−𝜏)
] 𝑒𝑥𝑝[ − (𝜁 − 𝑧0)2/

𝛽𝑧]𝑑𝜁 = √
𝜋𝐾(𝑡−𝜏)𝛽𝑧

𝛽𝑧+4𝐾(𝑡−𝜏)
(𝑒𝑥𝑝[

−(𝑧−𝑧0)2

𝛽𝑧+4𝐾(𝑡−𝜏)
] 𝑒𝑟𝑓𝑐[

𝑧𝛽𝑧+4𝐾(𝑡−𝜏)𝑧0

2√𝛽𝑧𝐾(𝑡−𝜏)√𝛽𝑧+4𝐾(𝑡−𝜏)
]  +

𝑒𝑥𝑝[
−(𝑧+𝑧0)2

𝛽𝑧+4𝐾(𝑡−𝜏)
] 𝑒𝑟𝑓𝑐[

−𝑧𝛽𝑧+4𝐾(𝑡−𝜏)𝑧0

2√𝛽𝑧𝐾(𝑡−𝜏)√𝛽𝑧+4𝐾(𝑡−𝜏)
])  

Here 𝑒𝑟𝑓𝑐[ 𝑥] =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
+∞

𝑥
 - additional probability integral. 

As a result, we get: 

𝑢(𝑡, 𝑥, 𝑦, 𝑧) =
𝛽𝑟√𝛽𝑧

2
∫

𝑒𝑥𝑝[𝑏𝜏]𝑄(𝜏)

𝛽𝑟+4𝐾(𝑡−𝜏)√𝛽𝑧+4𝐾(𝑡−𝜏)

𝑡

0
𝑒𝑥𝑝[ −

𝑥2+𝑦2

𝛽𝑟+4𝐾(𝑡−𝜏)
](𝑒𝑥𝑝[

−(𝑧−𝑧0)2

𝛽𝑧+4𝐾(𝑡−𝜏)
] 𝑒𝑟𝑓𝑐[

𝑧𝛽𝑧+4𝐾(𝑡−𝜏)𝑧0

2√𝛽𝑧𝐾(𝑡−𝜏)√𝛽𝑧+4𝐾(𝑡−𝜏)
] +

+ 𝑒𝑥𝑝[
−(𝑧+𝑧0)2

𝛽𝑧+4𝐾(𝑡−𝜏)
] 𝑒𝑟𝑓𝑐[

−𝑧𝛽𝑧+4𝐾(𝑡−𝜏)𝑧0

2√𝛽𝑧𝐾(𝑡−𝜏)√𝛽𝑧+4𝐾(𝑡−𝜏)
])𝑑𝜏 (4) 

The surface temperature distribution that can be measured is as follows 

𝑢(𝑡, 𝑥, 𝑦, 0) = 𝛽𝑟√𝛽𝑧 ∫
𝑒𝑥𝑝[𝑏𝜏]𝑄(𝜏)

(𝛽𝑟+4𝐾(𝑡−𝜏))√𝛽𝑧+4𝐾(𝑡−𝜏)

𝑡

0
𝑒𝑥𝑝[ −

𝑥2+𝑦2

𝛽𝑟+4𝐾(𝑡−𝜏)
] 𝑒𝑥𝑝[

−𝑧0
2

𝛽𝑧+4𝐾(𝑡−𝜏)
] 𝑒𝑟𝑓𝑐[

2√𝐾(𝑡−𝜏)𝑧0

√𝛽𝑧√𝛽𝑧+4𝐾(𝑡−𝜏)
]𝑑𝜏 (5) 

By measurements using the least-squares method, you can restore the coefficients 

𝛽𝑟 , 𝛽𝑧 , 𝐾, 𝑏 and, if necessary, 𝑧0. 

If 𝑏 = 0, 𝑄(𝜏) = {
𝑞  if 𝜏 ≤ 𝑇
0 if 𝜏 > 𝑇

: 

𝑢(𝑡, 𝑥, 𝑦, 0) = 𝛽𝑟√𝛽𝑧𝑞 ∫
𝑒𝑥𝑝[−

𝑥2+𝑦2

𝛽𝑟+4𝐾(𝑡−𝜏)
] 𝑒𝑥𝑝[

−𝑧0
2

𝛽𝑧+4𝐾(𝑡−𝜏)
] 𝑒𝑟𝑓𝑐[

2√𝐾(𝑡−𝜏)𝑧0

√𝛽𝑧√𝛽𝑧+4𝐾(𝑡−𝜏)
]

(𝛽𝑟+4𝐾(𝑡−𝜏))√𝛽𝑧+4𝐾(𝑡−𝜏)

𝑚𝑖𝑛(𝑡,𝑇)

0
𝑑𝜏  

Due to the fact that the measurements are carried out at 𝑡 > 𝑇, receive 

𝑢(𝑡, 𝑥, 𝑦, 0) = 𝛽𝑟√𝛽𝑧𝑞 ∫
𝑒𝑥𝑝[−

𝑥2+𝑦2

𝛽𝑟+4𝐾𝜏
] 𝑒𝑥𝑝[

−𝑧0
2

𝛽𝑧+4𝐾𝜏
] 𝑒𝑟𝑓𝑐[

2√𝐾𝜏𝑧0

√𝛽𝑧√𝛽𝑧+4𝐾𝜏
]

(𝛽𝑟+4𝐾𝜏)√𝛽𝑧+4𝐾𝜏

𝑡

𝑡−𝑇
𝑑𝜏 (6) 

Introduce the notation 𝐴 = 𝛽𝑟√𝛽𝑧𝑞, 𝐵 = 4𝐾, then (6) is slightly simplified 

𝑢(𝑡, 𝑥, 𝑦, 0) = 𝐴 ∫
𝑒𝑥𝑝[−

𝑥2+𝑦2

𝛽𝑟+𝐵𝜏
] 𝑒𝑥𝑝[

−𝑧0
2

𝛽𝑧+𝐵𝜏
] 𝑒𝑟𝑓𝑐[

√𝐵𝜏𝑧0

√𝛽𝑧√𝛽𝑧+𝐵𝜏
]

(𝛽𝑟+𝐵𝜏)√𝛽𝑧+𝐵𝜏

𝑡

𝑡−𝑇
𝑑𝜏 (7) 

Let the measurements take place over a period of time 𝛥𝑡 = ℎ, 𝑡 = 𝑛ℎ, 𝑇 = 𝑁ℎ, 𝜏 =
𝑖ℎ. To estimate the integral, we use the formula of averages 
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𝑢(𝑛ℎ, 𝑥, 𝑦, 0) = 𝐴ℎ ∑
𝑒𝑥𝑝[−

𝑥2+𝑦2

𝛽𝑟+𝐵𝜏𝑛+𝑖
] 𝑒𝑥𝑝[

−𝑧0
2

𝛽𝑧+𝐵𝜏𝑛+𝑖
] 𝑒𝑟𝑓𝑐[

√𝐵𝜏𝑛+𝑖𝑧0

√𝛽𝑧√𝛽𝑧+𝐵𝜏𝑛+𝑖
]

(𝛽𝑟+𝐵𝜏𝑛+𝑖)√𝛽𝑧+𝐵𝜏𝑛+𝑖

𝑁
𝑖=1 , (8) 

 where 𝜏𝑘 = (𝑘 − 𝑁 − 0.5)ℎ 

Parameters 𝛽𝑟 , 𝛽𝑧 , 𝐴, 𝐵 are found by the least-squares method by minimizing the ex-

pression 

∑ (𝑢(𝑛ℎ, 𝑥𝑗 , 𝑦𝑘 , 0) − 𝑢𝑛𝑗 𝑘
)2

𝑛,𝑗,𝑘   (9) 

where 𝑢𝑛𝑗 𝑘
- the measured temperature at the corresponding point. 

3 Calculation 

Due to the fact that the measurements of the thermal field sensors were carried out in 

the test object at a shallow depth, the s substitution of the problem was used. Figure 1 

shows the change in the temperature increment in time on the surface of the test object 

in the heating center according to the thermal imager and reduced by the formula (6).  

 

 

Fig. 1.  Comparison of the measured thermal imager and the reduced temperature in the heating 

center 

The graph shows that the difference between the temperature measured by the thermal 

imager and the temperature restored by the formula (6) in the heating center by the 

above method is about a degree. 
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Fig. 2.  Comparison of the measured thermal imager and the restored temperature at a distance 

of 1.2 mm from the center 

It can be seen from figure 2 that the difference between the temperature measured by 

the thermal imager and the temperature restored by the formula (6) at a distance of 1.2 

mm from the heating center by the above method is about two degrees.  

 

 

Fig. 3.  Comparison of the measured thermal imager and the restored temperature at a distance 

of 2.4 mm from the center 
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It can be seen from figure 3 that the difference between the temperature measured by 

the thermal imager and the temperature restored by the formula (6) at a distance of 2.4 

mm from the heating center by the above method is about three degrees. 

Figures 1-3 show that the proposed model of temperature distribution during HIFU 

heating of the test object reflects the experimental data quite well. The error increase 

while rising the distance from the heating center is caused by the neglect of heat transfer 

into the air. 

On fig. 4-6 the change of temperature increment in time at a depth of 2 mm, 4 mm 

and 6 mm from the surface of the test object and a distance of 3mm from the heating 

center, restored according to the thermal imager according to the formula (6) and meas-

ured by a temperature sensor is given.  

 

Fig. 4.  Comparison of the measured and reduced temperature at a depth of 2mm from the sur-

face of the TMM and a distance of 3m from the heating center 

It can be seen from the graph that the difference between the measured temperature and 

the thermal imager restored according to the above method is about a degree.  
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Fig. 5.  Comparison of measured and restored temperature at a depth of 4 mm from the TMM 

surface and a distance of 3 mm from the heating center 

It can be seen from the figure that the difference between the measured temperature and 

the temperature which was restored by the above method at a depth of 4 mm from the 

surface is about 0.5 degrees. 

 

Fig. 6.  Comparison of the measured and reduced temperature at a depth of 6m from the TMM 

surface and a distance of 3m from the heating center 

It can be seen from the graph that the difference between the measured temperature and 

the thermal imager restored according to the above method is about a half degree.  
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4 Results and Discussion  

Based on the above results, we can conclude that the described method of restoring the 

temperature field by the results of measurement on the surface can be considered quite 

accurate. It should be especially noted that the error in determining the temperature 

field in the depth of the test object (the measurements of which were not used in the 

construction of the model) is no more than an error in the approximation of the temper-

ature field on the surface (which was used in the construction of the model). In addition, 

from a computational point of view, it is more efficient than the UST method. Besides 

the UST method, we tested the neural network approach for the described problem [8-

16]. Due to the fact that it is necessary to use sufficiently large neural networks and 

labor-intensive training procedures to obtain acceptable accuracy, the specified neural 

network approach is not suitable for monitoring the temperature field during HIFU-

heating as the real-time operation is required.  

5 Conclusions 

The results of the studies that we have given above, allow us to regard the described 

method as quite accurate and effective. We recommend using that method in ultrasound 

therapy in the treatment of cancer, malignant tumors, and other diseases. 
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