
How to Put Algorithms into Neural Networks

Anton Osokin1[0000−0002−8807−5132]

National Research University Higher School of Economics, Russia
aosokin@hse.ru

1 Introduction

Recently, neural networks have achieved remarkable success in many fields [4]. Many
practical systems for fundamental tasks are built with neural networks. For example, in
computer vision, it is image classification,, object detection and image segmentation; in
natural language processing, it is language modeling and automatic translation; in audio
processing, both speech recognition and synthesis. Many approaches have become an
industrial standard, and companies around the world are building products based on this
technology.

Successful algorithms for various tasks are very different from each other and
required years of research to arrive at the current level of performance. Constructing
a good algorithm for a new task is often a non-trivial challenge. It also turns out that
networks can not just learn from data without exploiting some domain knowledge.
This knowledge is usually encoded at least in the architecture itself. For example,
convolutional neural networks [2] exploit intuition that translation of the object does not
change the object itself, i.e., a cat does not stop being a cat if moved left.

At the same time, in many domains we already have powerful algorithms that do a
decent job. It is a very natural idea to exploit those to construct better networks. We can
look at this from two sides. From one side, this means constructing new layers or blocks
of layers for networks. From another side, this means making trainable algorithms. In
any case, the attempt is to take best of both worlds. This direction has been around since
90s [1,3,5], but for long time was not getting significant attention (together with neural
networks).

In this talk, we will review three ways to combine algorithms and networks (see
Fig. 1):
1. structured pooling: an algorithm is used to select active features (similarly to max

pooling);
2. unrolling iterations into layers: an algorithm simply becomes a part of the network;
3. analytical derivative w.r.t. the algorithm input, i.e., building a layer with a special

backward operator.
To illustrate all the approaches, we will use a running example of a simplified task

of handwriting recognition: recognize a word given a sequence of images where each
image shows exactly one letter.

Acknowledgments

Supported by RSF project 19-71-30020.

1

Copyright © 2019 for this paper by its authors. Use permitted under Creative 
Commons License Attribution 4.0 International (CC BY 4.0).



Analytical/algorithmic 

differentiation

Gradient

Loss

Algorithm

Saved 

result
Gradient

Loss

Algorithm

Forward pass

Backward pass: 

need only the result of the algorithm

Loss

Algorithm

Forward pass

Backward pass – regular backprop

Forward pass

Backward pass: another algorithm

1. Structured pooling 2. Unrolling iterations 3. Analytical differentiation

Fig. 1. Thee approaches to combine an algorithm and a neural network.

References

1. Bottou, L., Le Cun, Y., Bengio, and Y.: Global training of document processing systems using
graph transformer networks. In: Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR) (1997).

2. Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning. MIT Press (2016), http://www.
deeplearningbook.org

3. Le Cun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient based learning applied to document
recognition. Proceedings of IEEE 86 (11), 2278–2324 (1998).

4. LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning. Nature 521 (7553), 436–444 (2015).
5. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F.: A tutorial on energy-based

learning. Predicting structured data 1 (0) (2006).

2

http://www.deeplearningbook.org
http://www.deeplearningbook.org

