
46

A New Approach for Approximately Mining Frequent

Itemsets

Timur Valiullin, Joshua Zhexue Huang, Jianfei Yin, and Dingming Wu

Big Data Institute, College of Computer Science and Software Engineering

Shenzhen University

Shenzhen, China

Abstract. Mining frequent itemsets in transaction databases is an important

task in many applications. This task becomes challenging when dealing with a

very large transaction database because traditional algorithms are not scalable

due to the memory limit. In this paper, we propose a new approach for

approximately mining of frequent itemsets in a transaction database. First, we

partition the set of transactions in the database into disjoint subsets and make

the distribution of frequent itemsets in each subset similar to that of the entire

database. Then, we randomly select a set of subsets and independently mine the

frequent itemsets in each of them. After that, each frequent itemset discovered

from these subsets is voted and the one appearing in the majority subsets is

determined as a frequent itemset, called a popular frequent itemset. All popular

frequent itemsets are compared with the frequent itemsets discovered directly

from the entire database using the same frequency threshold. The recalls and

precisions of the frequent itemsets from selected subsets are analyzed against

the entire database. The experiment results demonstrate that the use of less than

10 percent of the transaction data in the database can achieve more than 87

percent accuracy. The new approach is very suitable for parallel

implementation for large transaction database mining.

Keywords: Approximate Frequent Itemsets Mining, Random Sample, Partition

1. Introduction

Frequent itemsets mining is the first and most critical stage of finding association rules

from a transaction database. Association rule mining is one of the main data mining

tasks in many applications, such as basket analysis, product recommendation, cross-

selling, inventory control, etc. Huge research efforts are devoted to solving frequent

itemsets mining problem. Many of these works had considerable impact and led to a

plenty of sophisticated and efficient algorithms for association rules mining, such as

Apriori [1, 2], FP-Growth (Frequent Pattern Growth) [3–6], Eclat [7–9] and some

others. However, the decade fast development of e-commerce, online and off-line

shopping has resulted in fast growth of transaction data, which present a tremendous

challenge to these existing algorithms, because these algorithms require a large

memory to run efficiently on large transaction databases.

Copyright © 2019 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

47

Parallel and distributed association rule mining algorithms were developed to

handle large transaction databases. Parallel association rule mining algorithms use in-

memory computing to efficiently mine association rules from a large transaction

database. However, their scalability is limited by the size of memory of the parallel

system. Distributed association rule mining algorithms [10, 11] were developed using

MapReduce [12] and run on a Hadoop cluster platform. The algorithms have better

scalability, but they are not efficient in mining large transaction datasets because of

frequent I/O operations and communication overhead between nodes.

In this paper, we propose a new approach for mining frequent itemsets from a big

transaction dataset. Similar to the distributed algorithms in MapReduce, we partition

the dataset into disjoint subsets of the same size. However, we make the distribution

of frequent itemsets in each subset similar to the distribution of frequent itemsets in

the entire dataset. Then, we randomly select a set of subsets and run a frequent itemset

mining algorithm independently to find the local frequent itemsets from each subset.

After all frequent itemsets are discovered from the set of subsets, each frequent itemset

is voted by all subsets and the one appearing in the majority subsets is determined as

a frequent itemset, called a popular frequent itemset. All popular frequent itemsets are

compared with the frequent itemsets discovered directly from the entire database using

the same frequency threshold. The recalls and precisions of the popular frequent

itemsets from the selected subsets are analyzed against the entire database to show

how many true frequent itemsets in the entire transaction dataset can be discovered

from the selected subsets.

We have conducted experiments to evaluate the new approach on two datasets.

Empirically we have shown that the proposed method is not only capable of producing

highly accurate frequent itemsets but also approximating the global frequency of

frequent itemsets with very small error.

The remaining of this paper is organized as follows. Related works are discussed

in Section 2. Section 3 describes the proposed approach. In Section 4, the details of

the algorithm are described. Experiments evaluation is presented in Section 5. Finally,

conclusions and future work are drawn in Section 6.

2 Related Work

Frequent itemsets mining is a well-studied problem in computer science. However,

the enormous data growth made traditional methods inadequate. Therefore, parallel

and distributed algorithms came in use.

Researchers in [13] introduced the parallel implementation of the FP-growth

algorithm on GPU. In [10] and [11], the authors introduced two different approaches

for mining frequent itemsets in a large database based on MapReduce. In [10],

researchers presented two methods for frequent itemsets mining based on Eclat

algorithm. The first one is a distributed version of Eclat that partitions the search space

more evenly among different processing units, and the second one is a hybrid approach,

where k-length frequent itemsets are mined by an Apriori variant, and then the found

frequent itemsets are distributed to the mappers where frequent itemsets are mined

48

using Eclat. Authors of [11] presented a novel zone-wise approach for frequent

itemsets mining based on sending computations to a multi-node cluster. All mentioned

approaches have obtained a speed increase over the traditional algorithms and allowed

to increase the size of the dataset used for mining. However, all introduced approaches

require using the entire dataset to get the result. In [14], M. Riondato first introduced

PARMA (Parallel Randomized Algorithm for Approximate association rule mining).

Algorithm sends random subsets of the database to various machines in the cluster as

an input. Then, each machine mines the received subset, and reducers combine the

result. Research in [15] is the basis for the current work. Random sample partition

(RSP) data model was presented, which showed that the block-level samples from an

RSP data model can be efficiently used for data analysis.

3. A New Approach

In our approach, we split a big dataset into smaller disjoint subsets such that the

distribution of frequent itemsets in each subset is similar to the distribution of frequent

itemsets in the entire dataset. Mining smaller subsets allows using traditional frequent

itemset mining algorithms without experiencing memory limit problems. By

combining the results of random subsets, we are able to produce highly accurate

approximate frequent itemsets.

3.1 Definitions

A transactional dataset D={t1,t2,...,tn} is represented by a collection of n transactions,

where each transaction t is a subset of the set of items I={I1,I2,...,Im}. An itemset A

with k distinct items is referred as k-itemset. In this paper, we do not distinguish

itemsets with different numbers of unique items. Given an itemset A, define TD(A) as

the set of transactions in D which contain A. The number of transactions in TD(A) is

defined as the support of A by D and denoted as support(A)=|TD(A)|. The frequency of

A, i.e., proportion of transactions containing A in D, is denoted as

.

Under the above definitions, the task for finding frequent itemsets from D with

respect to a minimal frequency threshold θ is defined as follows.

Definition 1. Given a minimum frequency threshold θ for 0<θ≤1, the frequent

itemsets mining with respect to θ is finding all itemsets {Ai} for 1≤i≤M with freq(Ai)≥θ,

where M is the total number of frequent itemsets found in D. Formally, we define the

whole set of frequent itemsets in D as

FI(D,I,θ)={(Ai,freqD(Ai)): Ai I, freqD(Ai)≥θ}.

Definition 2. Let FI(D,I,θ) be the set of frequent itemsets in D with respect to θ

and M=|FI(D,I,θ)| the number of frequent itemsets in FI. The accumulative

distribution of frequent itemsets in FI is defined as

49

𝑃(𝑓) =
1

𝑀
∑ 𝐼(𝑓𝑟𝑒𝑞𝐷(𝐴𝑖)) ≥ 𝑓

∀𝐴𝑖∈𝐹𝐼

where I() is an indicator function and f is a frequency value for θ≤f≤1. The example of

P(f) is shown in Fig. 1.

Fig. 1. Example of the accumulative frequent itemsets distribution

Let D be a big transactional dataset and P={D1,D2,...,Dk} a partition of D, where

 and Di ⋂ Dj = for i ≠ j. Di for 1≤i≤k is named as a block of transac-

tions of dataset D.

Definition 3. Let PD(f) be the accumulative distribution of frequent itemsets

FI(D,I,θ) and 𝑃𝐷𝑖(f) the accumulative distribution of frequent itemsets FI(Di,I,θ) for

1≤i≤k. P is a random sample partition of D if

 𝑃𝐷𝑖(f)→PD(f) as |Di |→|D|. (1)

Definition 3 is a redefined definition of random sample partition in [15] with

respect to frequent itemsets by replacing the condition of E[�̃�𝑘(t)]=F(t) with condition

(1), where �̃�𝑘(t) denotes the sample distribution function of Dk and E[�̃�𝑘(t)] denotes its

expectation.

Definition 4. FID(D,I,θ) is called the set of global frequent itemsets and FIDi(Di,I,θ)

the set of local frequent itemsets. Accordingly, PD(f) is the accumulative distribution

of global frequent itemsets and 𝑃𝐷𝑖(f) is the accumulative distribution of the local

frequent itemsets in Di.

50

3.2. Approximate Computing

When the transactional dataset D is big and cannot be held in memory, we cannot

run a frequent itemset mining algorithm on D to find all frequent itemsets FID(D,I,θ).

In this situation, we randomly select a set of l transaction blocks {D1,D2,...,Dl} from

the partition P and use the set of local frequent itemsets FIDi(Di,I,θ) for 1≤i≤l to

estimate the set of global frequent itemsets FID(D,I,θ). This approach is called

approximate frequent itemset mining.

Definition 5. Let itemset A be a frequent itemset in 𝐹𝐼𝐷𝑖(Di,I,θ) for 1≤i≤l. A is

called a popular frequent itemset if

∑𝐼(𝐴 ∈ 𝐹𝐼𝐷𝑖(𝐷𝑖 , 𝐼, 𝜃)) > 𝛼

𝑙

𝑖=1

 (2)

where I() is an indicator function and 𝛼 is a given integer greater than l/2.

Definition 6. The frequency of a popular frequent itemset A is defined as

The set of all popular frequent itemsets PFI from 𝐹𝐼𝐷𝑖 (Di,I,θ) for 1≤i≤l is the

estimation of the set of global frequent itemsets FID(D,I,θ). Given PFI and assuming

FID(D,I,θ) is known, an itemset A has the following status:

- true positive if 𝐴 ∈ 𝑃𝐹𝐼 and 𝐴 ∈ 𝐹𝐼𝐷(𝐷, 𝐼, 𝜃)
- false positive if 𝐴 ∈ 𝑃𝐹𝐼 and 𝐴 ∉ 𝐹𝐼𝐷(𝐷, 𝐼, 𝜃)
- true negative if 𝐴 ∉ 𝑃𝐹𝐼 and 𝐴 ∉ 𝐹𝐼𝐷(𝐷, 𝐼, 𝜃)
- false negative if 𝐴 ∉ 𝑃𝐹𝐼 and 𝐴 ∈ 𝐹𝐼𝐷(𝐷, 𝐼, 𝜃)

4. An Approximate Frequent Itemsets Finding Algorithm

In this section, we propose an approximate algorithm for finding the set of popular

frequent itemsets from a set of l transaction blocks {D1,D2,...,Dl} randomly selected

from the partition of a big transactional dataset D, and using the popular frequent

itemsets to estimate the set of frequent itemsets in D with respect to a given frequency

threshold θ. The algorithm consists of three steps: converting the dataset D into a

partition of k transaction blocks and randomly selecting l blocks from the partition;

finding the local frequent itemsets for each of l selected transaction blocks; finding

the popular frequent itemsets from the local frequent itemsets.

51

4.1 Generate Partition of Transaction Blocks

Given a transaction dataset D, the first step is to convert it to a partition of transaction

blocks. D is preprocessed such that each record represents one purchase transaction

and the transactions with one purchased item are removed. The pseudo code for

creating the random partition is given in Algorithm 1.

Algorithm 1 RSP Blocks generation and selection

Input:
-D: preprocessed data;

-l: number of subsets;

-m: subset size;

1: procedure RSPBlocks(D,l,m)

2:

3: for each Di, 1 <= i <= k do

4: randomly assign m transactions from D to the i-th block without replacement

5: end for

6: randomly select l transaction blocks from the set of created k blocks, l <= k

7: Output: set of l transaction blocks of D

8: end procedure

4.2 Finding Local Frequent Itemsets

In this step, Apriori algorithm is called to find the local frequent itemsets from each

of l transaction blocks {D1,D2,...,Dl} with respect to a given minimum frequency

threshold θ. Finally, l sets of local frequent itemsets are obtained. The pseudo code of

obtaining local frequent itemsets is presented in Algorithm 2.

Algorithm 2 Local frequent itemsets mining

Input:

-{Dl}: set of l transaction blocks of D;

-θ: minimum frequency threshold

1: procedure LocalFIs({Dl},θ)

2: for each Di, 1 <= i <= l do

3: FIi = Apriori(Di,θ)

4: end for

5: Output: {FIl} - set of l sets of the local frequent itemsets

6: end procedure

52

4.3 Finding Popular Local Frequent Itemsets

The l sets of local frequent itemsets are united into one set of unique local frequent

itemsets. For each frequent itemset in the united set, the number of its appearances in

the l sets is checked with Eq. (2). If the condition is satisfied, the frequent itemset is

considered as a popular frequent itemset. Otherwise, it is dropped. All local frequent

itemsets in the united set are checked and the set of popular frequent itemsets is

obtained. These popular frequent itemsets are used as the approximate set of the

frequent itemsets in D with respect to the same minimum frequency threshold θ. The

pseudo code is given in Algorithm 3.

Algorithm 3 Popular Frequent Itemset mining
Input:
-{FIl}: set of l local frequent itemsets;

1: procedure PopularFIs({FIl})

2:) // for all frequent itemsets found, creating <key, value>pair,

where itemset is a key and number of its repeats in all blocks is a value 3:

 for each frequent itemset FI do

4: if value then

5: include frequent itemset to the set of popular frequent itemsets

6: end if

7: end for

8: Output: set of popular frequent itemsets

9: end procedure

5. Experiments

To demonstrate the performance of the approximate frequent itemsets algorithm, we

conducted a series of experiments on two datasets. We run our algorithm several times

with different numbers of transaction blocks and different block size, and compared

the set of popular frequent itemsets with the exact set of frequent itemsets obtained

from the entire dataset.

5.1 Datasets

We evaluated the proposed approach on 2 datasets downloaded from Kaggle.com and

Open-Source Data Mining Library. Properties of datasets used in the experiments are

described in Table 1.

53

Table 1. Properties of the datasets used in experiments

 Kaggle dataset Online Retail dataset

Number of transactions 729148 541908

Number of items 791 2603

Average transaction length 8 4

5.2 Experiment Settings

In order to test the proposed algorithm, the set of popular frequent itemsets was

compared against the set of frequent itemsets in the entire dataset to compute the

accuracy, recall, and precision. We conducted 50 experiments for each set of

parameters specified in Table 2 and averaged obtained results afterward. For both

datasets, we used the same minimum frequency threshold for both local and global

frequent itemsets. We chose threshold to be small enough to produce a big collection

of the output frequent itemsets and set θ to be 0.005 for all experiments.

Testing was started with a comparison of the accumulative distribution of frequent

itemsets for local and global frequent itemsets and proceeded with the evaluation of

the different metrics of the popular frequent itemsets.

Table 2. Parameters used for experiments

Number of blocks Block size

50 10000, 5000, 3500, 2000, 1000, 500

30 10000, 5000, 3500, 2000, 1000, 500

15 10000, 5000, 3500, 2000, 1000, 500

10 10000, 5000, 3500, 2000, 1000, 500

5 10000, 5000, 3500, 2000, 1000, 500

5.3 Evaluation Methods

For evaluation of the accuracy and sufficiency of obtained approximate frequent

itemsets, we used the confusion matrix in our research. Using the confusion matrix

allows analyzing the efficiency of the proposed approach more detailed by introducing

three measures, namely recall, precision, and accuracy.

shows the fraction of the global frequent itemsets that are contained in the popular FIs.

shows the fraction of the popular frequent itemsets that are contained in the set of the

global frequent itemsets.

shows the proportion of accurate results among the total number of cases examined.

54

5.4 Experiment Results

We started with a comparison of accumulative distributions of the local and global FIs.

Fig. 2(a) clearly shows that the accumulative distribution of global frequent itemsets

is similar to the accumulative distributions of local frequent itemsets with a

sufficiently large subset size (Fig. 2(a) left and middle graphs). Different colors show

the differences of the accumulative distributions between the local frequent itemsets.

However, decreasing the size of the subset leads to the growth of the number of local

frequent itemsets (Fig. 2(a) right graph) and results in a significant difference between

the accumulative distributions of the global and local frequent itemsets. Nevertheless,

the accumulative distribution of the popular frequent itemsets shows almost identical

accumulative distribution to the global frequent itemsets. The accumulative

distributions of the global and popular frequent itemsets are represented in Fig. 2(b).

It shows that the number of the popular FIs almost matches to the number of global

FIs, and the overall frequency of the popular frequent itemsets is consistent with the

frequency of the global frequent itemsets.

(a) Accumulative frequent itemsets distributions of the global frequent itemsets (left) and

the local frequent itemsets (middle and right)

(b) Accumulative frequent itemsets distribution of the global frequent itemsets(left),

accumulative frequent itemsets distributions of the popular frequent itemsets

Fig. 2. Accumulative frequent itemsets distributions. Number of subsets = 30, subset size

(middle) = 10000, subset size (right) = 2000 (Kaggle dataset)

The proposed algorithm approximates the exact set of frequent itemsets in the

entire dataset. The difference between approximate and global collections is false-

55

positive FIs. The number of false-positive frequent itemsets affects one of the accuracy

measures, namely precision. Fig. 3 shows, how the precision value is affected by

different experimental parameters. It is observed that using more transaction blocks

decreases the number of false-positive itemsets, therefore increasing the precision.

From the graph, we can see that the number of falsepositive frequent itemsets

decreases as the growth of the block size.

Fig. 3. Precision changes with different parameters

The overall change of the accuracy defined in terms of a confusion matrix is

represented in Fig. 4. From the graphs, we can see that accuracy increase can be

obtained by increasing both the number of subsets used and the subset size.

Fig. 4. Accuracy changes with different parameters

56

5.5. Result Analysis

To evaluate the efficiency of our approach, we conducted 50 independent experiments

on both datasets with specified parameters in Table 2 to estimate the performance for

each set of parameters. For each test run, the set of approximate frequent itemsets was

compared to the exact set of the frequent itemsets obtained by mining the entire dataset.

As a result, we received 50 different observations of elapsed time, recall, precision

and accuracy for each set of parameters, and then averaged all values. Fig. 5 illustrates

how the average accuracy changes with the change in the amount of data being mined.

The graphs show that the proposed algorithm is capable of producing approximate

frequent itemsets with above 87% of the accuracy, using only a little less than 10% of

data.

Fig. 5. Accuracy increases with the rise of data used to mine

We also conducted an evaluation of the estimated frequency error in the

approximate frequent itemsets for all experimental parameters. In Fig. 6, we depict the

distribution of the average absolute error in the frequency estimation, defined as:

for all itemsets A that are contained in both the approximate and the global frequent

itemsets. We can see that the flustration of the error decreases with the increase of the

subset size. The error is reduced as the increase of the number of transaction blocks

and the block size.

57

Fig. 6. Error in frequency estimations for different parameters (Kaggle dataset)

6. Conclusions and Future Work

In this paper, we have presented a new approach for mining approximate collections

of frequent itemsets based on a random sample partition of the data. We have shown

that using the RSP data model in big data can be very beneficial, especially in the

frequent itemset mining task, since the size of transaction database grows much faster

than the contained patterns change.

For the further work, we are going to implement the parallel version of the

algorithm on a cluster and to conduct experiments on big datasets in terabyte scale.

We will also conduct a theoretical analysis of the approach.

References
1. Agrawal, R., Imielinski, T., and Swami, A.: Mining association rules between sets of items

in large databases. In Proceedings of SIGMOD, 1993.

2. Agrawal, R. and Srikant, R.: Fast algorithms for mining association rules in large data

bases. In Proceedings of VLDB, 1994.

3. Han, J., Pei, J., and Yin, Y.: Mining frequent patterns without candidate generation. In

Proceedings of the 19th ACM International Conference on Management of Data

(SIGMOD), 2000.

4. Grahne, G. and Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In

Proceedings of the CEUR Workshop Proceedings, 2003.

5. Racz, B. An fp-growth variation without rebuilding the fp-tree. In Proceedings of the

CEUR Workshop Proceedings, 2003.

6. Grahne, G. and Zhu, J.: Reducing the main memory consumptions of fpmax* and fpclose.

In Proceedings of the CEUR Workshop Proceedings, 2004.

7. Zaki, M.J., Parthasarathy, S., Ogihara, M., and Li, W.: New algorithms for fast discovery

of association rules. In Proceedings of the 3rd International Conference on Knowledge

Discovery and Data Mining, 1997.

8. Zaki, M.J. and Gouda, K.: Fast vertical mining using diffsets. In Proceedings of the 9th

ACM International Conference on Knowledge Discovery and Data Mining, 326–335,

Washington, DC, USA, 2003.

9. Schmidt-Thieme, L.: Algorithmic features of eclat. In Proceedings of the Workshop

Frequent Item Set Mining Implementations, 2004.

58

10. Moens, S., Aksehirli, E., and Goethals, B.: Frequent itemset mining for big data. In 2013

IEEE International Conference on Big Data, 2013.

11. Prajapati, D., Garg, S., and Chauhan, N.C.: Interesting association rule mining with

consistent and inconsistent rule detection from big sales data in distributed environment.

Future Computing and Informatics Journal 2 (1), 19–30 (2017).

12. Dean, J. and Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In

Proceedings of the CACM, 107–113 (2004).

13. Jiang, H. and Meng, H.: A parallel fp-growth algorithm based on gpu. In 2017 IEEE 14th

Int. Conf. E-bus. Eng, 97–102 (2017).

14. Riondato, M., DeBrabant, J.A., Fonseca, R., and Upfal, E.: Parma: a parallel randomized

algorithm for approximate association rules mining in mapreduce. In Proceedings of the

ACM International Conference on Information and Knowledge Management, 2012.

15. Salloum, S., He, Y., Huang, J.Z., Zhang, X., and Emara, T.Z.: A random sample partition

data model for big data. In [Online]. Available: https://arxiv.org/abs/1712.04146, 2017.

