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Abstract. The data integration concept formalization issues have been
considered within an XML-oriented data model. An ontology for data
integration concept is proposed. Three kinds mechanisms are used to
formalize the data integration concept: content dictionary, signature file
and reasoning file (collections of reasoning rules). The reasoning rules
are based on an algebra of integrable data and formalized by an XML
DTD. The data translation mechanisms are non-sensitive to extension of
the considered algebra. It is important that the considered data model is
extensible and we use a computationally complete language to support
the data integration concept.
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1 Introduction

We have published a number of papers that are devoted to investigation of data
integration problems (for instance, see [12, 13, 15, 16]). Within of these works
an approach to virtual and materialized integration of data has been devel-
oped. In [12] we considered the existence issues of reversible mapping of an
arbitrary source data model into a target data model. The considered approach
in [12] is based on the method of commutative mapping of data models of L.
A. Kalinichenko [10]. According to this method, each data model is defined by
syntax and semantics of two languages, data definition language (DDL) and data
manipulation language (DML). The main principle of mapping of an arbitrary re-
source data model into the target one could be reached under the condition, that
the diagram of DDL (schemas) mapping and the diagram of DML (operators)
mapping are commutative. A new dynamic indexing structure for multidimen-
sional data has been developed in [15] to support data materialized integration.
The problems to support OLAP-queries are considered in [13,16].

In this paper we will consider an approach to ontology-based data integra-
tion. An ontology is a formal, explicit specification of a conceptualization of a
shared knowledge domain. In other words, ontologies offer means to represent
high level concepts, their properties, and their interrelationships. Such represen-
tations are used for reasoning about entities of the subject domains, as well as for
the domains description. In the frame of our approach to ontology-based data in-
tegration we have developed an XML-oriented data model by strengthening the
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XML data model by means of the OPENMath concept [5]. OPENMath is a stan-
dard to represent mathematical concepts with their semantics on the Web. Usage
of OPENMath concept allows to extend the XML language with computational
and ontological constructs. We have certain experience in OPENMath usage in
our research in this context (for instance see [14]. The proposed ontology is based
on the OPENMath formalism and the so-called algebra of integrated data which
also has been developed by us. Three kinds of mechanisms of the OPENMath are
used to formalize the data integration concept: content dictionary, signature file
and reasoning file (collections of reasoning rules). The reasoning rules are based
on the algebra of integrable data and formalized by an XML DTD. It is essen-
tial that the considered data model is extensible and we use a computationally
complete language to support the data integration concept.

The paper is organized as follows: the formal bases of the data integration
concept formalization are considered briefly in Section 2. An algebra of integrable
data and an ontology for data integration concept are proposed in Section 3 and
Section 4 correspondingly. Related work is presented in Section 5. The conclusion
is provided in Section 6.

2 Formal Bases

In this section we will briefly consider the OPENMath concept. Namely, the
formalism and the constructions on which this concept is based. OPENMath
is an extensible formalism and we use it to formalize the ontology-based data
integration concept. This Section is based on the following works [13,14].

2.1 The OPENMath Concept

OpenMath is a standard for representation of the mathematical objects, allow-
ing them to be exchanged between computer programs, stored in databases, or
published on the Web. The considered formalism is oriented to represent seman-
tic information and is not intended to be used directly for presentation. Any
mathematical concept or fact is an example of mathematical object. OpenMath
objects are such representation of mathematical objects which assumes an XML
interpretation.

Formally, an OpenMath object is a labeled tree whose leaves are basic Open-
Math objects. The compound objects are defined in terms of binding and appli-
cation of the λ-calculus [9]. The type system is built on the basis of types that
are defined by themselves and certain recursive rules, whereby the compound
types are built from simpler types. The basis consists of the conventional atomic
types (for example, integer, string, boolean, etc.). To build compound types the
following type constructors are used:

• Attribution. If v is a basic object variable and t is a typed object, then
attribution(v, type t) is typed object. It denotes a variable with type t.

• Abstraction. If v is a basic object variable and t, A are typed objects, then
binding(lambda, attribution(v, type t), A) is typed object.
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• Application. If F and A are typed objects, then application(F,A) is typed
object.
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Fig. 1. An example of compound object

Semantic Level. OPENMath is implemented as an XML application. Its syn-
tax is defined by syntactical rules of XML, its grammar is partially defined by
its own DTD. Only syntactical validity of the OPENMath objects represen-
tation can be provided on the DTD level. To check semantics, in addition to
general rules inherited by XML applications, the considered application defines
new syntactical rules. This is achieved by means of introduction of signature
files concept, in which these rules are defined. Signature files contain the signa-
tures of basic concepts defined in some content dictionary and are used to check
the semantic validity of their representations. A content dictionary is the most
important component of OPENMath concept on preservation of mathematical
information. In other words, content dictionaries are used to assign formal and
informal semantics to all symbols (concepts) used in the OPENMath objects.
A content dictionary is a collection of related symbols, encoded in XML format
and fixing the ”meaning” of concepts independently of the application.

2.2 Data Integration Model

The weakness of XML data model is the absence of data types concept in con-
ventional sense. To eliminate this shortcoming and to support ontological de-
pendencies on the XML data model level, we expand the XML data model by
means of the OPENMath concept. The result of such extension is a data model
which coincides with XML data model and which was strengthened with com-
putational and ontological constructs of OPENMath. In the frame of this model
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we proposed a minor extension of OPENMath to support the built-in data types
concept of the XML Schema. Namely, to model the constants of built-in data
types of the XML Schema the corresponding basic objects were introduced. In
the context of the considered data model we consider three kinds of mechanisms
to formalize the data integration concept:

• content dictionaries to define basic concepts (integrable data, operations,
types, etc.);

• signature files to define signatures of basic concepts to check the semantic
validity of their representations;

• reasoning file to define knowledge in the frame of data integration concept.
Defining a concept in terms of known ones we introduce a new concept (knowl-
edge) in this area. Thus, the considered file is collections of reasoning rules, which
are defining the new concepts in terms of known ones.

Extension Principle. Our concept to data integration assumes that the data
integration model must be extensible. The extension of the data integration
model is formed during consideration of each new data model by adding new
concept(s) to its DDL to define logical data dependencies of the source model
in terms of the target model if necessary. Thus, the data integration model
extension assumes defining new symbols. The extension result must be equivalent
to the source data model. For applying a symbol on the data integration model
level the following rule is proposed:

Concept ← symbol ContextDefinition.

For example, to support the concepts of key of relational data model, we
have expanded the data integration model with the symbol key. Let us consider
a relational schema example: S={Snumber, Sname, Status, City}. The equiva-
lent definition of this schema by means of extended data integration model is
considered below:

S ← attribution(S, type TypeContext, constraint ConstraintContext)

TypeContext ← application(sequence, ApplicationContext)

ApplicationContext ← attribution(Snumber, type int),

attribution(Sname, type string), attribution(Status,

type int), attribution(City, type string)

ConstraintContext ← attribution(ConstraintName, key Snumber)

It is essential that we use a computationally complete language to define the
context [11]. As a result of such approach usage of new symbols in the DDL
does not lead to any changes in DDL parser. According to this approach, the
data integration model is synthesized as a union of extensions. A schema of the
integrated databases is an instance of the XML DTD for modeling reasoning
rules.
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3 Algebra of Integrable Data

In the frame of the data integration concept we differentiate one kind of data –
integrable data.

3.1 Formalization of Integrable Data

Definition 1. An integrable data schema X is an attribution object and is in-
terpreted by a finite set of attribution objects {A1, A2, ..., An}. Corresponding to
each attribution object Ai is a set Di (a finite, non-empty set), 1 ≤ i ≤ n, called
the domain of Ai.

Definition 2. Let D = D1 ∪ D2 ∪ ... ∪ Dn. An integrable data x on
integrable data schema X is a finite set of mappings {e1, e2, . . . , ek} from X to
D with the restriction that for each mapping e ∈ x, e[Ai] must be in Di, 1 ≤ i
≤ n. The mappings are called elements. )

Definition 3. A key of integrable data x is a minimal subset K of X such
that for any distinct elements e1, e2 ∈ x, e1[K] ̸= e2[K].

We introduce a symbol d to denote the set of all integrable data. It is assumed
that the schema of each integrable data is a subset of the set of all attribution
objects.

3.2 Operations

Virtual and materialization integration of data assumes introduction of special
operations, such as filtering, joining, aggregating, etc. The proposed operations
are similar to the realtional algebra operations.

To support n-ary associative operations union and joining, we introduced the
symbols union and join correspondingly. The symbol union is used to denote the
n-ary union of sets (integrable data). It takes sets as arguments, and denotes the
set that contains all the elements that occur in any of them: union : x∗assoc → d.

The symbol join is used to denote the n-ary join of sets. It takes sets as argu-
ments, denotes a set of elements, and is interpreted analogously to the operation
natural join of the relational algebra in general case (joins of many relations):
join : x∗assoc → d.

To support a filtering operation, we introduced the symbol σ. This symbol
is used to denote a select operation on the set. It takes a set and a predicate
as arguments, and denotes the set which contains all the elements for which the
predicate is satisfied:

σ : {x→ {p : {element} → boolean}} → d.

Here p is a predicate which is applied to element.

To support a projection operation, we introduced the symbol π. This sym-
bol is used to denote a unary operation on the set. It takes a set and a list of
attribution object names as argument, denotes a set of elements, and is inter-
preted analogously to the operation project of the relational algebra:
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π : x[name∗]→ d.

Here name denotes the name of an attribution object and is defined as follows:

name : {Attribution} → string.

For integrating data, aggregating functions play a significant role. We intro-
duced the count, sum and avg symbols to support the corresponding aggregate
functions of the relational algebra. Let f ∈ {avg, sum, count}, then

f : x[name]→ numericalvalue.

Often, we needs to consider the elements of an integrable data in groups. For this
purpose, we introduced a grouping symbol γ. This symbol is used to denote a
unary operation on the set. It takes a set, a list of attribution object names and
aggregate functions as arguments, denotes a set of elements, and is interpreted
analogously to the operation grouping of the relational algebra:

γ : x[name∗, (f : (element[name∗])∗ → numericalvalue)∗]→ d.

4 An Ontology for Data Integration Concept

Formalization of the data integration concept assumes developing new content
dictionaries to model the algebra of integrable data and data types concept of
the XML Schema. Also we should define signatures of the introduced symbols
(basic concepts) and reasoning rules of the data integration concept.

4.1 The dic Content Dictionary File

A content dictionary which contains representation of basic concepts of the data
integration concept contains two types of information: one which is common to
all content dictionaries, and one which is restricted to a particular basic con-
cept definition. Definition of a new basic concept includes name and description
of the basic concept, and also some optional information about this concept
(analogously the xts content dictionary for modeling the type system concept of
the XML Schema is defined). Below an example of a basic concept definition is
considered:

<CDDefinition>
<Name> X < /Name>
<Description>
To support the concept of integrable data schema we introduce
the symbol X. Below we are using the Attribution symbol which has
been defined in the OPENMath.
< /Description>
<CMP> X : Attribution∗ → {Attribution} < /CMP>

< /CDDefinition>
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The above used XML elements have obvious interpretations. Only note, that the
element ”CMP” contains the commented mathematical property of the defined
algebraic concept. Specific information pertaining to the basic concept like the
signature and the defining of a concept in terms of known ones is defined in
additional files associated with content dictionaries. Content dictionaries contain
just one part of the information that can be associated with a basic concept in
order to stepwise define its meaning and its functionality. Signature files and files
of reasoning are used to formalize the different aspects of the data integration
concept. Namely, to formalize the basic concepts formats, and to define reasoning
rules to formalize knowledge in this area.

4.2 The dic Signature File

As is mentioned above, to check semantic validity of the basic concepts rep-
resentations we associate extra information with content dictionaries, namely
signature files. A signature file contains the definitions of all the basic concept
signatures of the considered content dictionary. We use Small Type System [4]
to formalize the basic concept signatures. Below the definition of the signature
of the above considered symbol X is provided :

<Signature name = “X”>
<OMOB>

<OMA>
<OMS name = ”mapsto” cd = ”sts”/ >
<OMA>
<OMS name = ”nary” cd = ”sts”/ >
<OMS name = ”attribution” cd = ”sts”/ >

< /OMA>
<OMS name = ”attribution” cd = ”sts”/ >

< /OMA>
< /OMOB>

< /Signature>

The above considered symbolsmapsto and nary were defined in the OPENMath.
The symbol mapsto represents the construction of a function type. The first n-1
children denote the types of the arguments, the last denotes the return type. The
symbol nary constructs a child of mapsto which denotes an arbitrary number of
copies of the argument of nary. The operator is associative on these arguments
which means that repeated uses may be flattened/unflattened.

4.3 Reasoning File

We propose an XML DTD to define reasoning rules to support an ontology for
data integration concept. The proposed ontology is based on the OPENMath
formalism and the algebra of integrable data. As mentioned above, within our
approach to ontology-based data integration we consider issues of virtual as well
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as materialized data integration. Therefore we should formalize the concepts of
this subject area such as integrable data, mediator, data warehouse, data cube,
etc.

Let the symbols msch and wrapper correspondingly denote the set of all
mediator schemas and the set of all subsets of the wrappers which are defined
on source data schemas to support the mediator concept, and let the symbol
med denote the set of all mediators, then

med ⊆ msch× wrapper.

The msch symbol is based on the OPENMath attribution concept. By means of
this concept we can model source data schemas. The wrapper symbol is based on
the OPENMath application concept and is presented by an algebraic program
of the integrable data.

Let the symbols wsch and extractor correspondingly denote the set of all
data warehouse schemas and the set of all subsets of the extractors which are
defined on source data schemas to support the data warehouse concept, and let
the symbol whse denote the set of all data warehouses, then

wshe ⊆ wsch× extractor.

The symbols wsch and extractor are interpreted analougsly as in the medi-
ator case.

Materialized integration of data assumes the creation of data warehouses.
Our approach to create data warehouses is mainly oriented to support data
cubes. Using data warehousing technologies in OLAP applications is very im-
portant [7]. Firstly, the data warehouse is a necessary tool to organize and cen-
tralize corporate information in order to support OLAP queries (source data are
often distributed in heterogeneous sources). Secondly, significant is the fact that
OLAP queries, which are very complex in nature and involve large amounts of
data, require too much time to perform in a traditional transaction processing
environment.

In typical OLAP applications, some collection of data called fact table which
represent events or objects of interest are used [7]. Usually, fact table contains
several attributes representing dimensions, and one or more dependent attributes
that represent properties for the point as a whole. The creation of the data cube
requires generation of the power set (set of all subset) of the aggregation at-
tributes. To implement the formal data cube concept in literature the CUBE
operator is considered [8]. In addition to the CUBE operator in [8] the operator
ROLLUP is produced as a special variety of the CUBE operator which produces
the additional aggregated information only if they aggregate over a tail of the se-
quence of grouping attributes. In this context, it is assumed that all independent
attributes are grouping attributes. For some dimensions there are many degrees
of granularity that could be chosen for a grouping on that dimension. When the
number of choices for grouping along each dimension grows, it becomes non-
effective to store the results of aggregating based on all the subsets of groupings.
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Thus, it becomes reasonable to introduce materialized views. A materialized 
view is the result of some query which is stored in the database, and which does 
not contain all aggregated values. The materialized view is interpreted by the 
OPENMath application concept.

Let the symbols ssch and mview correspondingly denote the set of all fact 
table schemas which are defined on source data schemas and the set of all mate-
rialized views to support the data cube concept, and let the symbol cube denote 
the set of all data cubes in this context, then

cube ⊆ ssch × mview.

As we noted above, the reasoning rules to support ontology for the data in-
tegration concept are based on the OPENMath formalism and the algebra of 
integrable data. Let the symbol source denote the set of all integrable data 
schemas and let the symbol dir denote the set of all data integration rules, then

dir ⊆ source × (med ∪ whse ∪ cube).
In Appendix A an XML DTD for modeling the reasoning rules of the data 

integration concept is presented. Below, an example of a mediator for an auto-
mobile company database is adduced [7] which is an instance of the XML DTD 
of the data integration concept. It is assumed that the mediator with schema 
AutosMed = {SerialNo, Model, Color} integrates two relational sources: Cars 
= {SerialNo, Model, Color} and Autos = {SerialNo, Model}, Colors = 
{SerialNo, Color}.

<dir>

<! − − Source schemas definitions −− >
<med>

<msch>

AutosMed: schema for mediator is defined

< /msch>

<wrapper>

<OMA>

<OMS name=”union” cd=”dic”/ >

<OMV name=”cars”/ >

<OMA>

<OMS name=”join” cd=”dic”/ >

<OMV name=”Autos”/ >

<OMV name=”Colors”/ >

< /OMA>

< /OMA>

< /wrapper>

< /med>

< /dir>
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5 Related Work

Using ontologies to support the data integration concept, it is explained that they
provide an explicit and machine- understandable conceptualization of a subject
domain. The use of ontologies for data integration is discussed in [3]. Examples
of ontological modeling languages are XML Schema, RDFS, OWL, etc. There
are the following variants of data integration based on the ontologies [19]:

• Single-ontology. All source schemas are directly related to a shared global
ontology that provide a uniform interface to the user [2]. Single-ontology ap-
proach assumes that data sources are semantically close. SIMS [1] is a system
which is based on such approach.

• Multiple-ontology. Each data source is defined independently using a local
ontology. Such approach assumes developing a formalism for defining the inter-
ontology mappings. The OBSERVER system [17] is based on this approach.

• Hybrid-ontology. This approach combines the two preceding approaches. In
other words, for each source schema a local ontology is built alongside a global
shared ontology. [2] is an example of this approach.

An important challenge in data integration is the construction of mappings
from the source data models into the target one. As rules in well-known works,
the mapping from the source models into the target one is constructed semi-
automatically. The exception is the work [18] in which the mappings between
relational databases and ontologies are generated automatically. Our approach
to data integration allows to automatically generate mappings from arbitrary
data models into the target one. A more detailed analysis of approaches to
ontology-based data integration can be found in [6, 19].

6 Conclusions

In the frame of a data integration model, the data integration concept was for-
malized. The proposed ontology is based on the OPENMath formalism and the
so-called algebra of integrated data which has also been developed by us. The
considered data integration model is oriented to XML and is distinguished by its
computational capabilities. Such data integration model is an extension of XML
by means of the OPENMath concept. In the result of such extension, the XML
data model has been strengthened with ontological and computional construc-
tions. Three kinds of mechanisms of the OPENMath are used to formalize the
data integration concept: content dictionary, signature file and reasoning file. By
these mechanisms we formalize the different aspects of the data integration con-
cept. Namely, we formalize basic concepts (integrable data and operations on it),
their signatures and reasoning rules (to model the data integration concepts).
The reasoning rules are based on the algebra of integrable data and are for-
malized by an XML DTD. If necessary, we can extend the algebra of integrable
data by adding new algebraic operations. It should be noted that the different
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mechanisms of data translation (wrapper, extractor) are non-sensitive to such
extension. It is essential that the data integration model is extensible and we use
a computationally complete language to support the data integration concept.
Finally, based on the proposed ontology, algorithms can be developed to gen-
erate the schemas of integrable data and transformers from high level concepts
which are represented as an instance of the XML DTD.
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APPENDIX A. An XML DTD for Modeling the Reasoning Rules of 
the Data Integration Concept

<! − − include dtd for extended OPENManth objects −− >
<!ELEMENT dir (source+, (med | whse | cube))>
<!ELEMENT med (msch)+>
<!ELEMENT msch (sch, wrapper) >
<!ELEMENT sch (OMATTR)>
<!ELEMENT wrapper (OMA)>
<!ELEMENT whse (wsch, extractor)>s
<!ELEMENT wsch (OMATTR)>
<!ELEMENT extractor (OMA)>
<!ELEMENT cube (ssch, mview)>
<!ELEMENT ssch (OMATTR)+ >
<!ELEMENT mview (view+, granularity+) >
<!ELEMENT view (OMA)>
<!ELEMENT granularity (partition)+ >
<!ELEMENT partition EMPTY>
<!ELEMENT source (OMATTR)+>
<!ATTLIST source name CDATA #REQUIRED>
<!ATTLIST granularity name CDATA #REQUIRED>
<!ATTLIST partition name CDATA #REQUIRED>
<!ATTLIST view name CDATA #REQUIRED>
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