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Abstract. In the areas of Semantic Web and data integration, ontology matching 
is one of the important steps to resolve semantic heterogeneity. Manual ontology 
matching is very labor-intensive, time-consuming and prone to errors. So 
development of automatic or semi-automatic ontology matching methods and 
tools is quite important. This paper applies machine learning with different 
similarity measures between ontology elements as features for ontology 
matching. An approach to combine string-based, language-based and structure-
based similarity measures with machine learning techniques is proposed. Logistic 
Regression, Random Forest classifier and Gradient Boosting are used as machine 
learning methods. The approach is evaluated on two datasets of Ontology 
Alignment Evaluation Initiative (OAEI).  
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1 Introduction 

An ontology is “a formal, explicit specification of shared conceptualization” [1], where 
conceptualisation is an abstract model of some phenomenon in the world. Ontologies 
were created to facilitate the sharing of knowledge and its reuse [2]. They are used for 
organization of knowledge and for communication between computing systems, 
people, computing systems and people [3]. Ontologies deal with the following kinds of 
entities: classes, properties and individuals. A class (concept) of ontology is a 
collection of objects, i.e., “Person” (the class of all people) or “Car” (the class of all 
cars). Property (attribute) describes characteristics of a class or relations between 
classes, i.e., “has as name” or “is created by”. Individual (instance) is a particular 
instance or object represented by a concept, i.e., “a human cytochrome C” is an instance 
of the concept “Protein” [4]. 

Ontology matching is a process of establishing correspondences between 
semantically related entities in different ontologies [4]. A set of correspondences 
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(equivalence, subsumption, disjointness) between ontologies elements is called an 
alignment. Ontology matching can be applied in many different subject areas: Semantic 
Web, Peer-to-Peer (P2P) systems, learning systems, multi-agent systems [5] [6].  

In the Semantic Web, ontologies are used to extract logical conclusions from data. 
Many ontologies on the same subject areas have been created recently. These 
ontologies have a different format and they cannot exchange information, so it is 
necessary to apply ontology matching [4]. In P2P systems ontology matching is used 
to reduce the semantical heterogeneity (differences in the interpretation of the meaning) 
between the queries of the users to system [7]. In learning systems ontology matching 
is a way to ease the knowledge share and reuse [8]. In multi-agent systems, ontology 
matching is used for interaction of different agents [9].  

Ontology matching can be used also for schema mapping during data integration 
[10]. Data integration is a process of combining the heterogeneous data sources into a 
unified view. Schema mapping is a process of establishing correspondences between 
elements of two different semantically related schemas (i.e. database schemas) [11]. 
Ontology matching can help to resolve semantical heterogeneity during schema 
mapping, for instance, if the schemas have ontologies as metadata or external domain 
knowledge [12] [13]. 

The classification of ontology matching approaches is very similar to the 
classification of schema matching approaches [11] [10] [4]. Matchers can be individual 
(use single matcher criterion) or combining (combination of individual matchers). An 
individual matcher can be schema-based (uses information about classes, properties 
and their relationships) or instance-based (uses information about instances/content). 
Schema-based matchers are divided into element-level (uses information about element 
without its relationships) and structure-level (uses information about structure and 
hierarchy). Combining matchers can be hybrid (creates alignment using several 
matching criteria in sequentially) or composite (combines several independent 
matching results). Composite matchers are divided into manual composition matchers 
and automatic composition matchers [11]. 

This paper proposes an approach for combining individual element-level and 
structure-level matchers into an automatic composition matcher based on machine 
learning. Individual matchers produce similarity measures between ontology elements. 
In terms of machine learning, similarity measures are used as features [14] [15]. The 
composite matcher is a machine learning model trained on these features. Logistic 
Regression, Random Forest and Gradient Boosting are used as the machine learning 
methods in the paper. The idea of the approach is as follows: to combine a large number 
of different similarity measures from other papers [32][33][34] in hope of increasing 
the universality of the approach, that is, applicability to different subject areas. 

The paper is structured as follows. In Section 2 related works on application of 
machine learning for ontology and schema matching are reviewed. Section 3 describes 
the formal problem statement and an evaluation metric. In Section 4, similarity 
measures and machine learning techniques applied are listed. Section 5 considers 
implementation and evaluation issues. 
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2 Related Work 

This section reviews related works on schema matching and ontology matching because 
they often applies similar techniques.  

In [11], a classification of approaches for schema matching is introduced and a 
review of existing systems for schema matching is conducted. In [4], the authors 
described the classification of ontology matching approaches based on [11], existing 
matching systems, evaluation methods, similarity measures and matching strategies. 
The most promising option is the apply combining matcher because it uses much more 
information than an individual matcher. Many papers showed that the combining 
matchers are more accurate than individual ones [16] [17] [18]. Most approaches use 
string-based similarity measures, i.e., N-gram [17] [19] [20], Soundex [17] [21] [22], 
Levenshtein distance [17] [21] [23], Jaro measure [24] [25] [26] and others. Language-
based similarity measures are also used, i.e., information from lexical database 
WordNet [19] [27] [28] or vector representation of words from Word2vec models [29] 
[21] [30] [31]. Some articles described structure-based similarity measures: differences
between numbers of properties [15], similarity measures based on subclasses or parents
[15] [19] and graph-based similarity [32].

Supervised machine learning for combining similarity measures is used in [14]. The
authors describe an approach matching only concepts of ontologies. They used the 
string-based similarity measures (prefix, suffix, Edit distance, n-gram), language-based 
similarity measures (WordNet, Wu&Palmer, description, Lin), similarity measures 
between lists of words (for instance, name “socialNetwork” is divided into list of words 
[“Social”, “Network”]), and structure similarity measures (string-based and language-
based similarity measures between parents). Support Vector Machine (SVM) is used as 
a machine learning method. The authors conducted experiments with data from 
Ontology Alignment Evaluation Initiative 2007 (OAEI). The data is constructed from 
three Internet directories (Google, Yahoo and Looksmart) and contains 4639 pairs of 
ontologies defined using OWL language. The authors used 10-fold cross validation and 
got 56.1% accuracy, 52.5% precision and 92.5% recall on average. 

In [55] the authors combined the various similarity measures into a input sample for 
the first time. String-based, linguistic-based and structure-based similarity measures are 
used. 

In [15] language, structural and web similarity measures are used. Web similarity 
measure “Web-dice” is the difference between the count of pages in a search engine 
when searching for an entity.` An SVM method is selected for training. The dataset 
used is OAEI benchmark tests ontologies. The authors trained two models “SVM-
Class” and “SVM-Property” for matching classes and properties respectively.  

In [54] 10 string-based, linguistic-based and instance-based similarity measures are 
used as features. Decision Tree (DT) and Naive Bayes are used for classification. The 
authors achieved 0.845 F-measure value. 

In [33] SVM, K-Nearest Neighbours (KNN), SVM, DT and AdaBoost are used as 
the machine learning methods. The authors choose OAEI ontologies #301, #102 and 
#103 as train dataset and ontologies #302, #303, #304 as test dataset and achieved 0.99 
F-measure value.
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In [34] Stoilos, Soft Jaccard and Lin similarity measures are used for names, labels 
and comments of entities. The authors also used information on abbreviations. Samples 
from “Conference” track and benchmarks from OAEI are used as datasets. Multilayer 
perceptron, Decision Trees and M5Rules are selected as machine learning methods. 
The authors achieved 0.67 F-measure value. 

In [31] the authors used string-based similarity measures, measures related with 
parents and children of entities and chose “Conference” track from OAEI and EuroVoc 
dataset.  

Note that known works use different datasets for their experiments and it is very 
hard to compare them with each other. 

3 Ontology Matching as a Machine Learning Problem 

3.1 Formal Problem Statement of Ontology Matching 

Let ontology be a tuple (C, P, H). Here C is a set of classes, P is a set of properties. H 
define the hierarchical relationships between classes. Other components of ontologies 
like axioms and instances are not applied for ontology matching in the paper. The 
objective of ontology matching is to find an alignment between classes and properties 
of a source ontology O1 and a target ontology O2. An alignment is a set of tuples 
(𝑒𝑒1, 𝑒𝑒2, 𝑐𝑐𝑐𝑐𝑐𝑐) , where 𝑒𝑒1  is an entity of 𝑂𝑂1 , 𝑒𝑒2  is an entity of 𝑂𝑂2 , and 𝑐𝑐𝑐𝑐𝑐𝑐  is the 
confidence of the correspondence. A predicted alignment is the alignment obtained by 
ontology matching. A true alignment is a manual alignment conducted by an domain 
expert. 

3.2 Ontology Matching Problem as a Machine Learning Problem 

Entity pairs are extracted from source and target ontologies. Each pair of entities is 
assigned with a label “0” or “1”, where “0” means that entities do not match, “1” 
means that entities match. Thus, the problem is reduced to a machine learning binary 
classification problem. The authors of most of the reviewed papers and OAEI used F-
measure for the evaluation of their approaches [4][33]. 

4 An Approach for Ontology Matching Applying Machine 
Learning Models Trained on Similarity Measures 

This section describes machine learning techniques applied (subsection 4.1), similarity 
measures used (subsection 4.2) and algorithms constituting the approach (subsection 
4.3). 

4.1 Machine Learning Techniques 

The following machine learning methods are applied in this paper: Logistic Regression, 
Random Forest and Gradient Boosting. In [31][47] it is shown that a powerful ensemble 
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method Random Forest [48] and relatively simple and interpretable Logistic Regression 
outperformed other machine learning algorithms like Gaussian Naive Bayes, K-nearest 
Neighbors Algorithm, Classification and Regression Trees for ontology matching. 
Gradient boosting has proven itself in many machine learning contests [49][50], so it 
was also selected as a machine learning method to be applied. In the future, we also 
want to test neural network (multilayer perceptron) as a machine learning method and 
an approach based on automatic machine learning1.  

4.2 Similarity Measures 

String-based. We used all string-based similarity measures listed in our previous work 
[21]. The listed metrics are aimed at handling various sorts of scenarios. N-gram 
consider similarity of substrings and it is efficient when some characters are missing 
[4]. Dice coefficient is defined as twice the number of common words of compared 
strings over the total number of words in both strings [35]. Jaccard and Generalized 
Jaccard similarity are defined as the size of the intersection divided by the size of the 
union of the sample sets of words [24]. Levenshtein distance between two strings is the 
minimum number of single-character edits required to change one word into the other 
[36]. Jaro and Jaro-Winkler measures is edit distance measure designed for short 
strings [37]. Monge-Elkan is a type of hybrid similarity measure that combines the 
benefits of sequence-based and set-based methods [38]. The Smith-Waterman measure 
determine similar regions between two strings [35]. The Needleman-Wunsh distance is 
computed by assigning a score to each alignment between the two input strings and 
choosing the score of the best alignment [39]. The Affine gap distance is an extension 
of the Needleman-Wunsch measure that handles the longer gaps more gracefully [40]. 
The Bag distance is edit distance for sets of words [52]. Cosine similarity transforms a 
string into vector so Euclidean cosine rule is used to determine similarity [24]. Fuzzy 
Wuzzy Partial Ratio finds the similarity measure between the shorter string and every 
substring of length m of the longer string, and returns the maximum of those similarity 
measures [41]. Soft TF-IDF and TF-IDF are numerical statistics that are intended to 
reflect how important a word is to a document in a collection or corpus [39]. Partial 
Token Sort2 and Token Sort are obtained by splitting the two strings into tokens and 
then sorting the tokens. The score is the fuzzy wuzzy partial ratio raw score of the 
transformed strings. Fuzzy Wuzzy Ratio is the ratio of the number of matching 
characters to the total number of characters of two strings [41]. Editex [42] and 
Soundex3 are phonetic matching measures. Tversky Index is an asymmetric similarity 
measure on sets that compares a variant to a prototype [43]. Overlap coefficient is 
defined as the size of the intersection divided by the smaller of the size of the two sets 
[44]. 

1 https://github.com/automl/auto-sklearn 
2 https://anhaidgroup.github.io/py_stringmatching/v0.3.x/PartialTokenSort.html 
3 http://anhaidgroup.github.io/py_stringmatching/v0.4.1/Soundex.html 
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Language-based. It is possible that words differ but are close in meaning, i.e., “car” 
and “auto”. WordNet can solve this problem. Wu and Palmer similarity are used for 
handling this scenario [45]. If the strings consist of several words then the maximum 
similarity measure of all possible pairs of sets of words is taken. But the weakness of 
WordNet is that it contains only a part of all words of the language. Usage of vector 
representations of words from Word2vec models [46] facilitates this problem. Cosine 
similarity between two vector representations of words is calculated. If the strings 
consists of several words then Sentence2vec algorithm from [30] is used.  

Structure-based. Additionally, structure-based similarity measures are used: all listed 
string-based and language-based similarity measures between parents of entities and 
between paths of entities. These similarity measures embrace the hypothesis that 
matched entities have similar parents and a similar place in hierarchy. 

Since we used the same model for the match of classes and properties, we added 
feature “Type”, in which label “1” means class and label “0” means property.  

Such an extensive selection of similarity measures is aimed to get as much 
information as possible so that a machine learning model is able to select the best 
factors for prediction. Finally, we chose for each pair of entities 88 similarity measures 
(29 for names, 29 for parents, 29 for paths, 1 for type), which are described in Table 1. 

Table 1. Similarity measures 

String-based N-gram 1, N-gram 2, N-gram 3, N-gram 4, Dice coefficient,
Jaccard similarity, Jaro measure, Monge-Elkan, Smith-
Waterman, Needleman-Wunsh, Affine gap, Bag distance, Cosine
similarity, Partial Ratio, Soft TF-IDF, Editex, Generalized
Jaccard, Jaro-Winkler, Levenshtein distance, Partial Token Sort,
Fuzzy Wuzzy Ratio, Soundex, TF-IDF, Token Sort, Tversky
Index, Overlap coefficient, Longest common subsequence

Language-based Wu and Palmer similarity 
Word2vec and Sentence2vec similarity 

Structure-based All string-based and language-based similarity measures between 
parents of entities 
All string-based and language-based similarity measures between 
paths of entities 

4.3 Training and Matching Algorithms 

The approach is restricted with the following limitations: entities are matched only by 
equivalence relation, classes are matched only with classes, properties are matched only 
with properties, instances of ontologies are not used. The approach includes two main 
algorithms: training of a machine learning model (training phase) and using it to predict 
alignment (testing phase). 

The ontology matching algorithm using the trained model is described as follows: 
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Algorithm 1 Matching algorithm 

Input: 

ontology1, ontology2 - input ontologies, 

THRESHOLD - threshold for create matching between entities  

Auxiliary functions: 

get_classes - get list of classes, 

get_properties - get list of properties, 

create_alignment - Algorithm 2 

Output: final_alignment - output alignment for ontology1 and ontology2 

1   classes1 ← get_classes(ontology1) 
2   classes2 ← get_classes(ontology2) 
3   alignment_classes ← create_alignment(classes1, classes2, THRESHOLD) 
4   properties1 ← get_properties(ontology1) 
5   properties2 ← get_properties(ontology2) 
6   alignment_properties ← create_alignment(properties1, properties2, 

THRESHOLD) 
7   final_alignment ← alignment_classes ∪ alignment_properties 
8   return final_alignment 

Here ← denotes an assignment operation, and ∪ - the operation of merging lists. 
The input data of the algorithm are two ontologies and a matching probability threshold 
for filtering pairs of entities. If the probability is higher than the threshold, then the pair 
is added to the alignment. A list of classes is extracted from each ontology. Next, two 
lists of classes are fed to the input of Algorithm 2: 

Algorithm 2 Creating predicted alignment from two lists of entities - 
create_alignment(entities1, entities2, THRESHOLD) 

Input: 

entities1, entities2 - input lists of entities (classes or properties), 

THRESHOLD - threshold for create matching between entities  

Auxiliary functions: 

calculate_all_sim_measures - Algorithm 3, 

predict_match - predict confidence based on similarity measures 

Output: alignment - output alignment for entities1 and entities2 

1   for entity1 ∈ entities1 do 
2  for entity2 ∈ entities2 do 
3  sim_measures ← calculate_all_sim_measures(entity1, entity2) 
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4    match ← predict_match(sim_measures) 
5    if match > THRESHOLD then 
6  alignment ← alignment ∪ (entity1, entity2) 
7     end if 
8   end for 
9   end for 

10   return alignment 

Then, each class from the first ontology is matched with each class from the second 
ontology. For example, if in the first ontology includes 10 classes and in the second 
ontology includes 12 classes, then 120 pairs are matched. Each pair is fed to the input 
of a machine learning model, which calculates the probability (confidence) of matching 
for each pair. Then the threshold is set: if the probability is above the threshold, then 
the pair is added to the final alignment. Similar actions are performed for properties. 
The similarity measures for each pair are calculated in Algorithm 3: 

Algorithm 3 Calculating similarity measures algorithm - 
calculate_all_sim_measures(entity1, entity2) 

Input: 

entity1, entity2 - input entities (classes or properties) 

Auxiliary functions: 

get_name - get name of entity, 

get_parent - get parent of entity, 

get_path - get full path of entity, 

calculate_sim_measures - calculates string-based and linguistic-based similarity 
measures listed in 4.2 and returns a list of 88 values 

concat - merge lists 

Output: sim_measures - output list of calculated similarity measures for entity1 and 
entity2 

1   name1 ← get_name(entity1) 
2   name2 ← get_name(entity2) 
3   parent1 ← get_parent(entity1) 
4   parent2 ← get_parent(entity2) 
5   path1 ← get_path(entity1) 
6   path2 ← get_path(entity2) 
7   name_sim_measures ← calculate_sim_measures(name1, name2) 
8   parent_sim_measures ← calculate_sim_measures(parent1, parent2) 
9   path_sim_measures ← calculate_sim_measures(path1, path2) 

136



10   sim_measures ← concat(name_sum_measures, parent_sim_measures, 
path_sim_measures) 

11   return sim_measures 

Name, parent name, and the full hierarchical path are retrieved from each class. The 
parent of a class is its super class. The full path is a string that describe the entire 
hierarchy of classes: from the most general class to the current class. For example, the 
class “Book” has the name “Book”, the parent name “Publication” and the full path 
“Thing/Publication/Book”. Thus, a list of pairs for matching is generated. For 
properties, the parent is the class that it describes. And the full path is a string describing 
the complete hierarchy up to the class that describes the property. For each pair, all 
similarity measures listed in Section 4.2 are calculated. Then all similarity measures 
are combined into a list.  

The algorithm of model training is described as follows: 

Algorithm 4 Creating dataset and training a machine learning model 

Input: 

train_pairs_ontologies - set of tuples (ontology1, ontology2, true_alignment) 

model_name - name of machine learning method (logistic regression, random forest, 
gradient boosting), 

model_params - set of parameters of machine learning model, 

create_dataset - Algorithm 5 

Auxiliary functions: train_model - train machine learning model on training dataset 

Output: model - trained model for predicting matching 
1   for ontology1, ontology2, true_alignment in train_pairs_ontologies do 
2  classes1 ← get_classes(ontology1) 
3  classes2 ← get_classes(ontology2) 
4   train_dataset_classes ← create_dataset(classes1, classes2, true_alignment, 

'Class') 
5  properties1 ← get_properties(ontology1) 
6  properties2 ← get_properties(ontology2) 
7  train_dataset_properties ← create_dataset(properties1, properties2, 

true_alignment, 'Property') 
8  train_dataset ← train_dataset ∪ train_dataset_classes ∪   

train_dataset_properties 
9   end for 

10   model ← train_model(train_dataset, model_name, model_params) 
11   return model 
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The input data is a list of ontology pairs and the true alignment between them. A model 
from Section 2.5 and its parameters are also selected. The process is similar to the first 
algorithm: the names of objects, the names of parents and full paths are retrieved, and 
the similarity measures are calculated. First, a dataset is created for the classes, then for 
properties, and after that the datasets are combined. 

The algorithm for creating a dataset is described in Algorithm 5:

Algorithm 5 Creating dataset from two lists of entities - create_dataset(entities1, 
entities2, true_alignment, type_entity) 

Input: 

true_alignment - set of matched pairs of entities, 

entities1, entities2 - input lists of entities (classes or properties), 

type_entity - type of input entities (class or property)  

Auxiliary functions: train_model - train machine learning model on training dataset 

Output: train_dataset - output list of tuples with pairs of entities, their matchings and 
similarity measures 

The input is a true alignment, two lists of entities and the type of input entities. Each 
entity from the first list is mapped to each entity from the second list. Then, if a pair of 
entities is contained in the true alignment, then the pair is assigned label “1”, otherwise 
- label “0”. Also, each pair indicates the type of entity (either “Class” or “Property”)
because the same model was used to map classes and properties. Then all pairs are
combined into one dataset. Further, the model is trained on the created dataset with the
selected parameters.

1   for entity1 ∈ entities1 do 
2     for entity2 ∈ entities2 do 
3  sim_measures ← calculate_all_sim_measures(entity1, entity2) 
4       if (entity1, entity2) ∈ true_alignment then 
5         train_dataset ← train_dataset ∪ (entity1, entity2, 1, type_entity, 

sim_measures) 
6       else 
7         train_dataset ← train_dataset ∪ (entity1, entity2, 0, type_entity, 

sim_measures) 
8       end if 
9     end for 

10   end for 
11   return train_dataset 
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5 Implementation and Evaluation Results 

5.1 Datasets 

Two datasets are selected for evaluation experiments (called as Dataset #1 and Dataset 
#2 below). These datasets are sets of ontologies and their true alignments taken from 
Ontology Alignment Evaluation Initiative (OAEI). Some pairs of ontologies and their 
true alignments are selected for training the machine learning models and their testing. 
This selection is called a partition. Ontologies from OAEI are used in many papers. 
These papers include [33] and [34]. [33] presents an approach to combining similarity 
measures without instances of ontologies and user feedback. KNN, SVM, DT and 
AdaBoost were used as machine learning models. The authors achieve on some 
alignments the value of F-measure 0.99. [34] proposed a new ontology matching 
approach. The authors used five different similarity measures: syntactic, semantic, 
abbreviation and context similarity. Multilayer Perceptron, REPTree, M5Rules are 
used as the machine learning models. Average F-measure is 0.67. Dataset #1 is a 
partition from third experiment of [33]. Dataset #2 is a partition from [34]. The used 
pairs of ontologies and their true alignments are described in Tables 3 and 4. All 
ontologies are defined using OWL-DL4 language in the RDF and XML format.  

Dataset #1 is a set of ontologies about Bibliographic references from Benchmark test 
library. Ontology #101 is the reference ontology. Other ontologies (#102-#103, #301-
#304) are compared with the reference ontology. Dataset has 7 ontologies and 6 true 
alignments: 3 alignments for training and 3 alignments for testing. 

Dataset #2 consists several ontologies from Benchmark test library and all 
ontologies from Conference track of OAEI. Conference track contains 16 ontologies, 
which dealing with conference organization, and 21 true alignments. Dataset has 27 
ontologies and 26 alignments: 8 alignments for training and 18 alignments for testing. 

The pairs of entities from each pair of ontologies and their alignments are extracted. 
Dataset #1 has 14148 training samples (156 positive and 13992 negative samples) and 
14940 testing samples (172 positive and 14768 negative samples) and Dataset #2 has 
55348 training samples (284 positive and 55064 negative samples) and 114045 testing 
samples (253 positive and 113792 negative samples). A positive sample is a pair of 
entities which are matching, and a negative example is a pair of non-matching entities. 
Note that the datasets are very unbalanced.  

5.2 Implementation 

The approach was implemented using Python 3.5. This language is widely used for 
implementation of machine learning workflows and possesses a lot of useful program 
libraries.  

4 https://www.w3.org/TR/owl-features/ 
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Table 2. Example part of true alignment 101-302 

Entity from Ontology #101 Entity from Ontology #302 

Collection Book 

TechReport TechReport

Report Publication

Reference Resource

date publishedOn

Ontologies are represented as RDF/OWL files. The owlready25 library was used for 
syntactic parsing of ontologies. Alignments are defined in RDF format. For parsing 
alignments, the BeautifulSoup 6  library was used. As implementation of logistic 
regression and random forest machine learning techniques sklearn7 library is used. As 
a gradient boosting implementation the XGBoost8 library is used. Dataset is formed as 
a dataframe of the pandas9 library. To evaluate F-measure, the Alignment API10 library 
was used. Computation experiments: training of machine learning models and the 
selection of their parameters were performed at the Hybrid high-performance 
computing cluster [51]. WordNet dictionary is taken from the nltk11 library. Word2vec 
model was trained on GoogleNews12 news. N-gram implementation is taken from the 
ngram13 library. Similarity measures based on edit distance implementation is taken 
from the editdistance14 library. 

5.3 Experiments 

The best parameters for the models were selected by the brute force method (a grid of 
values was created for each parameter): the models were trained on all combinations of 
parameters and the model with the best F-measure value using threshold 0.5 was 
selected.  

For logistic regression, the following parameters were selected: inverse of 
regularization strength, weights of classes and norm used in the penalization. For 
random forest the number of trees in the forest, the maximum depth of the tree, the 

5 https://owlready2.readthedocs.io/en/latest/ 
6 https://pypi.org/project/beautifulsoup4/ 
7 https://scikit-learn.org/stable/ 
8 https://xgboost.readthedocs.io 
9 https://pandas.pydata.org 
10 http://alignapi.gforge.inria.fr 
11 https://www.nltk.org 
12 https://github.com/mmihaltz/word2vec-GoogleNews-vectors 
13 https://pythonhosted.org/ngram/ 
14 https://pypi.org/project/editdistance/ 
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number of features to consider when looking for the best split and class weights were 
selected. For XGBoost, minimum sum of instance weight, minimum loss reduction 
requited to make a further partition, subsample ratio for training instances, subsample 
ratio of columns when constructing each tree and maximum depth of a tree were 
selected. 

After training and searching for the best parameters, a threshold was selected with 
the highest F-measure value for each alignment. For each machine learning model, a 
grid of values for parameters was created manually. For numerical parameters, a grid 
of 3-5 values with different steps was created, i.e. for numbers of estimators in random 
forest: 10, 100, 200, 500, 1000. For parameters with options, all possible options were 
taken (2-4 options). 

The values of F-measure for each alignment are presented in tables 3, 4 and 5. The 
best models for the Dataset #1 are logistic regression and random forest. Gradient 
boosting is a bit less accurate. However, the gradient boosting is the best model on 
average on Dataset #2. It is more accurate than logistic regression at 0.02 and than 
random forest at 0.01.  The values of F-measure on Dataset #1 are comparable with the 
classical methods [37] [38] [54] [55] but lower than [33]. This may be associated with 
a specific set of training and test datasets, and it is also possible that the metrics that 
were not implemented in this work have an impact. In [33] the importance of each 
similarity measures is not described, but there is a hypothesis that the main contribution 
comes from similarity measures associated with comments to entities, and two 
structural measures from [55]. The study of this issue is future work. The values of F-
measure on Dataset #2 are comparable with [34].  

The computational complexity of the approach is O(n1n2 + m1m2), where n1, n2 are 
the number of classes in the ontology O1 and O2, and m1 and m2 are the number of 
properties. The computation time and the used memory depending on the size of the 
ontology are showed on figures 1 and 2. The calculations were performed on MacBook 
Air 1.8 GHz 8GB RAM. The dependence of training and testing time on the ontology 
size is showed on figure 1. 20 points (evenly distributed between 10 and 1000) were 
used to build the figure. Training of random forest is longer than training of logistic 
regression and gradient boosting. The reason for the jumps on the figure is that the 
dataset is sampled randomly. Unfortunately, the used machine did not have enough 
capacity to calculate the time for training and testing gradient boosting with an ontology 
size of more than 600. The testing time of logistic regression and gradient boosting is 
much less than a random forest, therefore in the figure the graphs are close to zero. In 
general, there is a quadratic dependence. The dependence of memory usage on the 
ontology size is showed on figure 2. 20 points were also used to build the figure. 
Memory was measured using the memory profiler 15 package: the amount of used 
memory was measured when running the training and testing script. It is hard to 
understand why increasing the size of the ontology does not increase the amount of 
memory used, perhaps this is due to the internal work of the Python language. It is 
noticeable that the most memory is used by gradient boosting. 

15 https://pypi.org/project/memory-profiler/ 
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Table 3. F-measure values for Dataset #1 with best thresholds 

Alignmen

t

Logistic 

Regressio

n

Random 

Forest

XGBoost Best 

results 

from [33]

FOAM 

[37]

DT [54] OMAP 

[38]

OLA [55]

101-302 0.72 0.71 0.72 0.92 0.77 0.759 0.74 0.34

101-303 0.82 0.82 0.75 0.90 0.84 0.816 0.84 0.44

101-304 0.90 0.91 0.91 0.97 0.95 0.96 0.91 0.69

Average 0.81 0.81 0.79 0.93 0.85 0.845 0.83 0.49

Fig. 1. Training and testing time of approach depending on the size of ontology. 

Fig. 2. Memory usage during training and testing. 
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Table 4. F-measure values for Dataset #2 with best thresholds 

Alignment Logistic Regression Random Forest XGBoost

conference-edas 0.53 0.5 0.55

cmt-sigkdd 0.73 0.8 0.73

edas-sigkdd 0.53 0.63 0.63

ekaw-sigkdd 0.77 0.77 0.77

cmt-edas 0.72 0.76 0.63

conference-sigkdd 0.64 0.54 0.58

confof-edas 0.62 0.62 0.62

confof-iasted 0.71 0.61 0.66

conference-confof 0.61 0.54 0.57

cmt-confof 0.44 0.41 0.48

conference-ekaw 0.43 0.40 0.47

cmt-ekaw 0.58 0.62 0.70

confof-ekaw 0.58 0.68 0.64

iasted-sigkdd 0.75 0.81 0.81

cmt-iasted 0.88 0.88 0.88

edas-iasted 0.42 0.57 0.57

ekaw-iasted 0.58 0.75 0.70

confof-sigkdd 0.72 0.72 0.72

Average 0.62 0.64 0.65
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Table 5. Comparison of F-measure values 

Alignment Logistic 

Regression

Random 

Forest

XGBoost Multi-layer 

perceptron 

[34]

REPTree [34] M5 Rules 

[34]

Average 0.62 0.64 0.65 0.67 0.65 0.65

Conclusions and Future Work 

We combined string-based, language-based, and structural-based similarity measures 
using three different machine learning models and apply them for ontology matching 
problem. The approach is implemented and evaluated using datasets selected from 
Ontology Alignment Evaluation Initiative (OAEI).  

Due to the large number of similarity measures, there is hope that there is a potential 
for a more universal use of the approach. Universality refers to the applicability of the 
different subject areas. It is necessary to test the approach on ontologies with other 
subject areas. As a future work we would like to add similarity measures based on 
comments of entities, more structure-based similarity measures, such as a path length, 
a number of children, a number of properties of a class. It is also necessary to test the 
similarity measure from [53]. Neural network (multilayer perceptron) is planned to be 
used as a machine learning model. Evaluation issues to be resolved are checking the 
effectiveness of learning two different models separately for classes and properties and 
testing different strategies to resolve a problem of the strong imbalance of classes as 
well as strategies for significant reduce of a number of pairs of entities for matching. 
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performed by Hybrid high-performance computing cluster of FRC CS RAS [51]. 
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