
Applying of Machine Learning Techniques to Combine
String-based, Language-based and Structure-based

Similarity Measures for Ontology Matching

Lev Bulygin1[0000-0003-3244-1217] and Sergey Stupnikov2[0000-0003-4720-8215]

1 Lomonosov Moscow State University, Moscow, Russia
buliginleo@yandex.ru

2 Institute of Informatics Problems, Federal Research Center “Computer Science and Control”
of the Russian Academy of Sciences, Moscow, Russia

sstupnikov@ipiran.ru

Abstract. In the areas of Semantic Web and data integration, ontology matching
is one of the important steps to resolve semantic heterogeneity. Manual ontology
matching is very labor-intensive, time-consuming and prone to errors. So
development of automatic or semi-automatic ontology matching methods and
tools is quite important. This paper applies machine learning with different
similarity measures between ontology elements as features for ontology
matching. An approach to combine string-based, language-based and structure-
based similarity measures with machine learning techniques is proposed. Logistic
Regression, Random Forest classifier and Gradient Boosting are used as machine
learning methods. The approach is evaluated on two datasets of Ontology
Alignment Evaluation Initiative (OAEI).

Keywords: ontology matching, machine learning, similarity measures.

1 Introduction

An ontology is “a formal, explicit specification of shared conceptualization” [1], where
conceptualisation is an abstract model of some phenomenon in the world. Ontologies
were created to facilitate the sharing of knowledge and its reuse [2]. They are used for
organization of knowledge and for communication between computing systems,
people, computing systems and people [3]. Ontologies deal with the following kinds of
entities: classes, properties and individuals. A class (concept) of ontology is a
collection of objects, i.e., “Person” (the class of all people) or “Car” (the class of all
cars). Property (attribute) describes characteristics of a class or relations between
classes, i.e., “has as name” or “is created by”. Individual (instance) is a particular
instance or object represented by a concept, i.e., “a human cytochrome C” is an instance
of the concept “Protein” [4].

Ontology matching is a process of establishing correspondences between
semantically related entities in different ontologies [4]. A set of correspondences

129

Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

(equivalence, subsumption, disjointness) between ontologies elements is called an
alignment. Ontology matching can be applied in many different subject areas: Semantic
Web, Peer-to-Peer (P2P) systems, learning systems, multi-agent systems [5] [6].

In the Semantic Web, ontologies are used to extract logical conclusions from data.
Many ontologies on the same subject areas have been created recently. These
ontologies have a different format and they cannot exchange information, so it is
necessary to apply ontology matching [4]. In P2P systems ontology matching is used
to reduce the semantical heterogeneity (differences in the interpretation of the meaning)
between the queries of the users to system [7]. In learning systems ontology matching
is a way to ease the knowledge share and reuse [8]. In multi-agent systems, ontology
matching is used for interaction of different agents [9].

Ontology matching can be used also for schema mapping during data integration
[10]. Data integration is a process of combining the heterogeneous data sources into a
unified view. Schema mapping is a process of establishing correspondences between
elements of two different semantically related schemas (i.e. database schemas) [11].
Ontology matching can help to resolve semantical heterogeneity during schema
mapping, for instance, if the schemas have ontologies as metadata or external domain
knowledge [12] [13].

The classification of ontology matching approaches is very similar to the
classification of schema matching approaches [11] [10] [4]. Matchers can be individual
(use single matcher criterion) or combining (combination of individual matchers). An
individual matcher can be schema-based (uses information about classes, properties
and their relationships) or instance-based (uses information about instances/content).
Schema-based matchers are divided into element-level (uses information about element
without its relationships) and structure-level (uses information about structure and
hierarchy). Combining matchers can be hybrid (creates alignment using several
matching criteria in sequentially) or composite (combines several independent
matching results). Composite matchers are divided into manual composition matchers
and automatic composition matchers [11].

This paper proposes an approach for combining individual element-level and
structure-level matchers into an automatic composition matcher based on machine
learning. Individual matchers produce similarity measures between ontology elements.
In terms of machine learning, similarity measures are used as features [14] [15]. The
composite matcher is a machine learning model trained on these features. Logistic
Regression, Random Forest and Gradient Boosting are used as the machine learning
methods in the paper. The idea of the approach is as follows: to combine a large number
of different similarity measures from other papers [32][33][34] in hope of increasing
the universality of the approach, that is, applicability to different subject areas.

The paper is structured as follows. In Section 2 related works on application of
machine learning for ontology and schema matching are reviewed. Section 3 describes
the formal problem statement and an evaluation metric. In Section 4, similarity
measures and machine learning techniques applied are listed. Section 5 considers
implementation and evaluation issues.

130

2 Related Work

This section reviews related works on schema matching and ontology matching because
they often applies similar techniques.

In [11], a classification of approaches for schema matching is introduced and a
review of existing systems for schema matching is conducted. In [4], the authors
described the classification of ontology matching approaches based on [11], existing
matching systems, evaluation methods, similarity measures and matching strategies.
The most promising option is the apply combining matcher because it uses much more
information than an individual matcher. Many papers showed that the combining
matchers are more accurate than individual ones [16] [17] [18]. Most approaches use
string-based similarity measures, i.e., N-gram [17] [19] [20], Soundex [17] [21] [22],
Levenshtein distance [17] [21] [23], Jaro measure [24] [25] [26] and others. Language-
based similarity measures are also used, i.e., information from lexical database
WordNet [19] [27] [28] or vector representation of words from Word2vec models [29]
[21] [30] [31]. Some articles described structure-based similarity measures: differences
between numbers of properties [15], similarity measures based on subclasses or parents
[15] [19] and graph-based similarity [32].

Supervised machine learning for combining similarity measures is used in [14]. The
authors describe an approach matching only concepts of ontologies. They used the
string-based similarity measures (prefix, suffix, Edit distance, n-gram), language-based
similarity measures (WordNet, Wu&Palmer, description, Lin), similarity measures
between lists of words (for instance, name “socialNetwork” is divided into list of words
[“Social”, “Network”]), and structure similarity measures (string-based and language-
based similarity measures between parents). Support Vector Machine (SVM) is used as
a machine learning method. The authors conducted experiments with data from
Ontology Alignment Evaluation Initiative 2007 (OAEI). The data is constructed from
three Internet directories (Google, Yahoo and Looksmart) and contains 4639 pairs of
ontologies defined using OWL language. The authors used 10-fold cross validation and
got 56.1% accuracy, 52.5% precision and 92.5% recall on average.

In [55] the authors combined the various similarity measures into a input sample for
the first time. String-based, linguistic-based and structure-based similarity measures are
used.

In [15] language, structural and web similarity measures are used. Web similarity
measure “Web-dice” is the difference between the count of pages in a search engine
when searching for an entity.` An SVM method is selected for training. The dataset
used is OAEI benchmark tests ontologies. The authors trained two models “SVM-
Class” and “SVM-Property” for matching classes and properties respectively.

In [54] 10 string-based, linguistic-based and instance-based similarity measures are
used as features. Decision Tree (DT) and Naive Bayes are used for classification. The
authors achieved 0.845 F-measure value.

In [33] SVM, K-Nearest Neighbours (KNN), SVM, DT and AdaBoost are used as
the machine learning methods. The authors choose OAEI ontologies #301, #102 and
#103 as train dataset and ontologies #302, #303, #304 as test dataset and achieved 0.99
F-measure value.

131

In [34] Stoilos, Soft Jaccard and Lin similarity measures are used for names, labels
and comments of entities. The authors also used information on abbreviations. Samples
from “Conference” track and benchmarks from OAEI are used as datasets. Multilayer
perceptron, Decision Trees and M5Rules are selected as machine learning methods.
The authors achieved 0.67 F-measure value.

In [31] the authors used string-based similarity measures, measures related with
parents and children of entities and chose “Conference” track from OAEI and EuroVoc
dataset.

Note that known works use different datasets for their experiments and it is very
hard to compare them with each other.

3 Ontology Matching as a Machine Learning Problem

3.1 Formal Problem Statement of Ontology Matching

Let ontology be a tuple (C, P, H). Here C is a set of classes, P is a set of properties. H
define the hierarchical relationships between classes. Other components of ontologies
like axioms and instances are not applied for ontology matching in the paper. The
objective of ontology matching is to find an alignment between classes and properties
of a source ontology O1 and a target ontology O2. An alignment is a set of tuples
(𝑒𝑒1, 𝑒𝑒2, 𝑐𝑐𝑐𝑐𝑐𝑐) , where 𝑒𝑒1 is an entity of 𝑂𝑂1 , 𝑒𝑒2 is an entity of 𝑂𝑂2 , and 𝑐𝑐𝑐𝑐𝑐𝑐 is the
confidence of the correspondence. A predicted alignment is the alignment obtained by
ontology matching. A true alignment is a manual alignment conducted by an domain
expert.

3.2 Ontology Matching Problem as a Machine Learning Problem

Entity pairs are extracted from source and target ontologies. Each pair of entities is
assigned with a label “0” or “1”, where “0” means that entities do not match, “1”
means that entities match. Thus, the problem is reduced to a machine learning binary
classification problem. The authors of most of the reviewed papers and OAEI used F-
measure for the evaluation of their approaches [4][33].

4 An Approach for Ontology Matching Applying Machine
Learning Models Trained on Similarity Measures

This section describes machine learning techniques applied (subsection 4.1), similarity
measures used (subsection 4.2) and algorithms constituting the approach (subsection
4.3).

4.1 Machine Learning Techniques

The following machine learning methods are applied in this paper: Logistic Regression,
Random Forest and Gradient Boosting. In [31][47] it is shown that a powerful ensemble

132

method Random Forest [48] and relatively simple and interpretable Logistic Regression
outperformed other machine learning algorithms like Gaussian Naive Bayes, K-nearest
Neighbors Algorithm, Classification and Regression Trees for ontology matching.
Gradient boosting has proven itself in many machine learning contests [49][50], so it
was also selected as a machine learning method to be applied. In the future, we also
want to test neural network (multilayer perceptron) as a machine learning method and
an approach based on automatic machine learning1.

4.2 Similarity Measures

String-based. We used all string-based similarity measures listed in our previous work
[21]. The listed metrics are aimed at handling various sorts of scenarios. N-gram
consider similarity of substrings and it is efficient when some characters are missing
[4]. Dice coefficient is defined as twice the number of common words of compared
strings over the total number of words in both strings [35]. Jaccard and Generalized
Jaccard similarity are defined as the size of the intersection divided by the size of the
union of the sample sets of words [24]. Levenshtein distance between two strings is the
minimum number of single-character edits required to change one word into the other
[36]. Jaro and Jaro-Winkler measures is edit distance measure designed for short
strings [37]. Monge-Elkan is a type of hybrid similarity measure that combines the
benefits of sequence-based and set-based methods [38]. The Smith-Waterman measure
determine similar regions between two strings [35]. The Needleman-Wunsh distance is
computed by assigning a score to each alignment between the two input strings and
choosing the score of the best alignment [39]. The Affine gap distance is an extension
of the Needleman-Wunsch measure that handles the longer gaps more gracefully [40].
The Bag distance is edit distance for sets of words [52]. Cosine similarity transforms a
string into vector so Euclidean cosine rule is used to determine similarity [24]. Fuzzy
Wuzzy Partial Ratio finds the similarity measure between the shorter string and every
substring of length m of the longer string, and returns the maximum of those similarity
measures [41]. Soft TF-IDF and TF-IDF are numerical statistics that are intended to
reflect how important a word is to a document in a collection or corpus [39]. Partial
Token Sort2 and Token Sort are obtained by splitting the two strings into tokens and
then sorting the tokens. The score is the fuzzy wuzzy partial ratio raw score of the
transformed strings. Fuzzy Wuzzy Ratio is the ratio of the number of matching
characters to the total number of characters of two strings [41]. Editex [42] and
Soundex3 are phonetic matching measures. Tversky Index is an asymmetric similarity
measure on sets that compares a variant to a prototype [43]. Overlap coefficient is
defined as the size of the intersection divided by the smaller of the size of the two sets
[44].

1 https://github.com/automl/auto-sklearn
2 https://anhaidgroup.github.io/py_stringmatching/v0.3.x/PartialTokenSort.html
3 http://anhaidgroup.github.io/py_stringmatching/v0.4.1/Soundex.html

133

Language-based. It is possible that words differ but are close in meaning, i.e., “car”
and “auto”. WordNet can solve this problem. Wu and Palmer similarity are used for
handling this scenario [45]. If the strings consist of several words then the maximum
similarity measure of all possible pairs of sets of words is taken. But the weakness of
WordNet is that it contains only a part of all words of the language. Usage of vector
representations of words from Word2vec models [46] facilitates this problem. Cosine
similarity between two vector representations of words is calculated. If the strings
consists of several words then Sentence2vec algorithm from [30] is used.

Structure-based. Additionally, structure-based similarity measures are used: all listed
string-based and language-based similarity measures between parents of entities and
between paths of entities. These similarity measures embrace the hypothesis that
matched entities have similar parents and a similar place in hierarchy.

Since we used the same model for the match of classes and properties, we added
feature “Type”, in which label “1” means class and label “0” means property.

Such an extensive selection of similarity measures is aimed to get as much
information as possible so that a machine learning model is able to select the best
factors for prediction. Finally, we chose for each pair of entities 88 similarity measures
(29 for names, 29 for parents, 29 for paths, 1 for type), which are described in Table 1.

Table 1. Similarity measures

String-based N-gram 1, N-gram 2, N-gram 3, N-gram 4, Dice coefficient,
Jaccard similarity, Jaro measure, Monge-Elkan, Smith-
Waterman, Needleman-Wunsh, Affine gap, Bag distance, Cosine
similarity, Partial Ratio, Soft TF-IDF, Editex, Generalized
Jaccard, Jaro-Winkler, Levenshtein distance, Partial Token Sort,
Fuzzy Wuzzy Ratio, Soundex, TF-IDF, Token Sort, Tversky
Index, Overlap coefficient, Longest common subsequence

Language-based Wu and Palmer similarity
Word2vec and Sentence2vec similarity

Structure-based All string-based and language-based similarity measures between
parents of entities
All string-based and language-based similarity measures between
paths of entities

4.3 Training and Matching Algorithms

The approach is restricted with the following limitations: entities are matched only by
equivalence relation, classes are matched only with classes, properties are matched only
with properties, instances of ontologies are not used. The approach includes two main
algorithms: training of a machine learning model (training phase) and using it to predict
alignment (testing phase).

The ontology matching algorithm using the trained model is described as follows:

134

Algorithm 1 Matching algorithm

Input:

ontology1, ontology2 - input ontologies,

THRESHOLD - threshold for create matching between entities

Auxiliary functions:

get_classes - get list of classes,

get_properties - get list of properties,

create_alignment - Algorithm 2

Output: final_alignment - output alignment for ontology1 and ontology2

1 classes1 ← get_classes(ontology1)
2 classes2 ← get_classes(ontology2)
3 alignment_classes ← create_alignment(classes1, classes2, THRESHOLD)
4 properties1 ← get_properties(ontology1)
5 properties2 ← get_properties(ontology2)
6 alignment_properties ← create_alignment(properties1, properties2,

THRESHOLD)
7 final_alignment ← alignment_classes ∪ alignment_properties
8 return final_alignment

Here ← denotes an assignment operation, and ∪ - the operation of merging lists.
The input data of the algorithm are two ontologies and a matching probability threshold
for filtering pairs of entities. If the probability is higher than the threshold, then the pair
is added to the alignment. A list of classes is extracted from each ontology. Next, two
lists of classes are fed to the input of Algorithm 2:

Algorithm 2 Creating predicted alignment from two lists of entities -
create_alignment(entities1, entities2, THRESHOLD)

Input:

entities1, entities2 - input lists of entities (classes or properties),

THRESHOLD - threshold for create matching between entities

Auxiliary functions:

calculate_all_sim_measures - Algorithm 3,

predict_match - predict confidence based on similarity measures

Output: alignment - output alignment for entities1 and entities2

1 for entity1 ∈ entities1 do
2 for entity2 ∈ entities2 do
3 sim_measures ← calculate_all_sim_measures(entity1, entity2)

135

4 match ← predict_match(sim_measures)
5 if match > THRESHOLD then
6 alignment ← alignment ∪ (entity1, entity2)
7 end if
8 end for
9 end for

10 return alignment

Then, each class from the first ontology is matched with each class from the second
ontology. For example, if in the first ontology includes 10 classes and in the second
ontology includes 12 classes, then 120 pairs are matched. Each pair is fed to the input
of a machine learning model, which calculates the probability (confidence) of matching
for each pair. Then the threshold is set: if the probability is above the threshold, then
the pair is added to the final alignment. Similar actions are performed for properties.
The similarity measures for each pair are calculated in Algorithm 3:

Algorithm 3 Calculating similarity measures algorithm -
calculate_all_sim_measures(entity1, entity2)

Input:

entity1, entity2 - input entities (classes or properties)

Auxiliary functions:

get_name - get name of entity,

get_parent - get parent of entity,

get_path - get full path of entity,

calculate_sim_measures - calculates string-based and linguistic-based similarity
measures listed in 4.2 and returns a list of 88 values

concat - merge lists

Output: sim_measures - output list of calculated similarity measures for entity1 and
entity2

1 name1 ← get_name(entity1)
2 name2 ← get_name(entity2)
3 parent1 ← get_parent(entity1)
4 parent2 ← get_parent(entity2)
5 path1 ← get_path(entity1)
6 path2 ← get_path(entity2)
7 name_sim_measures ← calculate_sim_measures(name1, name2)
8 parent_sim_measures ← calculate_sim_measures(parent1, parent2)
9 path_sim_measures ← calculate_sim_measures(path1, path2)

136

10 sim_measures ← concat(name_sum_measures, parent_sim_measures,
path_sim_measures)

11 return sim_measures

Name, parent name, and the full hierarchical path are retrieved from each class. The
parent of a class is its super class. The full path is a string that describe the entire
hierarchy of classes: from the most general class to the current class. For example, the
class “Book” has the name “Book”, the parent name “Publication” and the full path
“Thing/Publication/Book”. Thus, a list of pairs for matching is generated. For
properties, the parent is the class that it describes. And the full path is a string describing
the complete hierarchy up to the class that describes the property. For each pair, all
similarity measures listed in Section 4.2 are calculated. Then all similarity measures
are combined into a list.

The algorithm of model training is described as follows:

Algorithm 4 Creating dataset and training a machine learning model

Input:

train_pairs_ontologies - set of tuples (ontology1, ontology2, true_alignment)

model_name - name of machine learning method (logistic regression, random forest,
gradient boosting),

model_params - set of parameters of machine learning model,

create_dataset - Algorithm 5

Auxiliary functions: train_model - train machine learning model on training dataset

Output: model - trained model for predicting matching
1 for ontology1, ontology2, true_alignment in train_pairs_ontologies do
2 classes1 ← get_classes(ontology1)
3 classes2 ← get_classes(ontology2)
4 train_dataset_classes ← create_dataset(classes1, classes2, true_alignment,

'Class')
5 properties1 ← get_properties(ontology1)
6 properties2 ← get_properties(ontology2)
7 train_dataset_properties ← create_dataset(properties1, properties2,

true_alignment, 'Property')
8 train_dataset ← train_dataset ∪ train_dataset_classes ∪

train_dataset_properties
9 end for

10 model ← train_model(train_dataset, model_name, model_params)
11 return model

137

The input data is a list of ontology pairs and the true alignment between them. A model
from Section 2.5 and its parameters are also selected. The process is similar to the first
algorithm: the names of objects, the names of parents and full paths are retrieved, and
the similarity measures are calculated. First, a dataset is created for the classes, then for
properties, and after that the datasets are combined.

The algorithm for creating a dataset is described in Algorithm 5:

Algorithm 5 Creating dataset from two lists of entities - create_dataset(entities1,
entities2, true_alignment, type_entity)

Input:

true_alignment - set of matched pairs of entities,

entities1, entities2 - input lists of entities (classes or properties),

type_entity - type of input entities (class or property)

Auxiliary functions: train_model - train machine learning model on training dataset

Output: train_dataset - output list of tuples with pairs of entities, their matchings and
similarity measures

The input is a true alignment, two lists of entities and the type of input entities. Each
entity from the first list is mapped to each entity from the second list. Then, if a pair of
entities is contained in the true alignment, then the pair is assigned label “1”, otherwise
- label “0”. Also, each pair indicates the type of entity (either “Class” or “Property”)
because the same model was used to map classes and properties. Then all pairs are
combined into one dataset. Further, the model is trained on the created dataset with the
selected parameters.

1 for entity1 ∈ entities1 do
2 for entity2 ∈ entities2 do
3 sim_measures ← calculate_all_sim_measures(entity1, entity2)
4 if (entity1, entity2) ∈ true_alignment then
5 train_dataset ← train_dataset ∪ (entity1, entity2, 1, type_entity,

sim_measures)
6 else
7 train_dataset ← train_dataset ∪ (entity1, entity2, 0, type_entity,

sim_measures)
8 end if
9 end for

10 end for
11 return train_dataset

138

5 Implementation and Evaluation Results

5.1 Datasets

Two datasets are selected for evaluation experiments (called as Dataset #1 and Dataset
#2 below). These datasets are sets of ontologies and their true alignments taken from
Ontology Alignment Evaluation Initiative (OAEI). Some pairs of ontologies and their
true alignments are selected for training the machine learning models and their testing.
This selection is called a partition. Ontologies from OAEI are used in many papers.
These papers include [33] and [34]. [33] presents an approach to combining similarity
measures without instances of ontologies and user feedback. KNN, SVM, DT and
AdaBoost were used as machine learning models. The authors achieve on some
alignments the value of F-measure 0.99. [34] proposed a new ontology matching
approach. The authors used five different similarity measures: syntactic, semantic,
abbreviation and context similarity. Multilayer Perceptron, REPTree, M5Rules are
used as the machine learning models. Average F-measure is 0.67. Dataset #1 is a
partition from third experiment of [33]. Dataset #2 is a partition from [34]. The used
pairs of ontologies and their true alignments are described in Tables 3 and 4. All
ontologies are defined using OWL-DL4 language in the RDF and XML format.

Dataset #1 is a set of ontologies about Bibliographic references from Benchmark test
library. Ontology #101 is the reference ontology. Other ontologies (#102-#103, #301-
#304) are compared with the reference ontology. Dataset has 7 ontologies and 6 true
alignments: 3 alignments for training and 3 alignments for testing.

Dataset #2 consists several ontologies from Benchmark test library and all
ontologies from Conference track of OAEI. Conference track contains 16 ontologies,
which dealing with conference organization, and 21 true alignments. Dataset has 27
ontologies and 26 alignments: 8 alignments for training and 18 alignments for testing.

The pairs of entities from each pair of ontologies and their alignments are extracted.
Dataset #1 has 14148 training samples (156 positive and 13992 negative samples) and
14940 testing samples (172 positive and 14768 negative samples) and Dataset #2 has
55348 training samples (284 positive and 55064 negative samples) and 114045 testing
samples (253 positive and 113792 negative samples). A positive sample is a pair of
entities which are matching, and a negative example is a pair of non-matching entities.
Note that the datasets are very unbalanced.

5.2 Implementation

The approach was implemented using Python 3.5. This language is widely used for
implementation of machine learning workflows and possesses a lot of useful program
libraries.

4 https://www.w3.org/TR/owl-features/

139

https://www.w3.org/TR/owl-features/

Table 2. Example part of true alignment 101-302

Entity from Ontology #101 Entity from Ontology #302

Collection Book

TechReport TechReport

Report Publication

Reference Resource

date publishedOn

Ontologies are represented as RDF/OWL files. The owlready25 library was used for
syntactic parsing of ontologies. Alignments are defined in RDF format. For parsing
alignments, the BeautifulSoup 6 library was used. As implementation of logistic
regression and random forest machine learning techniques sklearn7 library is used. As
a gradient boosting implementation the XGBoost8 library is used. Dataset is formed as
a dataframe of the pandas9 library. To evaluate F-measure, the Alignment API10 library
was used. Computation experiments: training of machine learning models and the
selection of their parameters were performed at the Hybrid high-performance
computing cluster [51]. WordNet dictionary is taken from the nltk11 library. Word2vec
model was trained on GoogleNews12 news. N-gram implementation is taken from the
ngram13 library. Similarity measures based on edit distance implementation is taken
from the editdistance14 library.

5.3 Experiments

The best parameters for the models were selected by the brute force method (a grid of
values was created for each parameter): the models were trained on all combinations of
parameters and the model with the best F-measure value using threshold 0.5 was
selected.

For logistic regression, the following parameters were selected: inverse of
regularization strength, weights of classes and norm used in the penalization. For
random forest the number of trees in the forest, the maximum depth of the tree, the

5 https://owlready2.readthedocs.io/en/latest/
6 https://pypi.org/project/beautifulsoup4/
7 https://scikit-learn.org/stable/
8 https://xgboost.readthedocs.io
9 https://pandas.pydata.org
10 http://alignapi.gforge.inria.fr
11 https://www.nltk.org
12 https://github.com/mmihaltz/word2vec-GoogleNews-vectors
13 https://pythonhosted.org/ngram/
14 https://pypi.org/project/editdistance/

140

number of features to consider when looking for the best split and class weights were
selected. For XGBoost, minimum sum of instance weight, minimum loss reduction
requited to make a further partition, subsample ratio for training instances, subsample
ratio of columns when constructing each tree and maximum depth of a tree were
selected.

After training and searching for the best parameters, a threshold was selected with
the highest F-measure value for each alignment. For each machine learning model, a
grid of values for parameters was created manually. For numerical parameters, a grid
of 3-5 values with different steps was created, i.e. for numbers of estimators in random
forest: 10, 100, 200, 500, 1000. For parameters with options, all possible options were
taken (2-4 options).

The values of F-measure for each alignment are presented in tables 3, 4 and 5. The
best models for the Dataset #1 are logistic regression and random forest. Gradient
boosting is a bit less accurate. However, the gradient boosting is the best model on
average on Dataset #2. It is more accurate than logistic regression at 0.02 and than
random forest at 0.01. The values of F-measure on Dataset #1 are comparable with the
classical methods [37] [38] [54] [55] but lower than [33]. This may be associated with
a specific set of training and test datasets, and it is also possible that the metrics that
were not implemented in this work have an impact. In [33] the importance of each
similarity measures is not described, but there is a hypothesis that the main contribution
comes from similarity measures associated with comments to entities, and two
structural measures from [55]. The study of this issue is future work. The values of F-
measure on Dataset #2 are comparable with [34].

The computational complexity of the approach is O(n1n2 + m1m2), where n1, n2 are
the number of classes in the ontology O1 and O2, and m1 and m2 are the number of
properties. The computation time and the used memory depending on the size of the
ontology are showed on figures 1 and 2. The calculations were performed on MacBook
Air 1.8 GHz 8GB RAM. The dependence of training and testing time on the ontology
size is showed on figure 1. 20 points (evenly distributed between 10 and 1000) were
used to build the figure. Training of random forest is longer than training of logistic
regression and gradient boosting. The reason for the jumps on the figure is that the
dataset is sampled randomly. Unfortunately, the used machine did not have enough
capacity to calculate the time for training and testing gradient boosting with an ontology
size of more than 600. The testing time of logistic regression and gradient boosting is
much less than a random forest, therefore in the figure the graphs are close to zero. In
general, there is a quadratic dependence. The dependence of memory usage on the
ontology size is showed on figure 2. 20 points were also used to build the figure.
Memory was measured using the memory profiler 15 package: the amount of used
memory was measured when running the training and testing script. It is hard to
understand why increasing the size of the ontology does not increase the amount of
memory used, perhaps this is due to the internal work of the Python language. It is
noticeable that the most memory is used by gradient boosting.

15 https://pypi.org/project/memory-profiler/

141

Table 3. F-measure values for Dataset #1 with best thresholds

Alignmen

t

Logistic

Regressio

n

Random

Forest

XGBoost Best

results

from [33]

FOAM

[37]

DT [54] OMAP

[38]

OLA [55]

101-302 0.72 0.71 0.72 0.92 0.77 0.759 0.74 0.34

101-303 0.82 0.82 0.75 0.90 0.84 0.816 0.84 0.44

101-304 0.90 0.91 0.91 0.97 0.95 0.96 0.91 0.69

Average 0.81 0.81 0.79 0.93 0.85 0.845 0.83 0.49

Fig. 1. Training and testing time of approach depending on the size of ontology.

Fig. 2. Memory usage during training and testing.

142

Table 4. F-measure values for Dataset #2 with best thresholds

Alignment Logistic Regression Random Forest XGBoost

conference-edas 0.53 0.5 0.55

cmt-sigkdd 0.73 0.8 0.73

edas-sigkdd 0.53 0.63 0.63

ekaw-sigkdd 0.77 0.77 0.77

cmt-edas 0.72 0.76 0.63

conference-sigkdd 0.64 0.54 0.58

confof-edas 0.62 0.62 0.62

confof-iasted 0.71 0.61 0.66

conference-confof 0.61 0.54 0.57

cmt-confof 0.44 0.41 0.48

conference-ekaw 0.43 0.40 0.47

cmt-ekaw 0.58 0.62 0.70

confof-ekaw 0.58 0.68 0.64

iasted-sigkdd 0.75 0.81 0.81

cmt-iasted 0.88 0.88 0.88

edas-iasted 0.42 0.57 0.57

ekaw-iasted 0.58 0.75 0.70

confof-sigkdd 0.72 0.72 0.72

Average 0.62 0.64 0.65

143

Table 5. Comparison of F-measure values

Alignment Logistic

Regression

Random

Forest

XGBoost Multi-layer

perceptron

[34]

REPTree [34] M5 Rules

[34]

Average 0.62 0.64 0.65 0.67 0.65 0.65

Conclusions and Future Work

We combined string-based, language-based, and structural-based similarity measures
using three different machine learning models and apply them for ontology matching
problem. The approach is implemented and evaluated using datasets selected from
Ontology Alignment Evaluation Initiative (OAEI).

Due to the large number of similarity measures, there is hope that there is a potential
for a more universal use of the approach. Universality refers to the applicability of the
different subject areas. It is necessary to test the approach on ontologies with other
subject areas. As a future work we would like to add similarity measures based on
comments of entities, more structure-based similarity measures, such as a path length,
a number of children, a number of properties of a class. It is also necessary to test the
similarity measure from [53]. Neural network (multilayer perceptron) is planned to be
used as a machine learning model. Evaluation issues to be resolved are checking the
effectiveness of learning two different models separately for classes and properties and
testing different strategies to resolve a problem of the strong imbalance of classes as
well as strategies for significant reduce of a number of pairs of entities for matching.

Acknowledgments. The research is financially supported by Russian Foundation
for Basic Research, projects 18-07-01434, 18-29-22096. The calculations were
performed by Hybrid high-performance computing cluster of FRC CS RAS [51].

References

1. Gruber, T.: A Translation Approach to Portable Ontology Specifications. In: Knowledge
Acquisition - Special issue: Current issues in knowledge modeling, vol. 5, issue 2 (1993).
doi: 10.1006/knac.1993.1008

2. Fensel, D.: Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. doi: 10.1007/978-3-662-09083-1

3. Gruninger, M., Lee, J.: Ontology Applications and Design - Introduction. In:
Communications of the ACM (2002). doi: 10.1145/503124.503146

4. Euzenat, J., Shvaiko, P .: Ontology Matching. Springer-Verlag Berlin Heidelberg, Berlin
(2007). doi: 10.1007/978-3-642-38721-0

144

https://www.researchgate.net/journal/0001-0782_Communications_of_the_ACM

5. Otero-Cerdeira, L., Rodríguez-Martínez, F., Gómez- Rodríguez, A.: Ontology Matching: A
Literature Review. In: Expert Systems with Applications, vol. 42, issue 2, pp. 949-971
(2015). doi: 10.1016/j.eswa.2014.08.032

6. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. In: Journal on
Data Semantics IV , pp. 146-171 (2005). doi: 10.1007/11603412_5

7. Atencia, M., Euzenat, J., Pirro, G., Rousset, M.: Alignment-Based Trust for Resource
Finding in Semantic P2P Networks. In: The Semantic Web – ISWC 2011: 10th International
Semantic Web Conference, pp.51-66 (2011).doi: 10.1007/978 -3-642-25073-6_4

8. Arch-int, N., Arch-int, S.: Semantic Ontology Mapping for Interoperability of Learning
Resource Systems using a rule-based reasoning approach. In: Expert Systems with
Applications, vol. 40, issue 18, pp. 7428-7443 (2013). doi:
https://doi.org/10.1016/j.eswa.2013.07.027

9. Mascardi, V., Ancona, D., Bordini, R., Ricci, A.: CooL-AgentSpeak: Enhancing
AgentSpeak-DL Agents with Plan Exchange and Ontology Services. In: WI-IAT '11
Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology, vol. 2, pp. 109-116 (2011). doi: 10.1109/WI-
IAT.2011.255

10. Dong, X., Srivastava, D.: Big Data Integration. In: 2013 IEEE 29th International
Conference on (2015). doi: 10.1109/ICDE.2013.6544914

11. E. Rahm, P. Bernstein.: A survey of approaches to automatic schema matching. In: The
International Journal on Very Large Data Bases, vol. 10, issue 4, December 2001, pp. 334-
350. doi: 10.1007/ s007780100057

12. Hlaing, S.: Ontology based schema matching and mapping approach for structured
databases. In: Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, pp. 853-859 (2009). doi:
10.1145/1655925.1656080

13. Nathalie, A.: Schema Matching Based on Attribute Values and Background Ontology.
In: 12th AGILE International Conference on Geographic Information Science (2009).

14. Ichise, R.: Machine Learning Approach for Ontology Mapping using Multiple Concept
Similarity Measures. In: Seventh IEEE/ACIS International Conference on Computer and
Information Science (2008). doi: 10.1109/ICIS.2008.51

15. Mao, M., Peng, Y., Spring, M.: Neural Network based Constraint Satisfaction in
Ontology Mapping. In: Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, vol. 2, pp 1207-1212 (2008).
http://www.dit.unitn.it/~p2p/RelatedWork/Matching/AAAI10-MaoM.pdf

16. Do, H., Melnik, S., Rahm, E.: Comparison of Schema Matching Evaluations. In:
Revised Papers from the NODe 2002 Web and Database-Related Workshops on Web, Web-
Services, and Database Systems, pp. 221-237 (2002). doi: 10.1007/3-540-36560-5_17

17. Do, H., Rahm, E.: COMA: a system for flexible combination of schema matching
approaches. In: VLDB '02 Proceedings of the 28th international conference on Very Large
Data Bases, pp. 610-621 (2002). doi: 10.1016/B978-155860869-6/50060-3

18. L. Xu, D. Embley.: Automating Schema Mapping for Data Integration. (2003). http://
www.deg.byu.edu/papers/AutomatingSchemaMatching.journal.pdf

19. Lambrix, P., Tan, H.: SAMBO—A system for aligning and merging biomedical
ontologies. In: Journal of Web Semantics, vol. 4, issue 3, pp. 196-206 (2006). doi:
10.1016/j.websem.2006.05.003

20. Ngo, D.: Enhancing Ontology Matching by Using Machine Learning, Graph Matching
and Information Retrieval Techniques. In: University Montpellier II - Sciences et
Techniques du Languedoc (2012). doi: 10.1.1.302.587

145

https://doi.org/10.1016/j.eswa.2013.07.027
http://www.dit.unitn.it/%7Ep2p/RelatedWork/Matching/AAAI10-MaoM.pdf
http://www.deg.byu.edu/papers/AutomatingSchemaMatching.journal.pdf

21. Bulygin, L.: Combining Lexical and Semantic Similarity Measures with Machine
Learning Approach for Ontology and Schema Matching Problem. In: Selected Papers of the
XX International Conference on Data Analytics and Management in Data Intensive
Domains, pp. 245-249 (2018)

22. Gal, A., Modica, G., Jamil, H., Eyal, A.: Automatic Ontology Matching Using
Application Semantics. In: AI Magazine - Special issue on semantic integration, vol. 26,
issue 1, pp. 21-31 (2005).

23. Hariri, B., Sayyadi, H., Abolhassani, H.: Combining Ontology Alignment Metrics
Using the Data Mining Techniques. In: Proceedings of the 2nd International Workshop on
Contexts and Ontologies: Theory, Practice and Applications (2006).

24. Stoilos, G., Stamou, G., Kolias, S.: A String Metric for Ontology Alignment. In: The
Semantic Web – ISWC 2005, pp. 624-637 (2005). doi: 10.1007/11574620_45

25. Cheatham, M., Hitzler, P.: String Similarity Metrics for Ontology Alignment. In: The
Semantic Web – ISWC 2013, pp. 294-309 (2013). doi: 10.1007/978-3-642-41338-4_19

26. Saruladha, K., Aghila, G., Sathiya, B.: A Comparative Analysis of Ontology and
Schema Matching Systems. In: International Journal of Computer Applications, vol. 34,
issue 8, pp. 14-21 (2011).

27. Jean-Mary, R., Shironoshita, P., Kabuka, M.: Ontology Matching with Semantic
Verification. In: Web Semant, vol. 7, issue 3, pp. 235-251 (2009). doi:
10.1016/j.websem.2009.04.001

28. Seddiqui, H., Aono, M.: Anchor-flood: Results for OAEI 2009. In: Proceedings of the
4th International Workshop on Ontology Matching collocated with the 8th International
Semantic Web Conference (2009).

29. Kolyvakis, P., Kalousis, A., Kiritsis, D.: DeepAlignment: Unsupervised Ontology
Matching with Refined Word Vectors. In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, vol. 1 (2018). doi: 10.18653/v1/N18-1072

30. Zhang, Y., Wang, X., Lai, S., He, S., Liu, K., Zhao, J., Lv, X.: Ontology Matching with
Word Embeddings. In: Chinese Computational Linguistics and Natural Language
Processing Based on Naturally Annotated Big Data, pp 34-45 (2014). doi: 10.1007/978-3-
319-12277-9_4

31. Nagy, M., Vargas-Vera, M., Motta, E.: DSSim-ontology mapping with uncertainty. In:
1st International Workshop on Ontology Matching (2006).

32. Nkisi-Orji, I., Wiratunga, N., Massie, S., Hui, K., Heaven, R.: Ontology alignment
based on word embedding and random forest classification. In: Energy Transfer Processes
in Polynuclear Lanthanide Complexes, pp.557-572 (2018). doi: 10.1007/978-3-030-10925-
7_34

33. Nezhadi, A., Shadgar, B., Osareh, A.: Ontology Alignment Using Machine Learning
Techniques. In: International Journal of Computer Science & Information Technology, vol.
3, pp. 139-150 (2011). doi: 10.5121/ijcsit.2011.3210

34. Alboukaey, N., Joukhadar, A.: Ontology Matching as Regression Problem. In: Journal
of Digital Information Management, vol. 16, issue 1 (2018).
http://dline.info/fpaper/jdim/v16i1/jdimv16i1_4.pdf

35. Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of String Metrics for Matching
Names and Records.

36. Euzenat, J.: An API for ontology alignment. In: The Semantic Web - ISWC 2004:
Third International Semantic Web Conference (2004). doi: 10.1007/978-3-540-30475-3_48

146

https://www.researchgate.net/journal/0975-8887_International_Journal_of_Computer_Applications
http://dline.info/fpaper/jdim/v16i1/jdimv16i1_4.pdf

37. David, J., Guillet, F., Briand, H.: Association Rule Ontology Matching Approach. In:
International Journal on Semantic Web and information systems, vol. 3, issue 2, pp. 27-49
(2007).

38. Straccia, U., Troncy, R.: oMAP: Combining Classifiers for Aligning Automatically
OWL Ontologies. In: Web Information Systems Engineering, pp. 133-147 (2005). doi:
10.1007/11581062_11

39. Needleman, S., Wunsch, C.: A General Method Applicable to Search for Similarities
in Amino Acid Sequence of 2 Proteins. In: Journal of Molecular Biology, vol. 48. issue 3,
pp. 443-53 (1970). doi: 10.1016/0022-2836(70)90057-4

40. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. (2012). doi:
10.1016/C2011-0-06130-6

41. Appa Rao, G., Srinivas, G., Venkata Rao, K., Prasad Reddy, P.: A partial ratio and
ratio based fuzzy-wuzzy procedure for characteristic mining of mathematical formulas from
documents. (2018). doi: 10.21917/ijsc.2018.0242

42. Zobel, J., Dart, P.: Phonetic String Matching: Lessons from Information Retrieval. In:
SIGIR '96 Proceedings of the 19th annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 166-172 (1996). doi: 10.1145/243199.243258

43. Tversky, A.: Features of Similarity. In: Psychological Review, vol. 84, issue 4, pp.
327-352 (1977). doi: 10.1037/0033-295X.84.4.327

44. Vijaymeena, M., Kavitha, K.: A Survey on Similarity Measures in Text Mining.
(2016). doi: 10.5121/mlaij.2016.3103

45. Wu, Z., Palmer, M.: Verbs Semantics and Lexical Selection. In: Proceedings of the
32nd annual meeting on Association for Computational Linguistics (1994). doi:
10.3115/981732.981751

46. Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient Estimation of Word
Representations in Vector Space. In: Proceedings of the International Conference on
Learning Representations (2013).

47. Jurisch, M., Igler, B.: RDF2Vec-based Classification of Ontology Alignment Changes.
(2018).

48. Breiman, L.: Random Forests. In: Machine Learning, vol. 45, issue 1, pp. 5-32. doi:
10.1023/A:1010933404324

49. Volkovs, M., Wei Yu, G., Poutanen, T.: Content-based Neighbor Models for Cold Start
in Recommender Systems. In: Proceedings of the Recommender Systems Challenge (2017).
doi: 10.1145/3124791.3124792

50. Sandulescu, V., Chiru, M.: Predicting the future relevance of research institutions - The
winning solution of the KDD Cup 2016. (2016).

51. Federal Research Center Computer Science and Control of Russian Academy of
Sciences. Available at: http://hhpcc.frccsc.ru (accessed 09/12/2018)

52. Nobarian, M., Derakhshi, M.: The Review of Fields Similarity Estimation Methods.
In: International Journal of Machine Learning and Computing, vol. 2 (2012). doi:
10.7763/IJMLC.2012.V2.200

53. Znamenskij, S.: Stable assessment of the quality of similarity algorithms of character
strings and their normalizations. In: Program systems: theory and applications, vol. 9, issue
39, pp. 561–578 (2018). doi: 10.25209/2079-3316 -2018-9-4-561-578

54. Eckert, K., Meilicke, C., Stuckenschmidt, H.: Improving Ontology Matching using
Meta-level Learning. In: The Semantic Web: Research and Applications, pp. 158-172
(2009). doi: 10.1007/978-3-642-02121-3_15

55. Euzenat, J., Guégan, P., Valtchev, P.: OLA in the OAEI 2005 alignment contest. In:
Proceedings of the K-CAP 2005 Workshop on Integrating Ontologies (2005).

147

https://www.researchgate.net/journal/0022-2836_Journal_of_Molecular_Biology

