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Abstract. In this work, we address the problem of anomaly detection in large 
astronomical databases by machine learning methods. The importance of such 
study is justified by the presence of a large amount of astronomical data that can-
not be processed only by human resource. We focus our attention on finding 
anomalous light curves in the Open Supernova Catalog. Few types of anomalies 
are considered: the artifacts in the data, the cases of misclassification and the 
presence of previously unclassified objects. On a dataset of ~ 2000 supernova 
(SN) candidates, we found several interesting anomalies: one active galactic nu-
cleus (SN2006kg), one binary microlensing event (Gaia16aye), representatives of 
rare classes of SNe such as super-luminous supernovae, and highly reddened ob-
jects. 

Keywords: Machine learning; Isolation forest; Gaussian processes; Superno-
vae; Transients 

1 Introduction 

During the last couple of decades, astronomy eventually became the source of huge 
amounts of data produced by different dedicated surveys and experiments, which re-
quire careful processing to extract valuable information. Gigabytes of data are collected 
daily in every domain of electromagnetic spectrum: in high-energy range [1], optics [2, 
3], and radio [4], as well as in cosmic particles window [5] and gravitational waves [6, 
7]. The search for yet unknown statistically significant features of astronomical objects, 
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as well as the distinction of real features from processing artifacts is an important prob-
lem of the automated data analysis. 

Supernovae (SNe) are among the most numerous objects discovered in astronomy, 
and their total amount increases by several thousand per year. These objects help to 
solve many astronomical puzzles: they produce the majority of heavy chemical ele-
ments [8] and high energy cosmic rays [9], they trigger star formation in galaxies [10]. 
Moreover, the study of different types of SNe allows us to probe the composition and 
distance scale of the Universe imposing strong constraints on the standard cosmological 
model [11]. In the last 15 years several large surveys have already gathered many ob-
servational data on SNe and their candidates (Carnegie Supernova Project – CSP [12], 
the Panoramic Survey Telescope and Rapid Response System – Pan-STARRS [13] and 
the Dark Energy Survey – DES [14]). The surveys of new generation, like Large Syn-
optic Survey Telescope [15], will produce data of unprecedented volume and complex-
ity.  

The exponential growth of astronomical data volume makes the use of machine 
learning (ML) methods inevitable in this field [16]. Most of the ML efforts in astronomy 
are concentrated in classification [e.g., 17] and regression [e.g., 18] tasks. A large vari-
ety of ML methods were applied to supervised photometric SN classification problem 
[19–21] and unsupervised characterization from spectroscopic observation [e.g., 22]. 

Astronomical anomaly detection is the field where ML methods may be used quite 
effectively taking into account the enormous amount of data that has been gathered, 
however, they have not been fully implemented yet. Barring a few exceptions, most of 
the previous studies may be divided into only two different trends: clustering [23] and 
subspace analysis [24] methods. More recently, random forest algorithms have been 
used extensively by themselves [25] or in hybrid statistical analysis [26]. Although all 
of this has been done to periodic variables there is not much done for transients and 
even less for supernovae. 

Supernovae surveys detect hundreds of SNe candidates per year, but the lack of spec-
troscopic information makes the processing algorithms to classify discovered SNe bas-
ing on secondary features (proximity to the galaxy, monotonous flux changing with 
time, absolute magnitude, etc.) Anomaly detection may solve two problems: (a) mini-
mize the contamination of non-SNe in large supernova databases, and (b) find inside 
the SNe data rare or new classes of objects with unusual properties. 

In this paper, we suggest the algorithm of anomaly detection using the isolation forest 
method and basing on real photometrical data from the Open Supernova Catalog (OSC) 
[27, 28]. 
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2 Data Preprocessing 

2.1 Open Supernova Catalog 

The Open Supernova Catalog [27] is constructed by combining many publicly available 
data sources. It includes many catalogs and surveys, such as Pan-STARRS [29], the 
SDSS Supernova Survey [30], the All-Sky Automated Survey for Supernovae (ASAS-
SN [31]), the intermediate Palomar Transient Factory (iPTF [32]) among others, as well 
as information from individual studies. It represents an open repository for supernova 
metadata, light curves, and spectra in an easily downloadable format. This catalog also 
includes some contamination from non-SN objects. It contains data for more than 55000 
SNe candidates among which ~13000 objects have >10 photometric observations and 
for ~7500 spectra are available. 

The catalog stores the light curves (LCs) data in different magnitude systems. Since 
we need a homogeneous data sample, we extracted only the LCs in BRI, gri, and g’r’i’ 
filters. We assume, that g’r’i’ filters are close enough to gri filters to consider them as 
the same filters. We also transform BRI magnitudes to gri using the Lupton’s photo-
metrical equations [33]. We also require a minimum of three photometric points in each 
filter with 3-day binning. After this first cut, our sample consists of ~3000 objects. 

2.2 Light Curves Approximation 

Traditionally, ML algorithms require a homogeneous input data matrix which, unfortu-
nately, is not the case with supernovae. A commonly used technique to transform une-
venly distributed data into a uniform grid is to approximate them with Gaussian pro-
cesses (GP [34]). Usually, each light curve is approximated by GP independently. How-
ever, in this study we use a Multivariate Gaussian Process [35] approximation. For each 
object it takes into account the correlation between light curves in different bands, ap-
proximating the data by GP in all filters in a one global fit (for details see Kornilov et 
al. 2019, in prep.). As an approximation range we chose [–20; +100] days. We also 
extrapolated the GP approximation to fill this range if needed. With this technique we 
can reconstruct the missing parts of LC from its behavior in other filters. 

Gaussian process is based on the so-called kernel, a function describing the covari-
ance between two observations. The kernel used in our implementation of Multivariate 
Gaussian Process is composed of three radial-basis functions  

𝑘𝑘(𝑡𝑡1, 𝑡𝑡2) = 𝑒𝑒
�−(𝑡𝑡2−𝑡𝑡1)2

2𝑙𝑙𝑖𝑖
2 �

, 

where i denotes the photometric band, and li are the parameters of Gaussian process to 
be found from the light curve approximation. In addition, Multivariate Gaussian Process 
kernel includes 6 constants, three of which are unit variances of basis processes and 
three others describe their pairwise correlations. Totally, Multivariate Gaussian Process 
has 9 parameters to be fitted. 

Once the Multivariate Gaussian Process approximation was done, we visually in-
spected the resulting light curves. Those SNe with unsatisfactory approximation were 
removed from the sample (mainly the objects with bad photometric quality). Since each 
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object has its own flux scale due to the different origin and different distance, we nor-
malized the flux vector by its maximum value. Based on the results of this approxima-
tion, for each object we extracted the kernel parameters, the log-likelihood of the fit, 
LC maximum and normalized photometry in the range of [−20, +100] days with 1-day 
interval relative to the maximum. These values were used as features for the ML algo-
rithm (Sect. 3). Our final sample consists of 1999 objects, ∼30% of which have at least 
one spectrum in the OSC. Less than 5% of our sample have <20 photometric points in 
all three filters. 

2.3 Dimensionality Reduction 

After the approximation procedure, each object has 374 features: 121×3 normalized 
fluxes, the LC flux maximum, 9 fitted parameters of the Gaussian process kernel, and 
the log-likelihood of the fit. 

We apply the anomaly detection algorithm not only to the full data set but also to the 
dimensionality-reduced data. The reason for this is that the initial high dimensional fea-
ture space can be too sparse for the successful performance of the isolation forest algo-
rithm. We applied t-SNE [36], a variation of the stochastic neighbor embedding method 
[37], for the dimensionality reduction of the data. As a result of the dimensionality re-
duction, we obtain 8 separate reduced data sets corresponding to 2 to 9 t-SNE features 
(dimensions).  

3 Anomaly Detection 

3.1 Isolation Forest 

Isolation forest [38, 39] is an outlier detection technique that identifies anomalies in-
stead of normal observations. It is built on an ensemble of random isolation trees. Each 
isolation tree is a space-partitioning tree similar to the widely known Kd-tree [40]. How-
ever, in contrast to the Kd-tree, a space coordinate (a feature) and a split value are se-
lected at random for every node of the isolation tree. The tree is built until each object 
of a sample is isolated in a separate leaf – the shorter path corresponds to a higher 
anomaly score. For each object, the measure of its normality is the arithmetic average 
of the depths of the leaves into which it is isolated. The idea of identifying normal data 
vs. anomalies is presented in Fig. 1. 

208



Fig. 1. This scikit-learn example presents the generated 2D dataset. Regions of high 
density are normal data while the outliers are spread around, which is also illustrated by the col-

our – bluer colour means more anomalous behaviour 

Fig. 2. Three-dimensional t-SNE reduced data after application of the isolation forest algo-
rithm. Each point represents a supernova light curve from the data set projected into the three-
dimensional space with the coordinates (x1, x2, x3). The intensity of the colour indicates the 
anomaly score for each object as estimated by the isolation forest algorithm – bluer colour 

means more anomalous light curve behaviour 

We run the isolation forest algorithm on 10 data sets: 
I. data set of 364 photometric characteristics (121×3 normalized fluxes, the LC flux

maximum), 
II. data set of 10 parameters of the Gaussian process (9 fitted parameters of the ker-

nel, the log-likelihood of the fit), 
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III. 8 data sets obtained by reducing 374 features to 2–9 t-SNE dimensions (Sect.
2.3). 

For each data set we obtained a list of anomalies. Contamination levels were set to 
1% (20 objects with highest anomaly score) for data sets I and II. For all data sets in 
case III we considered 2% contamination (40 objects with highest anomaly score). This 
larger contamination was chosen to take into account the influence of the dimensionality 
reduction step in the final data configuration. Given different representations of the data 
and the stochastic nature of the isolation forest algorithm, the same object can be as-
signed a different anomaly score depending on how many t-SNE dimensions are used. 
Thus, only those objects which were listed within the 2% contamination in at least 2 of 
the data sets in case III were included in the resulting group of objects to further astro-
physical analysis. 

An example of the isolation forest algorithm applied to the three-dimensional re-
duced data set is shown in Fig. 3. 

3.2 Evaluation of t-SNE Technique 

Since t-SNE is a stochastic technique, we have also taken additional precautions to en-
sure that the resulting anomaly list does not depend on the t-SNE initial random state. 
For each number of dimensions, we run the t-SNE 1000 times. Then, the isolation forest 
algorithm is applied to the newly obtained reduced dataset and a list of anomalies is 
produced. Next, we counted how often each supernova is listed in the anomaly list. Fig. 
3 shows the distribution of supernovae by the frequency of appearance in anomaly list 
for the three-dimensional t-SNE reduced dataset (filled bars). The y-axis is normalized 
to the total number of runs. 

Fig. 3. The distribution of supernovae by the frequency of appearance in anomaly list for the 
three-dimensional t-SNE reduced dataset (filled bars). The red line denotes 2% of supernovae 

with the highest anomaly score contamination (40 objects). The distribution of supernovae that 
were subjected to the further analysis as anomalies in this work are marked by dashed line. The 

y-axis is normalized to the total number of runs (i.e., 1000)
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4 Results 

The isolation forest algorithm found ~100 anomalies among 1999 objects from all our 
samples. We inspected visually the LCs of selected anomalies and analyzed them using 
other publicly available information. Basing on this analysis, we decided whether the 
object is an anomaly or not. Among the detected anomalies, there are few cases of miss-
classifications, representatives of rare classes of SNe and highly reddened objects. Here 
we list a few particular cases. 

4.1 Peculiar Supernovae 

By their spectral and photometric characteristics, the “normal” supernovae are histori-
cally divided into two wide types: Type I and Type II. The more recent classification 
distinguishes Type Ia, Ib, Ic, IIn, IIb, IIP, IIL supernovae. In terms of physics Type Ia 
SNe are a thermonuclear explosion of a white dwarf which mass exceeded the Chan-
drasekhar limit either due to accretion from a companion star or by a merging of two 
white dwarfs [41–43]. These SNe tend to have approximately the same luminosity in 
maximum and are considered as standard candles for cosmological scale estimates [44, 
45]. However, the class of SNe Ia is not homogeneous – some of SNe are on average 
by 0.2–0.3 magnitudes brighter in maximum than others and some of them are on the 
contrary subluminous and fast-declining [46, 47]. The presence of non-standard SNe Ia 
in cosmological samples may introduce a systematic bias [48]. 

Other types of SNe mark the death of massive stars during the collapse of the core. 
The envelopes of these stars extend to hundreds of solar radii and contain large amounts 
of hydrogen (Type II). More massive progenitors of core-collapse supernovae can lose 
mass by the stellar wind and end their lives losing all (Ib) or part of the hydrogen enve-
lope (IIb). An even more effective stellar wind can blow out not only the hydrogen but 
also the helium envelope (Ic).  

SN2013cv is a peculiar Type Ia supernova with a large peak optical and UV lumi-
nosity and with an absence of iron absorption lines in the early spectra. It was suggested 
[49] to be an intermediate case between the normal and super-Chandrasekhar events.

SN2016bln/iPTF16abc belongs to a subtype of over-luminous Type Ia SNe. Its
early-time observations show a peculiar rise time, non-evolving blue colour, and unu-
sual strong C II absorption. These features can be explained by the ejecta interaction 
with nearby, unbound material or/and significant 56Ni mixing within the SN ejecta [50]. 

SN2016ija was first suggested to be an early time 91T-like SN Ia with few features 
and red continuum. It has been also associated to the outburst in an obscured luminous 
blue variable, an intermediate luminosity red transient or a luminous red nova [51]. The 
subsequent spectroscopic follow-up revealed broad Hα and calcium features, leading to 
a classification as a highly extinguished Type II supernova [52]. 
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4.2 Superluminous SNe 

Superluminous SNe are supernovae with an absolute peak magnitude M<–21 mag in 
any band. According to [53] SLSN can be divided into three broad classes: SLSN-I 
without hydrogen in their spectra, hydrogen-rich SLSN-II that often show signs of in-
teraction with CSM, and finally, SLSN-R, a rare class of hydrogen-poor events with 
slowly evolving LCs, powered by the radioactive decay of 56Ni. SLSN-R are suspected 
to be pair-instability supernovae: the deaths of stars with initial masses between 140 
and 260 solar masses. Our isolation forest algorithm found 4 SLSNe in our samples. 

4.3 Misclassifications 

SN2006kg was first classified as a possible Type II SN [54]. It is also appeared as Type 
II spectroscopically confirmed supernova in table 6 of [55]. However, further analysis 
of 3.6-m New Technology Telescope spectrum revealed that SN2006kg is an active 
galactic nucleus [56, 30]. 

Gaia16aye is an object with the most non-SN-like behavior among our set of outli-
ers. In [57] it was reported to be a binary microlensing event – gravitational micro-
lensing of binary systems – the first ever discovered towards the Galactic Plane. 

Our analysis also revealed that 16 of detected anomalies (all from the SDSS SN can-
didate catalog [30]) are likely to be stars or quasars. First, we did not find any signature 
of supernovae on the corresponding multicolour light curves. Second, according to 
SDSS DR15 [58], 10 of these objects are denoted as STAR. The other 6 objects have a 
BOSS [59] spectrum with class "QSO" and have high redshifts. 

More detailed analysis of the detected anomalies is presented in [60]. 

5 Conclusions 

The amount of astronomical data increases dramatically with time and is already beyond 
human capabilities. The astronomical community already has dozens of thousands of 
SN candidates, and LSST survey will discover over ten million supernovae in the forth-
coming decade [61]. Only a small fraction of them will receive a spectroscopic confir-
mation. This motivates a considerable effort in photometric classification of supernovae 
by types using machine learning algorithms. There is, however, another aspect of the 
problem: any large photometric SN database would suffer from the non-SN contamina-
tion (novae, kilonovae, GRB afterglows, AGNs, etc.). Moreover, the database will in-
evitably contain the astronomical objects with unusual physical properties – anomalies. 
In this study, we show that the isolation forest algorithm may be rather efficient in solv-
ing this problem. This method identified ~100 potentially interesting objects from 1999 
supernova candidates extracted from the Open Supernova Catalog, ~30% of which were 
confirmed to be non-SN events or representatives of the rare SN classes. Among these 
objects, we report for the first time the 16 star/quasar-like objects misclassified as SNe. 

It is important to note that these results are not expected to be complete. There are 
several known SLSNe in our sample, which were not identified as anomalies, and sev-
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eral objects with very distinguishing features, which do not affect the LC shape signif-
icantly, so the algorithm missed them. This may indicate some defects in Gaussian Pro-
cesses approximation of initial observed LCs. Nevertheless, the above results provide 
clear evidence of the effectiveness of automated anomaly detection algorithms for pho-
tometric SN light curve analysis. This approach may be crucial for future surveys, like 
LSST, when the enormous amount of data make the search of outliers impossible for 
human abilities. 

The code of this work and the data are available at http://xray.sai.msu.ru/snad/. 
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