
Implementing Dynamic Management Of Virtual Network 

Infrastructure Components* 

Klimova A.S. 

Ural Federal University 

Ekaterinburg, Russia 

alina_klimova1503@mail.ru 

Kodolov S.D 

Ural Federal University 

Ekaterinburg, Russia 

sergey.kodolov@urfu.ru 

Aksyonov K.A. 

Ural Federal University 

Ekaterinburg, Russia 

wiper99@mail.ru 

Filimonov A.Yu. 

Ural Federal University 

Ekaterinburg, Russia 

a.filimonov@urfu.ru 

Abstract 

The active using virtualization technologies which are applied in the 

construction of network infrastructure provides a possibility of applying new 

methods and tools for managing the components of such infrastructures. The 

paper discusses the use of such tools as the Ansible platform, the NCCLIENT 

and PyEZ libraries for the dynamic management of virtual components of a 

hardware-software workbench as part of the laboratory complex of software-

defined network infrastructures of RTF Ural Federal University (UrFU). 

1 Introduction 

The basic virtualization principle is the sharing of a physical resource between independent virtual objects. In 

telecommunication systems, this principle is used for the formation of virtual overlay networks [1] to create virtual network 

layers (network slices) [2] on top of the underlay (real) network infrastructure. According to the Network Functions 

Virtualization (NFV) classification of the ETSI Industry Specification Group (ISG), this approach is called Virtual 

Partitioning [3]. The use of solutions based on the principles of virtualization of network functions and resources allows 

not only to significantly increase the efficiency of using the network infrastructure, but also provides the possibility of a 

radical improvement quality of the information services provided on it [4, 5]. The widespread introduction has led to the 

need for a crucial change in traditional approaches to monitoring and managing telecommunication systems and the 

emergence of the concept of programmable or software-configurable networks (Software-Defined Network, SDN) of such 

solutions in the infrastructure of data centers. As you know, this concept is based on the unification of processes and tools 

for the information interaction of information services with the communication infrastructure, on the basis of which they 

are provided [6]. The classic version of the implementation of the SDN concept involves the use of a controller as an 

intermediary in the interaction between the service or application and the communication infrastructure  by using the 

OpenFlow configuration protocol - OF-CONFIG [7]. It should be noted that recently there has been a tendency to reducing 

quantity the implementations of the classic SDN scheme and, at the same time, growing popularity of alternative directions 

that are based on other protocols for managing the communication infrastructure or do not involve the using of controllers 

as separate pieces of system  [8,9]. However, this does not mean SDN concept crisis, but, instead, a transition to a new 

level its development. The most fruitful idea that was proposed under this concept was the proposal to separate the 

monitoring and control of communication equipment on the control plane (Control Plane) and direct data processing (Data 

Plane) [10]. This is exactly feature that makes SDN a catalyst for a radical change in the process of managing network 

infrastructure components, which led to the emergence of a new family of universal configuration platforms (such as 

                                                           
* Copyright ©2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 

International (CC BY 4.0). 



Ansible) [11] and led to  model-driven automating of this process [12]. Today, in the field of IT, a wide range of various 

software tools and information resources is actively used which are aimed at supporting the development or ensuring the 

implementation of technical solutions of SDN. Such tools and resources include: 

- software configuration management platforms  [13], such as Ansible, Saltstack, Chef, Puppet. 

- special libraries for universal programming languages, such as, for example, the NETCONF Client (NCCLIENT) 

[14], which are designed to automate the management of network infrastructures. 

In following sections, we will discuss the use of tools such as the Ansible platform, the NCCLIENT and PyEZ libraries 

for dynamically managing the virtual components of the hardware-software laboratory bench of the software-defined 

network infrastructures of UrFU. 

2 Infrastructure of  UrFU's SDN workbench 

UrFU's SDN workbench Infrastructure is based on hardware complex, which was previously used for laboratory VoIP 

classes providing. It includes both virtual and hardware components of the network infrastructure, using of which, as was 

shown earlier [15], lead to increasing the efficiency of using existing equipment, intensifying the learning process and at 

the same time help to avoid using of the  nonessential  components.  

To organize serial connections between the routers of the laboratory complex, fractional digital streams are used, formed 

in the E1 channel, the parameters of which are defined in ITU-T G.704 [16]. In this case the distributed resource is the 

channel capacity (in this case 2048 Kbps), the resources allocation is performed according to the Time Division 

Multiplexing (TDM) scheme. This solution allows you to create up to 30 virtual channels in one physical channel and 

combine these channels into virtual groups (interfaces), the bandwidth of which can vary from 0 to 2048 Kbps with a 64 

Kbps discrete. To organize virtual IEEE 802.3 (Ethernet) connections, the laboratory complex uses Virtual Local Area 

Network (VLAN) technology [17]. The organization of virtual IP (Internet Protocol) connections is carried out using 

Virtual Routing and Forwarding (VRF) technology [18] in the laboratory complex. The topology of the laboratory complex 

is shown in Figure 1. Black color on this topology denotes real, and gray one  - virtual  components, respectively. 

 

Figure 1: The infrastructure of the laboratory complex 

The complex described above was used for laboratory work as part of the testing of the optional course “Fundamentals 

of IP-telephony”. During the performance of these works, 2-4 teams of students worked simultaneously, whose task was 

to configure virtual PBXs and other infrastructure components in order to ensure incoming and outgoing calls using 

standard (Cisco Unified IP Phone 7912G / 7941G / 7942G) or video ( Cisco Unified IP Phone 9971) Phones. 

Performed tests showed the full performance of the laboratory complex and confirmed the correctness of the solutions 

that were chosen for its construction. To assess the feasibility of implementing a system that could provide dynamic control 

of the virtual channel capacity during an audio-video call, it was necessary to determine the characteristics of the 

information stream devoted to provide it. The measurements were carried out in one of the virtual layers of the topology 

shown in Fig. 1 using Cisco Unified IP Phone 9971 phones, in which the H.264 / AVC codec is used for encoding / 

decoding an audio-video stream [19]. Since the encoding algorithm of this codec uses a variety of techniques for 

compressing video images and motion compensation, the information flow characteristics generated by it strongly depend 

on the dynamic characteristics of the transmitted image (scene). In order to take these features into account during 



measurements and tests, two types of scenes were used: quasi-static, when moving objects practically did not get into the 

camera field during the call; dynamic, when there was a working office fan in the camera field. 

The measurements results are shown in Fig. 2.a and 2.b of  the information flow characteristics   during the transmission 

of quasi-static and dynamic VoIP images, respectively. The presented histograms were generated according to the results 

of 500 measurements with three values of the throughput of the virtual channel that connects vR1 and vR2: 128, 192 and 

256 Kbps (vertical hatching, inclined hatching and uniform filling, respectively). 

 

Figure 2: Measurement results of VoIP information flow characteristics 

The obtained results made it possible to establish that during a quasi-static  images  exposing for  VoIP phones, they 

formed  digital stream,  by average data rate of (110 ± 10) Kbps. To transmit such digital stream 128 Kbps throughput 

channel was sufficient. 

It was also found that during a dynamic images  exposing for  VoIP phones, they formed  digital stream  by average 

data rate of (170 ± 10) Kbps. Such stream was transmitted without loss through channels with a bandwidth of 192 and 256 

Kbps. Examples has shown in Fig. 3.a-3.c of such call's  by using a virtual channels with a bandwidth of 64, 128 and 192 

Kbps, respectively. 

 

Figure 3: The effect of channel bandwidth on image quality 

During those tests, it was found that the transmission led to losses and deterioration of image quality due to overloading 

of this channel of the information flow of an audio-video call with a moving image through a channel with a bandwidth of 

128 Kbps. It should also be noted that a channel provides almost error-free transmission of such a stream with a bandwidth 

of 192 Kbps. The results, obtained by those tests were used to develop a program that is able to control the bandwidth of a 

virtual channel by redistributing the resource of the corresponding component of the underlay network (in this case, the 

physical channel) between the virtual layer's components. 

3 Using Ansible to configure UrFU's SDN workbench 

Among configuration management platforms such as Ansible, Saltstack, Puppet, or Chef, Ansible has been the most 

popular over the past 5 years [20]. Ansible is commonly used to provide, deploy, and manage a computing infrastructure 

in the cloud, virtual, or physical environment [21]. Among the advantages of Ansible, it is worth noting that there is no 



need to deploy an agent on configurable devices (agentless). Other advantages are low cost compared to competitors, and 

ease of installation and administration [21]. Automation of building a network infrastructure using Ansible does not require 

deep knowledge in programming: the programming required for many common operations has already been completed and 

is available as modules. In the process of automation, a “playbook” is created that describes the necessary operations, 

combining a number of modules. Ansible configuration file (ansible.cfg); File or directory of the workspace (inventory); 

A playbook file in YAML format that contains operations to execute.When a playbook is executed, the parameters are 

imposed on the template for each device, forming separate configuration files, which are then applied on the device. 

In the event of problems associated with a managed device, and not with syntax or other errors in the playbook, Ansible 

monitors errors separately for each device. If an error occurs with a specific device, Ansible stops processing tasks for that 

device. However, if there are no errors on other devices, the tasks for these devices will be completed [22]. The main 

advantage of automation platforms is the ability to automate configuration management of both real and virtual equipment 

using popular communication protocols in general and Ansible in particular. Depending on the platform and module 

destination, XML over SSH (NETCONF) [23], CLI over SSH, or API over HTTPS (RESTCONF) [24] can be used as 

communication protocols. 

To manage the constructed UrFU's SDN workbench, playbook and template files were developed, which allow to 

change the bandwidth of the communication channel of two virtual IP PBX. 

As a result, changing the bandwidth of the communication channel of two virtual routers is reduced to the execution of 

one command: ansible-playbook slot-settings.yaml -e 'slot = 1-4', where the -e parameter passes the value of the slot 

variable, which determines the number of time-slots used. 

Automation platforms, considered on the example of Ansible, are convenient for efficient configuration of many 

devices and are used, as a rule, in cases when the required state of the system after configuration is determined in advance. 

To solve the problem posed in this article, it is important that the system itself can respond to changes and move from one 

state to another depending on certain factors. Therefore, the use of these tools is impractical in solving this problem. 

4 Using libraries based on NETCONF Protocol to provide UrFU’s SDN workbench 

management 

 

The NETCONF and RESTCONF protocols are actively used today to automate the management of network equipment 

[25]. The use of these protocols allows us to translate the solution of network equipment control problems to a qualitatively 

new level, making possible dynamic reconfiguration of the network infrastructure in real time [12]. The advanced libraries 

have been developed [26] for many of the popular programming languages that make the automation process of managing 

network equipment accessible to a wide range of developers in order to ensure the development and promotion of such 

applications. 

Initially, the scripts were prepared using the Python library - NCCLIENT, working on the protocol NETCONF - a 

network protocol for managing devices. Using the library simplifies equipment setup and management. The library is 

exported to a Python script and connection parameters via SSH are set to connect to devices. 

The developed technological scripts allow reading, configuring and monitoring routers without using the command 

line. The use of these scripts greatly simplified the equipment configuration processes, and made it possible to get 

operational access to such parameters of the virtual port of the router as the current value of the transmission speed on this 

port and the number of packets that were dropped due to an overload. 

The connect function is used, in the parameters of which the necessary data is connected to establish a connection with 

the device. The current device configuration is written to the xml Dom using the get_config function. The full list is given 

in the repository of the prepared technological scripts [27]. Another tool is the PyEZ library [28] for automating the 

management of network equipment. The PyEZ library is similar to NCCLIENT one except it supports only Juniper devices. 

The narrow focus of this library allows you to form a more compact program code. 

In the process of comparing the tools the development of a technological script is the most suitable in Python using 

libraries based on the NETCONF Protocol to solve the problem 'of dynamic management of virtual components.  



The next stage of the work was the preparation of the controller program which allows to dynamically adapt the 

bandwidth of the virtual channel to the requirements of the transmitted signal. 

5 Programming hardware and software UrFU’s SDN workbench  

The controller program is a Python script that uses the procedures of the PyEZ library described above. The script runs on 

the workstation which is located in the equipment control network. 

The controller operation algorithm includes the following steps: channel status monitoring; compute of parameters; 

accepting decision on the need to change the channel capacity; bandwidth change if necessary. 

At the monitoring stage, using the methods of the PyEZ library and the NETCONF protocol, the controller requests the 

following parameters from the router: serial port speed, interface transfer rate and number of lost packets. The measured 

data rate values are recorded in two parameters: one contains the current speed value, the other contains the maximum 

transmission rate since the channel bandwidth changes. The values of the lost packets are written to a buffer, which is 

organized as a queue with a fixed length. Thus, at each moment of time, the average value is calculated of discarded packets 

for a certain period of time. As a result of monitoring and calculation of the parameters, the following values are determined:  

- Average number of dropped packets; 

- Difference between maximum and current data rates. 

At the next stage, a decision is made on the need for bandwidth changes. The controller increases the transmission 

channel if the average number of dropped packets exceeds the value X. In the event that the difference between the 

maximum and current data transfer rate exceeds the value Y, the controller reduces the transmission channel. The block 

diagram is shown in Figure 4 of the controller program algorithm. 

 

Figure 4: Block diagram of the algorithm of the controller program 

The values of X and Y were determined experimentally, and for the conditions under which the tests were carried out, 

these values were 20 packets and 30 Kbps, respectively. Bandwidth change is also implemented using the NETCONF 

protocol: an XML configuration is downloaded and applied to devices with the number of time slots defined by the 

controller. 

At the final stage of works, dynamic tests were carried out of the program controller as a part of the hardware and 

software workbench. To perform such tests in the topology shown in figure 1, an audio-video call was initiated between 

vPBX1 and vPBX1. During this call, quasi-static and dynamic images were alternately used and values were fixed: 

- the maximum possible information rate (Limit Rate); 

- the current speed information (Current Rate); 

- rates of change in the number of packets dropped due to congestion (Drop Rate). 

The timing diagram is shown in Figure 5 of one of the dynamic tests of the controller program. In this diagram the 

ordinate axis depicts the values of information speeds expressed in Kbps and the number of packets dropped over the 

current time interval. 



 

Figure 5: Controller dynamic test chart 

The virtual channel bandwidth is set to 64 Kbps and a static image is used in the initial phase of the test. Since this 

bandwidth is not enough to transmit a static image, the Drop Rate exceeds the threshold value and the controller decides 

to increase the information speed limit to 128 Kbps (point " A” in the diagram). Then the data transmission process becomes 

stationary 110 Kbps. The presence of such fluctuations is explained by the fact that the tests were carried out for a 

sufficiently long time interval (from 3 to 10 minutes) and video telephones recorded the movements of test participants in 

the classroom.  Approximately one minute after the start of the test, a moving object (a floor fan) was placed in the field of 

the video phone cameras, which, as shown above, increased the average information speed to 170 Kbps. In this case, as in 

the previous one, the Drop Rate exceeds the threshold value and the controller decides to increase the maximum information 

speed, this time to the value of 192 Kbps (point “B” on the diagram). After another minute, the moving object was removed 

from the field of video phone cameras, and the average value decreased again to 110 Kbps of the information speed. In this 

case, the discrepancy between the limiting and current speeds exceeds the threshold value and the controller decides to 

reduce the limiting information speed to 128 Kbps (point “C” in the diagram). 

Multiple repeated tests showed similar results, which confirm the performance of hardware and software solutions that 

were the basis for the described workbench. The process did not require additional resources for the developing a hardware 

and software workbench alone; its programming also did not cause much difficulty due to the presence of good 

documentation of the NCCLIENT and PyEZ libraries and a large number of examples of their use. All this made it possible 

to carry out work on the creation and commissioning of the workbench in a fairly short time (May-October 2019). 

6 Conclusion 

The active use of virtualization technologies which are applied in the construction of modern network infrastructures makes 

it necessary to use new methods for managing the components of these structures. The introduction of these methods allows 

you to automate the component management process, which helps to increase the efficiency of using the network 

infrastructure's resources and make it possible dynamic changing infrastructure's configuration. Today, these features can 

be realized through the use of software platforms designed for configuration management or applications based on special 

libraries that are designed for many of the popular programming languages. The paper discusses the experience of using 

such tools as the Ansible platform, the Python libraries of the NCCLIENT and PyEZ  for the dynamic management of 

virtual components of the  laboratory workbench  in  the  complex of software-configured network infrastructures of RTF 

UrFU. Due to the availability and maturity of these tools, the work was fully completed in a short time on creating and 

programming the laboratory workbench. The experience gained during the  of these works fulfilling allows us to conclude 

that the future use of such tools is promising and fruitful for automation of network equipment management. 

Acknowledgements 

This research paper is supported by 211 acts of the Government of the Russian Federation, agreement No. 02.A03.21.0006. 



References 

1. Jaime Galán-Jiménez and Alfonso Gazo-Cervero OVERVIEW AND CHALLENGES OF OVERLAY NETWORKS. 

A SURVEY // International Journal of Computer Science &Engineering Survey (IJCSES) Vol.2, No.1, Feb 2011 DOI 

: 10.5121/ijcses.2011.2102. 

2. S Gutz, A Story, C Schlesinger, N Foster Splendid isolation: A slice abstraction for software-defined networks. // 

Proceedings of the first workshop on Hot topics in software defined networks ACM 2012. pp 79-84. 

3. ETSI GS NFV-INF 005 V1.1.1 (2014-12) - Network Functions Virtualisation (NFV); Infrastructure; Network Domain 

<http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/010/01.01.01_60/gs_NFV-INF010v010101p.pdf>. 

4. NFV Management and Orchestration - An Overview, GS NFV-MAN 001 V1.1.1, European Telecommunications 

Standards Institute (ETSI), 2014. 

5. Pedreno-Manresa, Jose-Juan & Sayyad Khodashenas, Pouria & Siddiqui, Muhammad Shuaib & Pavon-Marino, Pablo. 

(2017). Dynamic QoS/QoE assurance in realistic NFV-enabled 5G Access Networks. 10.1109/ICTON.2017.8025149. 

6. H. Kim, N. Feamster, Improving network management with software defined networking, Communications Magazine, 

IEEE 51 (2) (2013) 114–119. 

7. OF-CONFIG 1.2 OpenFlow Management and-Configuration Protocol  

https://www.opennetworking.org/images/stories/downloads/ sdn-resources/onf-specifications/openflow-config/of-

config-1.2.pdf 

8. Perspective: Controller-based vs Controllerless-based SDN Solutions  https://www.pluribusnetworks.com/blog/ 

perspective-controller-based-vs-controllerless-based-sdn-solutions/ 

9. SDN: Where is it now and what is the future? https://www.computerweekly.com/feature/SDN-Where-is-it-now-and-

what-is-the-future 

10. Hakiri, Akram & Gokhale, Aniruddha & Berthou, Pascal & Schmidt, Douglas & Gayraud, Thierry. (2014). Software-

Defined Networking: Challenges and research opportunities for Future Internet. Computer Networks. 75. 

10.1016/j.comnet.2014.10.015. 

11. 10 BEST Software Configuration Management Tools (SCM Tools in 2019) https://www.softwaretestinghelp.com/ 

top-5-software-configuration-management-tools/ 

12. Kundrát, Jan & Vojtech, Josef & Skoda, Pavel & Vohnout, Rudolf & Radil, Jan & Havlis, Ondrej. (2018). 

YANG/NETCONF ROADM: Evolving Open DWDM towards SDN Applications. Journal of Lightwave 

Technology. PP. 1-1. 10.1109/JLT.2018.2822268. 

13. Chef vs Puppet vs Ansible vs Saltstack: Which Works Best For You?  https://www.edureka.co/blog/chef-vs-puppet-

vs-ansible-vs-saltstack/  

14. NCCLIENT: Python library for NETCONF clients   https://github.com/ncclient/ncclient  

15. Filimonov A., Medvedev D., Klimova A., Muraviev A. Application of virtual infrastructure components in 

construction of a laboratory complex in an educational institution.// Journal of Instrument Engineering (Izvestiya 

vysshikh uchebnykh zavedeniy. Priborostroenie) vol.61, December 2018, p. 1092-1099. 

16. ITU-T Rec.G.704 (10/98) Synchronous frame structures used at 1544, 6312, 2048, 8448 and 44 736 kbit/s 

hierarchical levels  <https://www.itu.int/rec/T-REC-G.704-199810-I/en>/. 

17. IEEE Std 802.1Q (2012): "IEEE Standard for Local and metropolitan area networks Media Access Control (MAC) 

Bridges and Virtual Bridges" <https://ieeexplore.ieee.org/document/6606799/>. 

18. J.Sonderegger, O.Blomberg, K.Milne, and S.Palislamovic, “Virtualization for high availability,” in Junos High 

Availability: Best Practices for High  Network Uptime (Animal Guide)ch. 5, p. 119, O’Reilly Media,1 ed., August 

2009. 

19. ITU-T Rec.H.264 Advanced video coding for generic audiovisual services  https://www.itu.int/rec/T-REC-H.264-

201906-I/en 

20. Chef vs Puppet vs Ansible vs Saltstack: Which Works Best For You? https://www.edureka.co/blog/chef-vs-puppet-

vs-ansible-vs-saltstack/  

21. ANSIBLE ESSENTIALS.   https://www.ansible.com/webinars-training/introduction-to-ansible  

22. Sawtell S. DAY ONE: Automating JUNOS with Ansible, 2nd Edition. – Juniper Networks Books, 2018. – 398 p. 

23. IETF RFC6421 Network Configuration Protocol (NETCONF)  https://tools.ietf.org/html/rfc6241 



24. IETF RFC8040   RESTCONF Protocol  https://tools.ietf.org/html/rfc8040 

25. Wallin, S., & Wikström, C. Automating network and service configuration using NETCONF and YANG”. In 

LISA’11 Proceedings of the 25th International Conference on Large Installation System Administration (2011)(p. 

22). 

26. Netconf Central  http://www.netconfcentral.org/ 

27. RTF PKS repository  https://github.com/KlimovaAlina/SDN 

28. Junos PyEZ Documentation (https://www.juniper.net/documentation/product/en_US/junos-pyez) 

 


