CEUR-WS.org/Vol-2526/shortl.pdf

Linking Abstract Plans of Scientific Experiments to their
Corresponding Execution Traces

Milan Markovic
University of Aberdeen
Aberdeen, UK
milan.markovic@abdn.ac.uk

Daniel Garijo
Information Sciences Institute,
University of Southern California
Los Angeles, USA

Peter Edwards
University of Aberdeen
Aberdeen, UK
p-edwards@abdn.ac.uk

dgarijo@isi.edu

ABSTRACT

Provenance describes the creation, manipulation and delivery pro-
cesses of scientific results; and has become a crucial requirement
for debugging, understanding, inspecting and reproducing the out-
comes of scientific publications. Scientific experiments, in partic-
ular computational workflows, often include provenance collec-
tion mechanisms that link execution traces to their respective
planned specifications. Such provenance traces are typically very
fine-grained, and may quickly become too complex or difficult for
humans to interpret. In this paper we describe our approach to
represent workflow plans and provenance at different levels of ab-
straction. We describe EP-Plan, a W3C PROV ontology extension
and we illustrate our approach with a use case using the WINGS
workflow system.

KEYWORDS

Plan, scientific workflows, provenance, abstractions

1 INTRODUCTION

Scientific workflows describe the computational steps and data
dependencies that are necessary to carry out a scientific experi-
ment [13]. Scientific workflows can be found in a wide range of
domains, ranging from Geosciences to Bioinformatics, as they have
demonstrated their utility for reproducing previous experiments,
improving standardization practices in a research lab and educat-
ing students on existing methods [2]. Scientific workflow systems
usually have the ability to capture the provenance traces of exe-
cuted experiments, to support inspection of results and debugging
of workflow errors [12]. The W3C recommendation PROV-O [9] is
a standard model for representing provenance of any entity in the
Web, by exposing the series of activities that used or generated such
entities. PROV-O is often used as a reference model by workflow
systems when exposing provenance traces to users.

While PROV-O provides mechanisms to represent provenance
in detail, it does not describe how to represent the plan that was
used to produce a provenance trace. Therefore, in previous work we
described the P-Plan ontology [3], a simple representation of the set
of planned steps that guided an execution. However, plan specifica-
tions may become complex (with hundreds or thousands of steps)
and thus workflow designers tend to simplify them by separating
them into smaller plans (sub-workflows). In addition, workflow
specifications may be parallelised into hundreds or thousands of
jobs when submitted to a distributed environment by a workflow

engine. Similarly, scientific workflows may contain high-level ab-
stract steps that lead to different implementations depending on the
algorithms selected for execution [4]. Linking these abstract plans
with their execution traces requires additional mechanisms which
have not been defined in P-Plan or other recent efforts for prove-
nance representation in scientific workflows such as the Research
Object Model [1] and ProvOne! specifications.

In this paper, we use the Extended P-Plan ontology (EP-Plan)?
to link together different abstractions of scientific workflow plans
and their execution traces described using PROV-O.

We first detail the challenges for linking provenance to abstract
plans in Section 2 by using examples from the WINGS worfklow
system [5]. We then describe how we have addressed these chal-
lenges with the EP-Plan ontology in Section 3, and we conclude
with a discussion of our future work.

2 ABSTRACT PLANS AND PROVENANCE IN
SCIENTIFIC WORKFLOWS

During their lifecycle, scientific workflows may be defined at dif-
ferent levels of abstraction, from an abstract original specification
by a user to a fully detailed execution plan prepared for a workflow
engine [4]. Here we focus on supporting three common use cases
in scientific workflows:

o Collections of activities and entities: Plans may contain ab-
stractions that summarize execution activities to be per-
formed in parallel. Figure 1 shows an example using a work-
flow for water quality analysis in the WINGS workflow sys-
tem [6]. As shown on the left of the figure, some steps rep-
resent collections of executions, depicted as stacked boxes.
For example, the step MetabolismCalcEmpirical receives a
collection of HourlyData files which will be executed in par-
allel. The right side of the figure shows a fragment of the
corresponding execution plan of the workflow on the left,
after a user has specified the input files and hence the system
has prepared the full execution plan. Since provenance is
tracked at the granularity of the execution plan (shown at
the right of the figure), it is necessary to define properties
to group entities and associate them to the corresponding
abstract plan.

o Workflow fragments: Workflow systems often include the
ability to define sub-workflows to simplify complex work-
flow plans. A sub-workflow would then appear as a single
step in the bigger workflow. While this mechanism is helpful

Copyright ©2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

http://purl.org/provone
Zhttps://w3id.org/ep-plan

http://purl.org/provone

SciKnow, Marina Del Rey, CA, USA, November, 2019

Milan Markovic, Daniel Garijo, and Peter Edwards

4

E

I}

(reateParametersFile’
oot f S

=

x
/AReaerationEmpirical};/
bi

-

MetabolismCalcEmpirical

==

x
| createplots
SO0 0T

$6 68 oo

i

=

[=]
)
o0

o) o 00

o T T

)

Figure 1: An abstract workflow for water quality analysis (left) and a fragment of its execution plan (right). Some of the steps
represent collections of executions which will be executed in parallel. Arrows represent the dataflow.

Aggregate

Workflow

Execution

Aggregated
data

Sort

Error Log

Execution summary Provenance trace

Figure 2: An example of a simple provenance summary. The
execution of a workflow on the right is summarized as a sin-
gle activity on the left. Arrows represent usage/generation
dependencies.

for easing the understandability of the scientific workflow,
it requires the means to link the provenance for the sub-
workflow execution back to the provenance of the workflow
where it was included.

Execution summaries: When workflow execution plans be-
come complicated, the corresponding provenance traces may
be too convoluted to explore by users who only want to know
more about the inputs used to generate the result of a work-
flow. Figure 2 shows a simple example of this behaviour: the

workflow execution summary on the left represents the exe-
cution of the workflow as a single activity. The provenance
trace on the right represents the full workflow execution
trace. Both the execution summary and the full provenance
trace represent valid views of a workflow execution, and
should be linked together.

Linking these different levels of granularity together is crucial
for workflow systems to inform a user in case of execution errors.
To further support users’ ability to understand errors and how
plans and their fragments may be reused, plans should also contain
additional metadata that provide information about the context in
which the individual planned steps were deployed and executed.
This may include information about any associated constraints (e.g.
for input validation), the agents expected to perform individual
steps, objectives the plan is trying to achieve, etc.

While specifications such as the Research Object Model, D-PROV
[11] ProvOne or CWL-PROV [7] define mechanisms to describe
sub-workflows and entity collections (e.g., by defining part of re-
lationships) they do not define clear mechanisms to link together
provenance traces at different levels of granularity. Below we de-
scribe how we address these issues with the EP-Plan ontology.

3 USING EP-PLAN TO REPRESENT PLANS AT
DIFFERENT LEVELS OF ABSTRACTION

EP-Plan builds on P-Plan®[3], a vocabulary designed for aligning
simple plans to their corresponding provenance traces. EP-Plan
was designed for cross domain applications (e.g. the use of EP-
Plan for enhancing Internet of Things deployments is detailed in
[10]) and uses ep-plan:Step to denote any planned process, and
ep-plan:Variable to represent inputs and outputs of steps.

3p-plan namespace: http://purl.org/net/p-plan

http://purl.org/net/p-plan

Linking Abstract Plans of Scientific Experiments to their Corresponding Execution Traces

ep-plan:hasinputVariable

; ep-plan:hasOutputVariable
—»| ep-plan:Variable ep—plan:isEIementOfPIan"" ep-plan:Step

ep-plan:
hasPart {/

MultiVariable /

ep-plan:
¥ isSubPlanOfPlan

’ep-plan:PIan

ep-plan:isElementOfPlan

’ep-plan:MuItiStep ‘

prov:wasDerivedFrom g ep-plan:
isDecomposedAsPlan
ep-plan:) ep-plan:
ExecutiontraceBundle [~ ©P-Plan:hasTraceElement correspondsToStep

ep-plan:correspondsToVariable

ep-plan:Entity

/\

ep-plan:hasTraceElement

ep-plan:Activity

prov:wasGeneratedBy

V
ep-plan:MultiActivity

A class for describing
execution trace
elements

prov:hadMember

ep-plan:EntityCollection
Aclass for

—» owl:ObjectProperty d ibi |
—>> rdfs:SubClassOf C] es;g,ég?nz o

Figure 3: An overview of a subset of EP-Plan concepts for de-
scribing and linking plan specifications with their execution
traces.

Figure 3 illustrates a subset of EP-Plan concepts that define
mechanisms for linking plan specification and execution traces
at different levels of abstraction. Both steps and variables belong
to ep-plan:Plan (modelled as a subclass of prov:Plan defined in
PROV-0*) and are linked to their corresponding executions de-
scribed as ep-plan:Activity and ep-plan:Entity (modelled as sub-
classes of prov:Activity and prov:Entity). A workflow execution
typically produces an execution trace that consists of a number
of activities and entities representing instantiations of different
parts of a plan. In EP-Plan, a single execution trace is grouped by
ep-plan:ExecutionTraceBundle (a subclass of prov:Bundle). A single
plan specification may then be linked to multiple execution traces
using prov:wasDerivedFrom. To allow linking of different levels
of workflow abstractions, EP-Plan provides mechanisms to group
related workflow steps defined at a finer level of detail together as
a sub-plan that then further describes a step of a more abstract plan
denoted as ep-plan:MultiStep. The left side of Figure 4 illustrates a
high level abstraction of a workflow plan (:Summarized Wf) contain-
ing a single ep-plan:MultiStep (:ExecuteWorkflowStep) that is then
described in more detail on the right side of the figure as a sub-plan
(:ExecutedWf). In the same figure, the abstract workflow (:Summa-
rizedWf) also includes abstractions of two variables (:InputFilesVar
and :OutputFilesVar) described using the class ep-plan:MultiVariable.
In the sub-plan specification, each of the multivariables is decom-
posed into two individual variables (e.g., InputFilesVar decomposes
into File1Var and File2Var) and linked using ep-plan:hasPart.

Figure 5 illustrates an example execution trace with two exe-
cution trace bundles corresponding to the plan and its sub-plan
shown in Figure 4. Execution trace elements corresponding® to
multi variables defined in the :SummarizedWf plan (see Figure 4)
correspond to trace elements of the type ep-plan:EntityCollection

“4prov namespace: http://www.w3.org/ns/provs

SLinks ep-plan:correspondsToVariable that link ep-plan:EntityCollection from the execu-
tion trace record to ep-plan:MultiVariable in the plan specification are not shown in
the figure.

SciKnow, Marina Del Rey, CA, USA, November, 2019

ep-plan:isDecomposedAsPlan

ep-plan:isSubPlanOfPlan

:SummarizedWf

:ExecutedWf

(ep-plan:Plan) (ep-plan:Plan)

S ep-plan:

hasPart _\

:InputFilesVar
. (ep-plan:MultiVariable)

:File2Var
(ep-plan:Variable)

:File1Var
(ep-plan:Variable)

ep-plan:hasinputVariable ep-plan:hasinputVariable

:AggregateStep
(ep-plan:Step)

:ExecuteWorkflowStep
- (ep-plan:MultiStep)

ep-plan:hasOutputVariable

ep-plan:hasOutputVariable

:OutputFilesVar
(ep-plan:MultiVariable)

:AggregatedDataVar|
(ep-plan:Variable)

ep-plan:hasinputVariable
:SortStep

ep-plan:hasPart

(ep-plan:Step)

ep-plan:hasOutputVariable E B

:OutputVar
(ep-plan:Variable)

:ErrorLogVar
(ep-plan:Variable)

ep-plan:

isElementOfPlan > owl:ObjectProperty

I:] owl:Named Individual
(plan)

Figure 4: An example illustrating decomposition of ep-
plan:Multistep into a sub-plan and linking of variables
across different levels of plan abstractions.

:SummarizedWf ~_ep-plan: - xecutedWf
(ep-plan:Plan) isSubPlanOfPlan (ep-plan:Plan)
J f

prov:wasDerivedFrom
1

:AbstractExecutionTrace
(ep-plan:ExecutionTraceBundle)

prov:

hadMember \

prov:wasDerivedFrom
|

:ExecutionTrace
(ep-plan:ExecutionTraceBundle)

v

:InputFiles
(ep-plan:EntityCollection)

:File2
(ep-plan:Entity)

:File1
(ep-plan:Entity)

prov:used

I :WorkflowEcexution
L 1o+ (ep-plan:MultiActivity)

prov:.wasGeneratedBy

... :OutputFiles
(ep-plan:EntityCollection)

prov:hadMember

e ep-plan:
isElementOfTrace I:]
— owl:ObjectProperty

prov:used

:Aggregate
(ep-plan:Activity)

prov:wasGeneratedBy

:AggregatedData
(ep-plan:Entity)

prov:used

:Sort
(ep-plan:Activity)

prov:wasGeneratedBy

:Output
(ep-plan:Entity)

:ErrorLog
(ep-plan:Entity)

owl:Named Individual |:| owl:Named Individual
(plan) (execution trace)

Figure 5: An example description of execution traces corre-
sponding to workflows defined at different levels of abstrac-

tion.

http://www.w3.org/ns/prov#

SciKnow, Marina Del Rey, CA, USA, November, 2019

which is a subclass of prov:Collection (see :InputFiles and :Output-
Files in Figure 5). The usage and generation of these entity col-
lections is ascribed to a trace element :WorkflowExecution (mod-
elled as ep-plan:MultiActivity) using relationships prov:used and
prov:wasGeneratedBy. The trace element :WorkflowExecution cor-
responds® to the plan element :executeWorkflowStep shown in Fig-
ure 4. The right side of Figure 5 shows a more detailed execution
trace corresponding’ to the :ExecutedWf plan specification shown
on the right side of Figure 4. Instantiations of plan variables are
captured as instances of ep-plan:Entity (e.g. see :Filel) and instan-
tiations of steps are captured as instances of ep-plan:Activity (e.g.
see :Aggregate). Relationships prov:hadMember are used to link
trace elements corresponding to abstract multivariables (modelled
as ep-plan:EntityCollection in :AbstractExecutionTrace) and their
more detailed description in :ExecutionTrace produced by the sub-
workflow specification.

To summarise, using the mechanisms outlined above, EP-Plan
enables modelling of abstracted workflow specifications by collaps-
ing multiple steps and variables into aggregated plan elements (i.e.
multisteps and multivariables). Sub-plans containing more detailed
descriptions of plan abstractions may be linked and reused by dif-
ferent plans (i.e. as workflow fragments), as these are modelled as
individual plan specifications (including any relevant metadata).
Furthermore, by leveraging the concept of collections, we are also
able to maintain links between different abstractions of execution
traces without violating PROV-O semantics.

Finally, in contrast with P-Plan, EP-Plan provides a richer vo-
cabulary for capturing plan metadata which (for reasons of space)
is not discussed in detail in this paper. Briefly, this includes the
ability to associate descriptions of agents that are allowed to exe-
cute different steps of a plan, to link descriptions of policies, and to
describe specifications of how data should be exchanged between
steps. Plan elements can be also associated with descriptions of
constraints that provide a high level reference to any restrictions
that can be linked to and evaluated against elements of an execution
trace. EP-Plan also enables descriptions of objectives to be associ-
ated with the plan. Objectives may then be linked to the individual
plan elements that achieve them. Each element may also be linked
to a rationale (e.g. user-readable description) which details why
the element was included in the plan specification. These concepts
are important for describing the execution context of a scientific
experiment. This may include, for example, specifications of indi-
vidual scientists that are allowed to control certain steps of a plan,
links to a data protection policy applicable to an experiment using
sensitive or personal data, constraint descriptions which provide
further information about the portions of a workflow that failed to
execute due to constraint violation, etc.

4 CONCLUSIONS & FUTURE WORK

In this paper, we introduced the EP-Plan ontology for describing
scientific experiments. In particular, we focused on describing ex-
periments at different levels of abstraction. In our future work we

SLinks ep-plan:correspondsToStep that link ep-plan:MultiActivity from the execution
trace record to ep-plan:MultiStep in the plan specification are not shown in the figure.
"Links ep-plan:correspondsToVariable and ep-plan:correspondsToStep that link ep-
plan:Entity and ep-plan:Activity from the execution trace record to ep-plan:Variable
and ep-plan:Step in the plan specification respectively are not shown in the figure.

Milan Markovic, Daniel Garijo, and Peter Edwards

aim to focus on using EP-Plan to enhance the provenance traces
generated by WINGS (which currently uses the OPMW ontology
8) with additional plan descriptions. OPMW extends both P-Plan
and Prov-O and therefore it should be possible to align existing
provenance descriptions generated by WINGS with the EP-Plan
vocabulary. The WINGS system also uses semantic implementa-
tions of constraints to plan and execute scientific workflows [8]. We
will explore how these can be mapped to the constraint concepts
defined in EP-Plan and hence included as apart of the experiment
metadata with the plan specification.

ACKNOWLEDGMENTS

The work described in this paper was funded by the award made
by the RCUK Digital Economy programme to the University of
Aberdeen (EP/N028074/1), a SICSA PECE travel award, the Defense
Advanced Research Projects Agency with award W911NF-18-1-
0027, the SIMPLEX program with award W911NF-15-1-0555 and
from the National Institutes of Health under awards 1U01CA196387
and 1R0O1IGM117097.

REFERENCES

[1] Khalid Belhajjame, Jun Zhao, Daniel Garijo, Matthew Gamble, Kristina Hettne,
Raul Palma, Eleni Mina, Oscar Corcho, José Manuel Gomez-Pérez, Sean Bechhofer,
et al. 2015. Using a suite of ontologies for preserving workflow-centric research
objects. Web Semantics: Science, Services and Agents on the World Wide Web 32
(2015), 16-42. https://doi.org/10.1016/j.websem.2015.01.003

Daniel Garijo, Oscar Corcho, Yolanda Gil, Meredith N Braskie, Derrek Hibar, Xue

Hua, Neda Jahanshad, Paul Thompson, and Arthur W Toga. 2014. Workflow

reuse in practice: a study of neuroimaging pipeline users. In e-Science (e-Science),

2014 IEEE 10th International Conference on, Vol. 1. IEEE, 239-246. https://doi.org/

10.1109/eScience.2014.33

D. Garijo and Y. Gil. 2012. Augmenting PROV with Plans in P-PLAN: Scientific

Processes as Linked Data. In Proceedings of the 2nd International Workshop on

Linked Science, Vol. 951. CEUR Workshop Proceedings.

Y. Gil, D. Garijo, M. Knoblock, A. Deng, R. Adusumilli, V. Ratnakar, and P. Mallick.

2017. Improving Publication and Reproducibility of Computational Experiments

through Workflow Abstractions. In Proceedings of the Workshop on Capturing

Scientific Knowledge (SciKnow). Austin, Texas.

[5] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim. 2007. Wings for pegasus:

Creating large-scale scientific applications using semantic representations of

computational workflows. In Proceedings of the National Conference on Artificial

Intelligence, Vol. 22. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT

Press; 1999, 1767.

Y. Gil, V. Ratnakar, J. Kim, P. Antonio Gonzalez-Calero, P. Groth,] Moody, and E.

Deelman. 2011. Wings: Intelligent Workflow-Based Design of Computational

Experiments. IEEE Intelligent Systems 26, 1 (2011).

[7] F.Khan, S. Soiland-Reyes, R. Sinnott, A. Lonie, C. Goble, and M. Crusoe. 2018.
Sharing interoperable workflow provenance: A review of best practices and their
practical application in CWLProv. (Dec. 2018). https://doi.org/10.5281/zenodo.
1966881 Submitted to GigaScience (GIGA-D-18-00483).

[8] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar. 2008. Provenance trails in

the wings/pegasus system. Concurrency and Computation: Practice and Experience

20, 5 (2008), 587-597.

T. Lebo, S. Sahoo, and D. McGuinness. April 2013. PROV-O: The PROV ontology.

Technical Report. https://www.w3.0org/TR/2013/REC-prov-o0-20130430/

[10] M. Markovic, D. Garijo, P. Edwards, and W. Vasconcelos. 2019. Semantic Mod-

elling of Plans and Execution Traces for Enhancing Transparency of IoT Systems.
In Proceedings of the 6th IEEE International Conference on Internet of Things. IEEE
Explore.

[11] P. Missier, S. Dey, K. Belhajjame, V. Cuevas-Vicenttin, and B. Ludascher. 2013.

D-PROV: Extending the PROV Provenance Model with Workflow Structure. In

5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13).

L. Moreau, P. Groth, J. Cheney, T. Lebo, and S. Miles. 2015. The rationale of PROV.

Journal of Web Semantics 35 (2015), 235 — 257.

Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields. 2014. Work-

flows for e-Science: Scientific Workflows for Grids. Springer Publishing Company,

Incorporated.

—_
&,

B3

4

=

[

[12

[13

8http://www.opmw.org/model/ OPMW/

https://doi.org/10.1016/j.websem.2015.01.003
https://doi.org/10.1109/eScience.2014.33
https://doi.org/10.1109/eScience.2014.33
https://doi.org/10.5281/zenodo.1966881
https://doi.org/10.5281/zenodo.1966881
https://www.w3.org/TR/2013/REC-prov-o-20130430/

	Abstract
	1 Introduction
	2 Abstract Plans and Provenance in Scientific Workflows
	3 Using EP-Plan to Represent Plans at Different Levels of Abstraction
	4 Conclusions & Future Work
	Acknowledgments
	References

