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Abstract. Capturing the uncertain aspects in cyber threat analyses is
an important part of a wide range of e↵orts, including diagnostics, threat
evaluation, and preventing attacks. However, there has been insu�cient
research and development of modeling approaches that are able to cor-
rectly capture and handle such uncertainty. In this work, we present
an application example of the DeLP3E framework—a formalism that
extends structured argumentation based on logic programming—in the
domain of cyber threat analysis; in particular, near real-time analyses
such as incident response in enterprise networks. The DeLP3E framework
provides a unique combination of dialectical reasoning, rule-based infer-
ence, and probabilistic modeling to not only o↵er suggested responses
to given situations, but also to explain to the analyst why the system
reaches its conclusions.

Keywords: Defeasible Reasoning · Structured Probabilistic Argumen-
tation · Cyber Threat Analysis

1 Introduction

Real-time security analysis is a far more imprecise process than deterministic
reasoning. Since we do not know the full range of the attacker’s choices, one
source of uncertainty is the attacker’s behavior. As cyberattacks are not always
guaranteed to succeed, another source of uncertainty lies in the imperfect nature
of exploits. Yet another source of uncertainty is the fact that the defender’s ob-
servations on potential attack activities are limited—for example, a well-know
problem with analysts in a security operations center (SOC) is “alert fatigue”
caused by false positives. Nevertheless, the logical causality encoded in a deter-
ministic attack graph is an invaluable aspect of understanding security-related
events, and is useful for building practical network defense tools if we can ap-

propriately account for the uncertainty inherent in the reasoning process. Cyber
threat analysis is a highly-technical intelligence problem where an analyst must
consider a variety of sources, each with its associated level of confidence, in order
to provide a decision maker insight into who conducted a given operation.
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As it is well known that people’s ability to conduct intelligence analysis is
limited [5], and due to the highly technical nature of many cyber evidence-
gathering techniques, an automated reasoning system would be best suited for
the task. Such a system must be able to accomplish several goals, among which
we distinguish the following main capabilities [13]:

1. Reason about evidence in a formal, principled manner, i.e., relying on strong
mathematical foundations.

2. Consider evidence for cyber intrusion associated with some level of proba-
bilistic uncertainty.

3. Consider logical rules that allow for the system to draw conclusions based
on certain pieces of evidence and iteratively apply such rules.

4. Consider pieces of information that may not be compatible with each other,
decide which information is most relevant, and express why.

5. Show the actual status of the system based on the above-described features,
and provide the analyst with the ability to understand how the system arrives
at that conclusion.

In this paper, we present an application example of the DeLP3E frame-
work [14] in the domain of cyber threat analysis—in particular, we focus on
near real-time security analyses such as incident response to show that it has
the aforementioned capabilities. This approach relies on several techniques from
the artificial intelligence community, including argumentation, logic program-
ming, and probabilistic reasoning. We first outline the underlying mathematical
framework in Section 2; then, in Section 3 we present the application example.
Finally, we discuss conclusions and future work in Section 4.

2 Preliminaries on the DeLP3E framework

We now provide a brief introduction to DeLP3E; for full details, we refer the
interested reader to [14], which is the source of this summarized presentation.

A DeLP3E model consists of two parts, which correspond to two separate

models of the world. The first, called the environmental model (EM) is used to
describe the background knowledge and is probabilistic in nature. The second
one, called the analytical model (AM) is used to analyze competing hypotheses
that can account for a given phenomenon (in our domain, a response to an
intrusion). The EM must be consistent—this simply means that there must exist
a probability distribution over the possible states of the world that satisfies all of
the constraints in the model, as well as the axioms of probability theory. On the
contrary, the AM will allow for contradictory information as the system must
have the capability to reason about competing explanations for a given event.
In general, the EM contains knowledge such as evidence, intelligence reporting,
or knowledge about actors, software, and systems. The AM, on the other hand,
contains ideas the analyst concludes based on the information in the EM. Note
that an analyst (or automated system) could assign a probability to statements
in the EM, whereas statements in the AM can be true or false depending on
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a certain combination (or several possible combinations) of statements from
the EM. There are thus two kinds of uncertainty that need to be modeled:
probabilistic uncertainty and uncertainty arising from defeasible knowledge. This
model allows both to coexist, and also allows for the combination of the two since
defeasible rules and presumptions (that is, defeasible facts) can also be annotated
with probabilistic events.

We now briefly formally describe these two models as well as a technique
for annotation of knowledge in the AM with information from the EM—these
annotations specify the conditions under which various statements in the AM
can potentially be true.

Basic Language. The sets of variable and constant symbols are denoted with
V and C, respectively. The next component of the language is a set of n-ary
predicate symbols; the EM and AM use separate sets of predicate symbols,
denoted with PEM, PAM, respectively, the two components can, however, share
variables and constants. As usual, a term is composed of either a variable or
constant. Given terms t1, . . . , tn and n-ary predicate symbol p, p(t1, . . . , tn) is
called an atom; if t1, . . . , tn are constant, then the atom is said to be ground. We
use GEM and GAM to denote the sets of all ground atoms for the EM and AM,
respectively.

Given a set of ground atoms, a world is any subset of atoms, those that belong
to the set are said to be true in the world, while those that do not are false.
Therefore, there are 2|GEM| possible worlds in the EM and 2|GAM| worlds in the
AM. These sets are denoted with WEM and WAM, respectively. In order to avoid
worlds that do not model possible situations given a particular domain, integrity
constraints of the form oneOf(A0) can be used, where A0 is a subset of ground
atoms. Intuitively, such a constraint states that any world where more than one
of the atoms from set A0 appears is invalid. ICEM and ICAM denote the sets
of integrity constraints for the EM and AM, respectively, and the sets of worlds
that conform to these constraints is denoted with WEM(ICEM), WAM(ICAM),
respectively. Finally, logical formulas arise from the combination of atoms using
the traditional connectives (^,_, and ¬). As usual, a world w satisfies formula
(f), written w |= f , i↵: (i) If f is an atom, then w |= f i↵ f 2 w; (ii) if f = ¬f 0

then w |= f i↵ w 6|= f 0; (iii) if f = f 0 ^ f 00 then w |= f i↵ w |= f 0 and w |= f 00;
and (iv) if f = f 0 _ f 00 then w |= f i↵ w |= f 0 or w |= f 00. We use formEM and
formAM to denote the set of all possible (ground) formulas in the EM and AM,
respectively.

2.1 Environmental Model

In this paper, we generalize the approach taken in [12, 14] for the environmental
model by simply assuming that we have a probabilistic model defined over GEM,
which represents a probability distribution over WEM.

Definition 1 (Probabilistic model). Given sets PEM, V, and C, and cor-

responding sets GEM and WEM, a probabilistic model ⇧EM is any function

Pr : WEM ! [0, 1] such that
P

�2WEM
Pr(�) = 1.
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Examples of probabilistic models that can be used are Bayesian networks
(BNs) [10], Markov logic networks (MLNs) [11], extensions of first order logic
such as Nilsson’s probabilistic logic [9], or even ad-hoc constructions of Pr.

2.2 Analytical Model

Unlike the EM, which describes probabilistic information about the state of the
real world, the AM must allow for competing ideas, so it must be able to rep-

resent contradictory information. As described next, the underlying algorithmic
approach allows for the creation of arguments based on the AM that may “com-
pete” with each other. In this competition, know as a dialectical process, one
argument may defeat another based on a comparison criterion that determines
the prevailing argument. Resulting from this process, the DeLP3E framework
will determine arguments that are warranted (those that are not defeated by
other arguments) thereby providing a suitable explanation. The transparency
provided by the system can allow analysts to identify potentially incorrect input
information and fine-tune the models or, alternatively, collect more information.
In short, argumentation-based reasoning has been studied as a natural way to
manage a set of inconsistent information, since it is based on the way humans
settle disputes. Another desirable characteristic of (structured) argumentation
frameworks is that, once a conclusion is reached, we are left with an explanation
of how we arrived at it and information about why a given argument is war-
ranted; this is very important information for analysts to have. We now recall
some preliminaries of the underlying argumentation framework used, and then
introduce the analytical model.

Defeasible Logic Programming with Presumptions (PreDeLP). DeLP with Pre-
sumptions (PreDeLP) [7] is a formalism combining Logic Programming with
Defeasible Argumentation. We now briefly recall the basics of PreDeLP, and
refer the reader to [3, 7] for a full presentation. The formalism contains several
di↵erent constructs: facts, presumptions, strict rules, and defeasible rules. Facts
are statements about the analysis that can always be considered to be true,
while presumptions are statements that may or may not be true. Strict rules
specify logical consequences of a set of facts or presumptions (similar to an im-
plication, though it does not behave exactly the same) that must always occur,
while defeasible rules specify logical consequences that may be assumed to be
true when no contradicting information is present. These components are used
in the construction of arguments, and together comprise PreDeLP programs.

Formally, we use the notation ⇧AM = (⇥,⌦,�,�) to denote a PreDeLP
program, where:

– ⌦ is the set of strict rules of the form L0  L1, . . . , Ln, where L0 is a
ground literal and {Li}i>0 is a set of ground literals;

– ⇥ is the set of facts, written simply as atoms;
– � is the set of defeasible rules of the form L0 —< L1, . . . , Ln, where L0 is a

ground literal and {Li}i>0 is a set of ground literals, and
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– � is the set of presumptions, which are written as defeasible without a body.

For simplicity, we sometimes refer to ⇧AM as a set corresponding to the union
of its components. Recall that all atoms in the AM must be formed with a
predicate from the set PAM, and note that in both strict and defeasible rules,
strong negation (i.e., classical negation as in first-order logic) is allowed in the
head, and thus may be used to represent contradictory knowledge.

For the treatment of contradictory knowledge, PreDeLP incorporates a de-
feasible argumentation formalism that allows the identification of the pieces of
knowledge that are in conflict, and through the previously mentioned dialectical

process decides which information prevails as warranted. The dialectical process
involves the construction and evaluation of arguments that either support or
interfere with a given query, building a dialectical tree in the process. Formally,
we have:

Definition 2 (Argument). An argument hA, Li for a literal L is a pair of

the literal and a (possibly empty) set of the AM (A ✓ ⇧AM ) that provides a

minimal proof for L meeting the requirements: (i) L is defeasibly derived from

A, (ii) ⌦ [⇥ [A is not contradictory, and (iii) A is a minimal subset of �[�
satisfying (i) and (ii).

Literal L is called the conclusion supported by the argument, and A is the

support of the argument. An argument hB, Li is a subargument of hA, L0i i↵
B ✓A. An argument hA, Li is presumptive i↵ A \ � is not empty. We will also

use ⌦(A) = A \⌦, ⇥(A) = A \⇥, �(A) = A \�, and �(A) = A \ �.

Note that this definition di↵ers slightly from that of [16] where DeLP is intro-
duced; here, strict rules and facts are included as part of the argument.

Given argument hA1, L1i, counter-arguments are arguments that contradict
it. Argument hA2, L2i counterargues or attacks hA1, L1i at literal L00 i↵ there
exists a subargument hA, L00i of hA1, L1i s.t. set ⌦(A1) [ ⌦(A2) [ ⇥(A1) [
⇥(A2) [ {L2, L00} is contradictory.

A proper defeater of an argument hA, Li is a counterargument that, by some
criterion, is considered to be better than hA, Li; if the two are incomparable
according to this criterion, the counterargument is said to be a blocking de-
feater. An important characteristic of PreDeLP is that the argument compari-
son criterion is modular, and thus the most appropriate criterion for the domain
that is being represented can be selected; the default criterion used in classical
defeasible logic programming (from which PreDeLP is derived) is generalized

specificity [17], though an extension of this criterion is required for arguments
using presumptions [7]. We briefly recall this criterion next; the first defini-
tions is for generalized specificity, which is subsequently used in the definition
of presumption-enabled specificity.

Definition 3. Let ⇧AM = (⇥,⌦,�,�) be a PreDeLP program and let F be

the set of all literals that have a defeasible derivation from ⇧AM. An argument

hA1, L1i is preferred to hA2, L2i, denoted with A1 �PS A2 i↵ the two following

conditions hold:
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1. For all H ✓ F , ⌦(A1) [ ⌦(A2) [ H is non-contradictory: if there is a

derivation for L1 from ⌦(A2)[⌦(A1)[�(A1)[H, and there is no derivation

for L1 from ⌦(A1) [ ⌦(A2) [ H, then there is a derivation for L2 from

⌦(A1) [⌦(A2) [�(A2) [H
2. There is at least one set H 0 ✓ F , ⌦(A1)[⌦(A2)[H 0

is non-contradictory,

such that there is a derivation for L2 from ⌦(A1) [ ⌦(A2) [ H 0 [ �(A2),
there is no derivation for L2 from ⌦(A1) [ ⌦(A2) [ H 0

, and there is no

derivation for L1 from ⌦(A1) [⌦(A2) [H 0 [�(A1)

Intuitively, the principle of specificity says that, in the presence of two conflicting
lines of argument about a proposition, the one that uses more of the available
information is more convincing.

Definition 4. Let ⇧AM = (⇥,⌦,�,�) be a PreDeLP program. An argument

hA1, L1i is preferred to hA2, L2i, denoted with A1 � A2 i↵ any of the following

conditions hold:

1. hA1, L1i and hA2, L2i are both factual arguments and hA1, L1i �PS hA2, L2i.
2. hA1, L1i is a factual argument and hA2, L2i is a presumptive argument.

3. hA1, L1i and hA2, L2i are presumptive arguments, and

(a) ¬(�(A1) ✓ �(A2)), or
(b) �(A1) = �(A2) and hA1, L1i �PS hA2, L2i.

Generally, if A,B are arguments whit rules X and Y , resp., and X ⇢ Y , then A
is stronger than B. This also holds when A and B use presumptions P1 and P2,
resp., and P1 ⇢ P2.

A sequence of arguments called an argumentation line thus arises from this
attack relation, where each argument defeats its predecessor. To avoid unde-
sirable sequences that may represent circular or fallacious argumentation lines,
in DeLP an argumentation line is acceptable if it satisfies certain constraints
(see [18]). A literal L is warranted if there exists a non-defeated argument A
supporting L.

Clearly, there can be more than one defeater for a particular argument hA, Li.
Therefore, many acceptable argumentation lines could arise from hA, Li, leading
to a tree structure. The tree is built from the set of all argumentation lines rooted
in the initial argument. In a dialectical tree, every node (except the root) rep-
resents a defeater of its parent, and leaves correspond to undefeated arguments.
Each path from the root to a leaf corresponds to a di↵erent acceptable argumen-
tation line. A dialectical tree provides a structure for considering all the possible
acceptable argumentation lines that can be generated for deciding whether an
argument is defeated. We call this tree dialectical because it represents an ex-
haustive dialectical1 analysis for the argument in its root. For argument hA, Li,
we denote its dialectical tree with T (hA, Li).

Given a literal L and an argument hA, Li, in order to decide whether or not a
literal L is warranted, every node in the dialectical tree T (hA, Li) is recursively
marked as “D” (defeated) or “U” (undefeated), obtaining a marked dialectical
tree T ⇤(hA, Li) where:
1 In the sense of providing reasons for and against a position.
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– All leaves in T ⇤(hA, Li) are marked as “U”s, and
– Let hB, qi be an inner node of T ⇤(hA, Li). Then, hB, qi will be marked as

“U” i↵ every child of hB, qi is marked as “D”. Node hB, qi will be marked as
“D” i↵ it has at least a child marked as “U”.

Given argument hA, li over ⇧AM , if the root of T ⇤(hA, Li) is marked “U”, then
T ⇤(hA, Li) warrant L and that L is warranted from ⇧AM . Note that warranted
arguments correspond to those in the grounded extension of a Dung argumen-
tation system [1].

We can extend the idea of dialectical tree to a dialectical forest. For a given
literal L, a dialectical forest F(L) consists of the set of dialectical trees for all
arguments for L. We denote a marked dialectical forest, the set of all marked
dialectical trees for arguments for L, as F⇤(L). Hence, for a literal L, we say it
is warranted if there is at least one argument for that literal in the dialectical
forest F⇤(L) that is labeled “U”, not warranted if there is at least one argument
for literal ¬L in the forest F⇤(¬L) that is labeled “U”, and undecided otherwise.

2.3 The DeLP3E framework

This framework, originally proposed in [14], is the result of combining the envi-
ronmental and analytical models presented above (which we denote with ⇧EM

and ⇧AM , respectively). Intuitively, given ⇧AM , every element of ⌦[⇥[�[�
only holds in certain worlds in the set WEM , i.e., these elements are subject to
probabilistic events. Each element of ⌦ [ ⇥ [ � [ � is thus associated with a
formula over GEM (using conjunction, disjunction, and negation, as usual). The
notion of annotation function associates elements of ⌦[⇥[�[� with element
in formEM.

Definition 5 (Annotation function [14]). An annotation function is any

function of the form af : ⌦ [ ⇥ [ � [ � ! formEM. We use [af] to denote the

set of all annotation functions.

We will sometimes denote annotation functions as sets of pairs (f, af(f)) in order
to simplify the presentation.

Definition 6 (DeLP3E Program). Given environmental model ⇧EM, ana-

lytical model ⇧AM, and annotation function af, a DeLP3E program is of the

form I = (⇧EM,⇧AM, af). We use notation [I] to denote the set of all possible

programs.

In the following, given DeLP3E program I = (⇧EM,⇧AM, af) and � 2 WEM,
we use notation ⇧AM(�) = {f 2 ⇧AM s.t. � |= af(f)}. This gives rise to a
decomposed view of DeLP3E programs.

The most direct way of considering consequences of DeLP3E programs is thus
to consider what happens in each world in WEM; that is, the defeat relationship
among arguments depends on the current state of the (EM) world.
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Definition 7 (Existence of an Argument in a World). Given DeLP3E

program I = (⇧EM,⇧AM, af), argument hA, Li is said to exist in world � 2WEM

if 8c 2 A, � |= af(c).

The notion of existence is extended to argumentation lines, dialectical trees, and
dialectical forest in the expected way (for instance, an argumentation line exists
in � i↵ all arguments that comprise that line exist in �).

The idea of a dialectical tree is also extended w.r.t. worlds; so, for a given
world � 2 WEM , the dialectical (resp., marked dialectical) tree induced by � is
denoted with T�hA,Li(resp., T ⇤

�hA,Li). We require that all arguments and defeaters
in these trees exist in �. Likewise, we extend the notion of dialectical forest in
the same manner (denoted with F�(L) and F⇤

�(L), respectively). Based on these
concepts, we introduce the notion of warranting scenario.

Definition 8 (Warranting Scenario). Given program I = (⇧EM,⇧AM, af)
and a literal L formed with a ground atom from GAM, a world � 2WEM is said

to be a warranting scenario for L (denoted � `war L) if there is a dialectical

forest F⇤
�(L) in which L is warranted and F⇤

�(L) exists in �.

The idea of a warranting scenario is used to formally define DeLP3E entail-
ment. The set of worlds in the EM where a literal L in the AM must be true
is exactly the set of warranting scenarios—these are the “necessary” worlds:
nec(L) = {� 2 WEM | (� `war L)}. Now, the set of worlds in the EM where
AM literal L can be true is the following—these are the “possible” worlds:
poss(L) = {� 2WEM | (� 6`war ¬L)}.

In the following we use notation for(�) =
V

a2� a ^
V

a 62� ¬a, which denotes
the formula that has � as its only model. We also extend this notion to sets of
worlds: for(W ) =

W
�2w for(�). Entailment can then be defined as follows:

Definition 9 (DeLP3E Entailment). Given program I = (⇧EM,⇧AM, af),
AM literal L, and probability interval p 2 [l, u], we say that I entails L with

probability p 2 [l, u] if the probability distribution Pr yielded by ⇧EM is such that

l 
P

�2nec(L) Pr(�) and
P

�2poss(L) Pr(�)  u.

In the next section, we present an example of how DeLP3E can be used in
practice, leveraging our recently-introduced graphical tool [6].

3 Application Example

The use case presented here, which is modeled in part using a very simple
Bayesian network, is in the domain of cyber threat analysis; in particular, near
real-time security analysis such as incident response in enterprise networks. Such
e↵orts are aided by the Security Information and Event Management (SIEM)
platforms that continuously provide alerts relating to an enterprise’s security
posture that are analyzed by SOC analysts. These analysts, in turn, examine
the alerts to determine if they correspond to malicious events and, if required,
elevate them to more senior analysts for further examination. The desired end
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netAccess
The attacker obtains network access to the Web
server on tcp/80.

PEM : httpdIsVulnerable
The program httpd is a service running on Web
server as user apache, listening on tcp/80, and is
known to be vulnerable.

obtainExecutionPrivileges
The attacker obtains code execution privilege on
the Web server.

errorSystemLogs Error detected in the system logs.
vulnerable The system is in a vulnerable state.
compromised The system is compromised.

PAM : underAttack The system is under attack.

qualifiedSta↵
The sta↵ is trained to handle dangerous
situations that may compromise the system.

webServerVulnerable The Web server is vulnerable.
runningOldhttpd An old version of httpd is running.

Fig. 1. Explanation of the meaning of the predicates used in the running example.

state is to ensure unauthorized activities can be handled e↵ectively by applying
appropriate countermeasures to prevent problems from worsening and resolve
the incident, removing the threat from the enterprise [15]. As mentioned before,
it is important to keep in mind that real-time security analysis is a far more im-
precise process than deterministic reasoning [19]—we do not know the attacker’s
choices, cyber attacks are not always guaranteed to succeed, and the defender’s
observations on potential attack activities are limited. Nevertheless, the logi-
cal causality encoded in a deterministic attack graph (a graph that illustrates
the possible multi-stage attacks in an enterprise network typically by present-
ing that logical causality relations among multiple privileges and configuration
settings [19]), is invaluable to understand security events, and will be useful for
building practical network defense tools if we can appropriately account for the
uncertainty inherent in the reasoning process. Several attempts have been made
at using Bayesian networks to model uncertainty in security analysis [8, 2, 4].

A Bayesian network (BN, for short) is a graphical representation of cause-
and-e↵ect relationships within a problem domain. More formally, a BN is a
Directed Acyclic Graph (DAG) in which the nodes represent variables of inter-
est (propositions), the directed links represent the causal influence among the
variables, and the quantification of the influence is represented by conditional
probability tables (CPT). Bayesian networks are powerful tools for real-time se-
curity analysis if a BN model can be built that reflects reality [19]. However, it is
important to note that is not trivial to construct a BN from an attack graph [19].

Before presenting the environmental and analytical models of the application
example, we first describe the predicates of the sets PEM and PAM and their
respective meanings—these can be seen in Figure 1. As shown in the table, some
of these predicates comprise the analytical model (AM), while others are part
of the environmental model (EM). For instance, predicates that describe the
behavior of the system under certain circumstances are part of the analytical
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Fig. 2. Simple attack structure. Fig. 3. Probability distribution over WEM.

model. On the other hand, the environmental model contains predicates that
are associated with uncertain events.

3.1 Environmental Model

In Figure 2 we show the simple attack structure (representing inherent uncer-
tainty) that we use in our application example, which is taken from [19]. We have
the following nodes, which are all Boolean (i.e., can take value true or false):

(a) The attacker obtains network access to the Web server running on tcp/80
(netAccess).

(b) The program httpd is a service running on the Web server as user apache,
listening on tcp/80, and is known to be vulnerable (httpdIsVulnerable).

(c) The attacker obtains code execution privileges on the Web server (obtainEx-
ecutionPrivileges).

The relationship among these nodes is simple: “nodes a and b together set the
stage for c”. Hence, we can obtain the basic attack structure, as shown in Fig-
ure 2. This logic can be represented by an adequate arrangement of the graph
structure and via the conditional probability tables (CPT).

The Bayesian network depicted in Figure 2 describes the relationship between
the nodes; due to lack of space, and to improve readability, we omit the detailed
specification of the CPTs and instead provide directly the complete probability
distribution Pr over all possible worlds WEM in Figure 3. So, for instance, the
probability that an attacker obtains execution privileges (Node c), once they
have gained access to the network (Node a) but there is no known vulnerability
in the httpd program that is running on the server (Node b) is 0.06 (world �3).
With this, we have defined the environmental model; the next step involves
defining the analytical model.

3.2 Analytical Model

Recall that all atoms in the AM must be formed with a predicate from the set
PAM, and that in both strict and defeasible rules, strong negation (i.e., classical
negation as in first-order logic) is allowed in the head; thus, this machinery may
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⇥ : ✓1 = errorSystemsLogs

⌦ : !1 = vulnerable  compromised

!2 = underAttack  compromised, errorSystemsLogs

� : �1 = compromised —<

�2 = qualifiedPersonnel —<

� : �1 = underAttack —< compromised

�2 = webServerVulnerable —< runningOldhttpd

�3 = ⇠vulnerable —< qualifiedPersonnel

Fig. 4. Ground argumentation framework from the running example.

af(✓1) = true

af(!1) = true

af(!2) = netAccess _ obtainExecutionPrivileges

af(�1) = netAccess

af(�2) = true

af(�1) = true

af(�2) = httpIsVulnerable

af(�3) = true

Fig. 5. An example of an annotation function over the program in Figure 4.

be used to represent contradictory knowledge. In Figure 4 we show the PreDeLP
program over the application example.

This program encodes some basic knowledge of the domain; for instance,
strict rule !2 states that if errors are found in the system logs (errorSystemsLogs)
and the system is compromised (compromised), then the system is under attack
(underAttack). The defeasible rule �2 states that if an old version of the httpd

service is running on the Web server (runningOldhttpd), then we can assume that
the web server is vulnerable (vulnerable). Following Definition 2, some arguments
that can be obtained are:

hA1, vulnerablei A1 = {�1,!1}
hA2, underAttacki A2 = {✓1,!2,�1}
hA3, underAttacki A3 = {�1, �1}
hA4,⇠vulnerablei A4 = {�2,!3}

The next step is to define the annotation function—recall that such functions
associate elements of ⌦[⇥[�[� with elements in formEM. Figure 5 shows the
annotations for our application example; for instance, the annotation for rule �1

means that this rule only holds whenever the probabilistic event netAccess is
true. Elements that are annotated with “true” hold in all possible worlds.
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9
=
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8
<

:
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�1,�2, �1,
�2, �3

9
=

; �3 :

8
<

:

✓1,!1,!2,
�1,�2, �1,

�3

9
=

; �4 :

8
<

:

✓1,!1,!2,
�1,�2, �1,

�3

9
=

;

�5 :

8
<

:

✓1,!1,!2,
�2, �1, �2,

�3

9
=

; �6 :

⇢
✓1,!1,�2,
�1, �2, �3

�
�7 :

⇢
✓1,!1,!2,
�2, �1, �3

�
�8 :

⇢
✓1,!1,�2,

�1, �3

�

Fig. 6. A depiction of how the DeLP3E program in the application example can be
decomposed into one classical PreDeLP program for each possible EM world.

3.3 DeLP3E Program

In summary, for our use case we have built the EM model from Figure 3 (⇧EM),
the AM model from Figure 4 (⇧AM), and the annotation function from Figure 5
(af)—these components give rise to DeLP3E program IAE = (⇧EM,⇧AM, af).
Figure 6 shows how IAE can be decomposed into one classical PreDeLP program
⇧AM(w) for each world � 2WEM.

For instance, ⇧AM(�7) contains ✓1,!1,�2, �1, and �3 because the annotation
function associates condition true to all of these components; it contains !2

because the formula netAccess_obtainExecutionPrivileges is satisfied by �7 (since
obtainExecutionPrivileges is true), and it does not contain �1 and �2 because the
conditions netAccess and httpIsVulnerable are false in �7.

We now show a set of arguments and the corresponding worlds in which they
can exist (as per Definition 7):

hA1, vulnerablei A1 = {�1,!1} {�1,�2,�3,�4}
hA2, underAttacki A2 = {✓1,!2,�1} {�1,�2,�3,�4}
hA3, underAttacki A3 = {�1, �1} {�1,�2,�3,�4}
hA4,⇠vulnerablei A4 = {�2,!3} {�1,�2,�3,�4,�5,�6,�7,�8}
hA5, qualifiedPersonneli A5 = {�2} {�1,�2,�3,�4,�5,�6,�7,�8}
hA6, compromisedi A6 = {�1} {�1,�2,�3,�4}

We will now focus on how such arguments can be shown to a user as part of
human-in-the-loop threat analysis tool.

Towards a Graphical Threat Analysis Tool

The visualization and analysis of these programs, as well as the warranted literals
they yield, can be carried out in an extension of the recently introduced DAQAP
platform [6]—the main change required for this to be possible is the addition
of the capability to incorporate probabilistic models to be used in the EM, and
annotation functions for the AM. The DeLP Graph of worlds �1 and �8 are
depicted Figures 7 and 8, respectively.

Based on these graphs, for the DeLP3E program IAE = (⇧EM,⇧AM, af), we
can compute an upper and lower bound on the probability of a particular literal
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Fig. 7. DeLP Graph of world �1. Fig. 8. DeLP Graph of world �8.

(as per Definition 9). The simplest way to do this is to carry out an exhaustive
analysis based of the events of the domain and the rules applied according to
the existence of such events.

Consider for instance the query for the literal ⇠vulnerable. The set of worlds
that are warranting scenarios (cf. Definition 8), i.e., the “necessary” worlds are:

nec(⇠vulnerable) = {�5,�6,�7,�8}.

On the other hand, the “possible” worlds are:

poss(⇠vulnerable) = {�1,�2,�3,�4,�5,�6,�7,�8} = WEM.

By summing the probabilities of each set of worlds (according to the distribution
given in Figure 3), we have that:

–
P

�i2nec(⇠vulnerable) Pr(�i) = 0.10 + 0.09 + 0.02 + 0.10 = 0.31
–

P
�i2poss(⇠vulnerable) Pr(�i) = 1.

Therefore, we can conclude that: 0.31  Pr(⇠vulnerable)  1; this reflects the
fact that the elements in the AM related to having qualified personnel are labeled
with true. In this way, we can compute the probability intervals associated with
each literal and display them in a DeLP Graph, as illustrated in Figure 9. Thus,
the analyst can clearly visualize the state of the system and the threats that
might be present, perform an evaluation, and execute actions if necessary—
for instance, in the example above, sta↵ rotation might trigger changes in the
program, causing Pr(⇠vulnerable) to drop.

Though the example presented here is necessarily simplified, it is clear that
these capabilities provide human analysts with the means to model complex
situations in cyber threat analysis, but saving them from having to carry out
the reasoning associated with such situations, which more often than not be-
come too involved to be done manually. Perhaps most importantly, the results
are constructive, so the analyst can “trace back” results to better understand
how the system arrived at a given conclusion, and make changes in the facts,
presumptions, or probabilities if necessary.
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Fig. 9. Example of how results can be visualized as a graph in the DAQAP platform;
literals are labeled with the probability intervals derived from the DeLP3E model.

4 Conclusions

In this work we presented an application example to show the capabilities of
the DeLP3E framework to handle scenarios in cyber security analysis; in partic-
ular, we focused on near real-time security analyses such as intrusion response

through a combination of probabilistic modeling and argumentative reasoning.
We adopted the DeLP3E framework given its unique combination of structured
argumentation and annotations that refer to events for which we have underly-
ing probabilistic information—this separation of concerns yields robust models
that can handle two essentially di↵erent types of uncertainty: probabilistic and
that arising from defeasible reasoning.

Ongoing and future work involves the extension of the DAQAP tool to pro-
vide security analysts with a platform that allows them, through adequate user
interfaces, to carry out complex cyber threat analysis tasks. The following key ar-
eas also need to be explored: developing (exact or approximate) algorithms that
are more e�cient than an exhaustive analysis of possible worlds; this is especially
necessary to be able to handle large datasets; semi-automatically learning the
EM and AM from data; develop user interfaces that maximize usability and min-
imize comprehension and response time, which is often crucial in the field; and
develop a full version of the DeLP3E framework and deploy it in the DAQAP
platform. Future work will be carried out in these directions, focusing on the use
of both real and synthetic datasets for empirical evaluation.
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feasible argumentation query answering platform. In: Proc. FQAS 2019. pp. 126–
138 (2019)
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