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Abstract. Analysts like to pose a variety of questions over large rela-
tional databases containing data on the domain that they are analyzing.
Enabling natural language question answering over such data for ana-
lysts requires mechanisms to extract exceptions in data, find steps to
transform data, detect implications in the data, and apply classifications
on the data. Motivated by this problem, we propose a semantically en-
riched deep learning pipeline that supports natural language question
answering over relational databases and uses Formal Concept Analysis
to find exceptions, classification and transformation steps. Our frame-
work is based on a set of deep learning sequence tagging networks which
extracts information from the NL sentence and constructs an equivalent
intermediate sketch, and then maps it into the actual tables and columns
of the database. The output data of the query is converted into a lattice
structure which results into the (extent,intent) tuples. These tuples are
then analyzed to find the exceptions, classification and transformation
steps.

1 Introduction

Data analysts have to deal with a large number of complex and nested queries to
dig out hidden insights from the relational datasets, spread over multiple files.
Extraction of the relevant result corresponding to a given query can be easily
done through a deep learnt NLQA framework, but to detect further explanations,
facts, analysis and visualizations from queried output is a challenging problem.
This kind of data analysis over query’s result can be handled by Formal Concept
Analysis, a mathematical tool that results in a concept hierarchy, makes seman-
tical relations during the queries, and also can find the implications as well as
asociations in the given dataset, can unify data and knowledge and is capable
of information engineering as well as data mining. So for enabling NL analytics
over such datasets for analysts, we present in this paper, a semantically enriched
deep learning pipeline that a) enables natural language question answering over
relational databases using a set of deep learnt sequence tagging networks, and
b) carries out regularity analysis over the query results using Formal Concept
Analysis to interactively explore, discover and analyze the hidden structure in
the selected data [12] [11]. The deep learnt sequence tagging pipeline extracts
information from the NL sentence and constructs an equivalent intermediate
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sketch, and then uses that sketch to formulate the actual database query on the
relevant tables and columns. Query results are used in Formal Concept Analysis
to create a lattice structure of the objects and attributes. The obtained lattice
structure is then used to find exceptions in the data, classification of a new ob-
ject and also to find the set of steps to transform the data from one structure to
another structure.

2 Formal Concept Analysis

Formal Concept Analysis provides a theoretical framework for learning hierar-
chies of knowledge clusters called formal concepts. A basic notion in FCA is the
formal context. Given a set G of objects and a set M of attributes (also called
properties), a formal context consists of a triple (G, M, I) where I specifies
(Boolean) relationships between objects of G and attributes of M , i.e., I C G x
M .Usually, formal contexts are given under the form of a table that formalizes
these relationships. A table entry indicates whether an object has the attribute,
or not. Let I(g) = {m € M;(g,m) € I} be the set of attributes satisfied by
object g , and let I(m) = {g € G;(g,m) € I'} be the set of objects that satisfy
the attribute m . Given a formal context (G, M, I) . Two operators ()" define
a Galois connection between the powersets (P(G),C) and (P(M),C), with ACG
and BCM:

A"'={me M|Vg e A: gIm}

and

B' ={g € G|Ym € B : gIm}

That is to say, A’ is the set of all attributes which is satisfied all objects in A ,
whereas B’ is the set of all objects which satisfies all attributes in B . A formal
concept of (G,M,I) is defined as a pair (A,B) with AeG , Be M , A’=B and
B’=A. A is called the extent of the formal concept (A,B), whereas B is called the
intent.The set of all formal concepts of (G, M, I) equipped with a subconcept-
superconcept partial order < is the concept lattice denoted by L. The and is
defined as:

For Al,Agg G and Bl,ng M

(A1, B1) < (A3, B2) <= A; C As(equivalenttoBs C By)
In this case, the concept (A;, By) is called sub-concept and the concept (Ag, Bs)

is called super-concept.

2.1 Association and Implication Rules

Given a formal context (G,M,I) there are extracted exact rules and approxi-
mate rules (rules with statistical values, for example, support and confidence).



These rules express in an alternative way the underlying knowledge. These rules
are significant as they expresses the underlying knowledge of interaction among
attributes.The exact rules are classified as implication rules while the approxi-
mation rules are classified as association rules.

Definition Given a formal context whose attributes set is M. An implication is
an expression S = T, where S,T C M. An implication S = T, extracted from
a formal context, or respective concept lattice, have to be such that S’ C TV. In
other words: every object which has the attributes of S, also have the attributes
of T. If X is a set of attributes, then X respects an implication S = T iff S ¢
X or T € X. An implication S = T holds in a set {X7,..., X,;} C M iff each
X respects S — T.

Definition Given a threshold minsupp € [0, 1], where the support

card(X")

— 2 (withX' := X: I
card(G) (with g € GVm € (g,m) €I,

supp(X) :=
association rules are determined by mining all pairs X = Y of subsets of M
such that
supp(X = Y) = supp(X)

is above the threshold minsupp, and the confidence

supp(X UY)

conf(X = Y):= supp(X)

is above a given threshold minconf € [0, 1].

3 Methodology

We present a novel approach where a natural language sentence is converted
into the sketch (Listing 1.1) which uses deep learning models and then further
using the sketch to construct the database query (SQL) and fetch the output.
This output is then taken to derive some explanations or interesting facts, find
outliers or exceptions and rationalize the queried data if required (fig:1).

In order to generate the query sketch, we have a pipeline of multiple sequence
tagging deep neural networks: Predicate Finder Model (Select Clause), Entity
Finder Model (Values in Where Clause), Meta Type Model, Operators and Ag-
gregation Model (all using bi-directional LSTM network along with a CRF (con-
ditional random field) output layer), where the natural language sentence is pro-
cessed as a sequence tagging problem.

The architecture uses an ELMO embedding that are computed on top of two-
layer bidirectional language models with character convolutions as a linear func-
tion of the internal network states [16]. Also the character-level embedding is
used as it has been found helpful for specific tasks and to handle the out-of-
vocabulary problem. The character-level representation is then concatenated
with a word-level representation and feed into the bi-directional LSTM as input.
In the next step, a CRF Layer yielding the final predictions for every word is



used [8]. We have Z = (z1; 22; ...; 2,) as the input sentence and P to be the scores
output by Bi-LSTM network. @); ; is the score of a transition from tag i to tag
Jj for the sequence of predictions Y = (y1;y2;...; yn). Finally the score is defined
as :

s(Z;Y) = Z Qymywl + Z Piy,
i=0 i=1

Models details

To generate the query sketch we use four different models using the same ar-
chitecture (BiLSTM-CRF) [17] explained above, where the natural language
sentence is processed as a sequence tagging problem. The neural network then
predicts the tag for each word using which predicates, entities, and values in the
sentence are identified, and an intermediate Sketch (independent of underlying
database) is created. The Sketch is then mapped into the columns of the tables
with conditions to construct the actual SQL query. In the sketch generation pro-
cess the order of the models matters as the input of the next model depends on
the output of previous model. To train the models, we had to create the annota-
tions. In the cases where predicate/entities present in the sentence got the direct
match with columns or values present in the actual database, we extracted them
using a script and in the rest of the cases we have manually annotated the data.

— Predicate Finder Model(Select Clause): This model identifies the tar-
get concepts (predicates) from the NL sentence. In case of database query
language, predicate refers to the SELECT part of the query. Once predi-
cates are identified, it becomes easier to extract entities from the remaining
sentence.

— Entity Finder Model(Values in Where Clause): This model identifies
the relations(values/entities) in the query. In some cases the model misses/-
capture some words. To tackle this issue predicted value in the Apache-Solr
is searched. The structured data for the domain is assumed to be present in
Lucene. After the search we picked the entity from the database which has
the highest similarity score.

— Meta Type Model: This model identifies the type of concepts (predicates
and values) at the node or table level. If a concept is present in more than one
table, type information helps in the process of disambiguation. This helps in
making the overall framework domain agnostic.

— Aggregations and Operators Model: In this model, aggregations and op-
erators are predicted for predicates and entities respectively. Our framework
currently supports following set of aggregation functions: count, groupby,
min, max, sum, asc sort, desc sort. Similarly, following set of operators are
also supported: =;>;<;<>;>:<;like.

The models are trained independently and do not share any internal represen-
tations. However, the input of one model depends on the previous. For example,
once predicates are identified we replace the predicate part in the NL sentence
with some token before passing it to the next model. We capture this informa-
tion from the NL sentence and create an intermediate representation (Sketch)



which is further passed to the query generator(neo4j knowledge graphs), to con-
struct the SQL or another database query and yields results. Result table of the
query is then converted into its equivalent formal context, which is a triplet of
objects, attributes and incidence relation between them. This formal context is
used to extract the implication and association rules [10] and create a concept
lattice which derives all possible formal concepts from the context and orders
them according to a subconcept-superconcept relationship [15]. This conceptual
hierarchy of the queried output is further used for knowledge discovery that is
implicitly present in it. Here we are focusing on three types of analysis over
queried data from a relational database.

Listing 1.1: Sketch

7select”:

[

?pred_hint”: model

}s

?pred_hint”: horsepower ,
”aggregation”: desc_sort ,

H

”conditions” :

{

?pred_hint”: cylinders ,
?value”: 4,

”operator”: =

}

}

3.1 Outliers Analysis

This is first type of analysis that could be perform in the queried output. Outliers
are defined as rules that contradict common beliefs. These kind of rules can play
an important role in the process of understanding the underlying data as well
as in making critical decisions. Outliers Analysis is to uncover the exceptions
hidden in the given query output. To perform this over the queried output,
we firstly created a preliminary formal context from the given raw data. Then
by using Conexp tool [13], implication and association rules are generated for
complete dataset. These rules shows the correlation among different attributes.
After the query is posed, concept lattice of the queried data is created and formal
concepts in the form of (extent, intent) tuple are extracted from it. Intents of
these formal concepts are then compared with the implication and association
rules. If an intent of the queried output is violating any of the implication and
association rules, then it is considered as an outlier for that query.
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Fig. 1: High Level Architecture of the Process

3.2 Transformation Analysis

This is the second type of analysis that we introduced in our framework. Trans-
formation analysis is used to measure two queries results, where tasks such as
conversion of the underlying lattice structure of one set of query results into
the lattice structure of another set of query results are required. This kind of
analysis is performed by finding the difference between the intents of the for-
mal concepts of both lattices. In our framework when two semantically enriched
queries are posed, lattice structures of their respective outputs are generated.
To find the possible transformation requirements, we match the intents of both
concept lattices and put down the differences between them. This gives us the
disparity in the kind of objects contained in both the lattices which will help in
transforming one lattice to another.

3.3 Classification analysis

Classification analysis in our framework is done to predict the category of new
objects. This is carried out by defining a target attribute t in the dataset, gen-
erating concept lattices C; for each value v; where i € N of the target attribute
and then comparing new object’s attributes with the intents of each C;. In this
analysis, a query asking for object details is posed. Lattice structures C; corre-
sponding to each v; is stored in the memory. At the run time, matching of new
object’s attributes set is done with intents of each Cj. If the intent of new object
is contained in any one of the lattice C; for some j € range(i), then the new



object is classified under the corresponding v; category otherwise if more than
one concept lattices contains the new object’s intent then our framework cannot
determine its category.

4 Experiments and Results

Census Income dataset taken from UCI machine learning repository [14] is used.
This relational database contains 906 observations and 14 features of people like
age, occupation, education, salary, workclass, native country etc. We construct
the Neo4j knowledge graph from the csv ad also generated the implication and
association rules. In this dataset we considered people names as the set of objects
and applied conceptual scaling over the multivalued features mentioned above to
generate the set of attributes where the objects and the attributes has a binary
relation in between them.

Snapshot of the dataset is:

|name age |workclass education native country |salary

|Aaban 39 State-gov Bachelors United-States | <=50K
|Aabha 50 Self-emp-not-inc| Bachelors United-States  ==50K
|Aabid 38 Private HS-grad United-States = <=50K
|Aabriella 53 Private 11ith United-States | <=50K
|Aada 28 Private Bachelors Cuba <=50K

Implication and association rules extracted from data are:

S.No. rule no. of instances
1 11th = <50K 118
2 State-gov, 5th-6th =—> <50K 45
3 Private, 10th — <50K 63
4 Doctorate, State-gov =— >50K 17
5 Federal-gov, Masters = >50K 41
6 Local-gov, 12th — <50K 86
7 Bachelors = >50K 178

1. Outliers Analysis

Query: List people working more than 60 hours per week and having excep-
tions in salary with respect to education.
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Rules extracted from lattice are:

S.No. rule

1 Gerrard+<» [<50K,Private,France,Prof-school]< Gerrard

2 Arbella<+[>50K,Private,Greece,10th]<>Arbella<>Greece

3 Amine<«[<50K,Self-emp-not-inc, Vietnam,Bachelors]<>Amine< Vietnam

4 Arieyonna<»[>50K,State-gov,India,Prof-school]< Arieyonna<>State-
gov,India

5 Adarsh<[<50K,Private,Mexico,Bachelors|<Adarsh< Mexico

6 Aadhav<[>50K,Private, United-States,Some-college] < Aadhav

Outliers

S.No. rule

1 Arbella<s[>50K,Private,Greece,10th]<> Arbella<>Greece

2 Adarsh+«+[<50K,Private,Mexico,Bachelors]<>Adarsh< Mexico

Analysis

— Adarsh works >60 hours per week with salary

< $ 50 K and Bachelors Degree.
— Arbella works >60 hours per week with salary >$

50 K and is only 10th grade.

2. Transformation Analysis

Query: What needs to be done to transform workclass, education and salary of
men in Cuba to be like men in England?

Fig. 2: England



NO<O>

Fig. 3: Cuba

Intents need to be removed are:

a) (<B0K, Self-emp-inc, 5th-6th); b) (Private, >50K, Masters); ¢) (<50K, Pri-
vate, 11th); d) (<50K, Private, 12th); e)(Private, <50K, 7th-8th); and f) (<50K,
Private, 1st-4th)

Intents need to be introduced are:

a) (>50K, Masters, Private); b) (Self-emp-inc, Bachelors, >50K); ¢) (>50K,
Private, HS-grad); d) (Self-emp-not-inc, <50K, HS-grad); e) (Private, <50K,
Masters); f) (Bachelors, >50K, Private); g) (>50K, Masters, Federal-gov); and
h) (<50K, Doctorate, Private)

It shows: Need of higher Education, Need of Self-Employment.
3. Classification Analysis

Query: Predict that whether Aarav has diabetes or not from his blood pressure,
body mass index and age.

Person details Input from user
enter name Aarav

enter age 25

enter Blood Pressure 66

enter Body mass index 23.2

Based on the features of Aarav, it is predicted that he don’t have diabetes.

5 Conclusion

We have described a framework wherein the NL sentence is semantically mapped
into an intermediate logical form (Sketch) using the framework of multiple se-
quence tagging networks. This approach of semantic enrichment abstracts the
low level semantic information from sentence and helps in generalising into var-
ious database queries (e.g. SQL, CQL). Answer of these queries are then further



interpreted using FCA to find out outliers, facts and explanations, classifications
and transformations. Experimental results shows that how NLQA and FCA can
help an analyst in discovering regularities in a complex data.

References

1. Amit Sangroya, Pratik Saini, Mrinal Rawat, Gautam Shroff, C. Anantaram: Natu-
ral Language Business Intelligence Question Answering through SeqtoSeq Transfer
Learning, In: DLKT: The 1st Pacific Asia Workshop on Deep Learning for Knowl-
edge Transfer, PAKDD, April(2019)

2. Victor Zhong, Caiming Xiong, Richard Socher: Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning,
https://doi.org/arXiv:1709.00103, (2017)

3. Xuezhe Ma, Eduard H. Hovy:End-to-end Sequence Label-
ing via Bi-directional LSTM-CNNs-CRF.,CoRR,abs/1603.01354,
http://arxiv.org/abs/1603.01354,https://doi.org/1603.01354, dblp  computer
science bibliography, https://dblp.org, (2016)

4. Shefali Bhat, C. Anantaram, Hemant K. Jain: Framework for Text-
Based Conversational User-Interface for Business Applications. Knowl-
edge  Science, Engineering and Management, In: Second Interna-
tional Conference, KSEM Melbourne, Australia, DBLP:conf/ksem/2007,
https://doi.org/10.1007/978-3-540-76719-0_31, https://doi.org/10.1007/978-3-
540-76719-0_31, https://dblp.org/rec/bib/conf/ksem/BhatAJ07, November (2007)

5. Loper, Edward, Bird, Steven: NLTK: The Natural Language Toolkit, In: Pro-
ceedings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics, Vol-
ume 1, ETMTNLP 02, pages: 63-70, https://doi.org/10.3115/1118108.1118117,
https://doi.org/10.3115/1118108.1118117, Philadelphia, Pennsylvania, (2002)

6. Manning, Christopher D., Surdeanu, Mihai, Bauer, John, Finkel, Jenny, Bethard,
Steven J., McClosky, David: The Stanford CoreNLP Natural Language Processing
Toolkit, In: Association for Computational Linguistics (ACL) System Demonstra-
tions,pages: 55—60, http://www.aclweb.org/anthology /P /P14/P14-5010, (2014)

7. Li, Fei, Jagadish, H. V.. Constructing an Interactive Natural Lan-
guage Interface for Relational Databases, Proc. VLDB Endow., vol-
ume: 8, pages: 73-84, http://dx.doi.org/10.14778 /2735461.2735468,
https://doi.org/10.14778 /2735461.2735468, VLDB Endowment, September
(2014)

8. Lample, Guillaume, Ballesteros, Miguel, Subramanian, Sandeep, Kawakami,
Kazuya, Dyera, Chris: Neural Architectures for Named Entity Recognition, In: Pro-
ceedings of the 2016 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Association for
Computational Linguistics, pages: 260—270, https://doi.org/10.18653/v1/N16-1030
http://aclweb.org/anthology /N16-1030, San Diego, California, (2016)

9. Dmitry I. Ignatov: Introduction to Formal Concept Analysis and Its Applications in
Information Retrieval and Related Fields, Russian Summer School in Information
Retrieval, December (2015)

10. K Sumangali, Ch Aswani Kumar: Determination of interesting rules in FCA using
information gain, In: First International Conference on Networks and Soft Comput-
ing (ICNSC2014), IEEE, August (2014)



11. Peter D. Grnwald: The Minimum Description Length Principle, MIT Press, pages:
3-40, (2007)

12. Bernhard Ganter, Rudolf Wille: Formal Concept Analysis, Mathematical Founda-
tions, Springer, Berlin,Heidelberg,New York, (1999)

13. Serhiy A. Yevtushenko: System of data analysis:Concept Explorer. (In Russian,
In: Proceedings of the 7th national conference on Artificial Intelligence KII, pages:
127-134, Russia, (2000)

14. Dua, Dheeru, Graff, Casey: UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml, University of California, Irvine, School of Infor-
mation and Computer Sciences, (2017)

15. Ganter B., Wille R.: Formal concept analysis:mathematical foundations. Springer
Science & Business Media, (2012)

16. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, Luke Zettlemoyer: Deep contextualized word representations.
CoRR, abs/1802.05365, (2018)

17. Xuezhe Ma, Eduard H. Hovy: Endto-end sequence labeling via bi-directional lstm-
cnns-crf, CoRR, abs/1603.01354, (2016)



