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Abstract. Recently many machine learning based AI systems have been de-
signed as black boxes. These are the systems that hide the internal logic from
the users. Lack of transparency in decision making limits their use in various real
world applications. In this paper, we propose a framework that utilizes formal
concept analysis to explain AI models. We use classification analysis to study
abnormalities in the data which is further used to explain the outcome of ma-
chine learning model. The ML method used to demonstrate the ideas is two class
classification problem. We validate the proposed framework using a real world
machine learning task: diabetes prediction. Our results show that using a formal
concept analysis approach can result in better explanations.

1 Introduction

Deep learning techniques have improved the state of the art results in various areas
such as natural language processing, computer vision, image processing etc. The area is
growing at such a fast pace that everyday a new model is being discovered that improves
the state of art rapidly. One of the area that is still under studied is related to the use
of these models in real-world such that the outcome can be explained effectively. For
instance, if a critical AI (Artificial Intelligence) system such as medical diagnosis only
tells whether a patient has a certain disease or not without providing explicit reasons,
the users can hardly be convinced of the judgment. Therefore, the ability to explain the
decision is an important aspect of any AI system particular natural language processing
(NLP) based system.

Recently, lots of works have been done to solve natural language processing re-
search problems such as text classification, sentiment analysis, question answering etc.
However, there are very few attempts to explore explainability of such applications.
Relational data is usually described by objects and their attributes. Particularly, struc-
ture of data is defined by dependencies between the attributes. Explanation consists of
performing an exception and transformation analysis to validate the outcome of a ML
model. In this paper, our approach to explanation generation is via using formal con-
cept analysis, a conceptually different perspective from existing approaches. A central
goal of this research is to build a general purpose or domain-independent framework
for interpreting classification outcome of deep learning models, rather than just a sin-
gle problem in a particular domain. In summary, our contributions in this work are as
follows:
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– We propose a formal concept analysis based approach in order to generate expla-
nations for the outcomes.

– Furthermore, we show the effectiveness of our method on a real world data set i.e.
diabetes prediction.

2 Framework

In this paper, we approach the explanation generation problem from a different per-
spective – one based on formal concept analysis (FCA). We propose a general concept
lattice theory based framework for explanation generation, where given an outcome O
of a deep learning model and a domain ontology, the goal is to identify an explana-
tion that can point the user to the prominent feature set f for a certain outcome. We
use diabetes classification as an example to evaluate the framework where we model
two situations: One where outcome of deep learning black box model and outcome of
FCA based classification directly matches and one where it does not match. Further, we
present an algorithm, implemented for FCA, that computes such similarities and eval-
uate its performance experimentally. In addition to providing an alternative approach
to solve the explanation generation problem, our approach has the merit of being more
generalizable to other problems beyond classification problems as long as they can be
modeled using a FCA based concept lattice.

c1 c2 c3 c4

f1

f2

f3

f4

Domain 
Ontology

Machine Learning 
Classifier (As Black Box) 

Output

Formal Context: Objects with Binary Attributes

Concept 1 {f1,f2,f3,f4}, {c4}

Concept 2 {f1,f2,f3}, {c1,c4}

Concept 3 {f1,f2}, {c1,c3,c4}

Concept n

Lattice of Concepts: 
Extension and Intention

Training Data
(Input to ML Model)

Classification 
Analysis

Semantic 
Enrichment of 
concepts
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Algorithm 1 Explanation of Black Box ML model
1: Input: M , c0, c1, sample set s . M : ML Model; c0: lattice of class zero; c1: lattice of

class one
2: Output: E . Explanations
3: procedure PREDICT FCA(c0, c1, si)
4: P ← ∅ . Prediction
5: class0 lattice← c0.lattice
6: class1 lattice← c1.lattice
7: si lattice←LOAD FCA(s)
8: for extent, intent ej , ij ∈ si lattice do
9: for extent, intent ek, ik ∈ class0 lattice do

10: if ik.issubset(ij) then
11: P ← 0
12: end if
13: end for
14: for extent, intent ek, ik ∈ class1 lattice do
15: if ik.issubset(ij) then
16: P ← 1
17: end if
18: end for
19: end for
20: return P
21: end procedure
22: procedure EXPLANATIONGENERATOR(S, D)
23: PML ← ∅ . ML Predictions
24: PFCA ← ∅ . FCA Predictions
25: E ← ∅
26: for sample si ∈ samples do
27: p←M .predict(si)
28: if p > 0.5 then
29: PML.add(1);
30: else
31: PML.add(0);
32: end if
33: PFCA.add(PREDICT FCA(si))
34: for feature fj ∈ si do
35: fj ←MODIFY(fj)
36: P ← PREDICT FCA(si)
37: if PMLi == PFCAi then
38: if P 6= PMLi then E.add (Feature j may be responsible for Sample i classi-

fication);
39: else E.add (Feature j may not be responsible for Sample i classification);
40: end if
41: else
42: if P 6= PMLi then E.add (Feature j may not be responsible for Sample i

classification);
43: else E.add (Feature j may be responsible for Sample i classification);
44: end if
45: end if
46: end for
47: end for
48: return E
49: end procedure



2.1 Formal Concept Analysis

The fundamental fact underlying FCA is the representability of complete lattices by
ordered sets of their meet and join irreducibles. Since ordered sets of irreducibles are
naturally represented by binary matrices, this makes it possible to apply certain aspects
of the lattice theory to the analysis of data given by object-attribute matrices.

Formal Concept Analysis starts with a formal context (G, M, I) where G denotes
an ordered set of objects, M a set of attributes, or items, and I ⊆ G × M a binary
relation between G and M [1]. The statement (g, m) ∈ I, or gIm, means: “the object g
has attribute m”. Two operators (·)′ define a Galois connection between the power sets
(P(G),⊆) and (P(M),⊆), with A⊆G and B⊆M: A′ = {m ∈ M |∀g ∈ A : gIm} and
B′ = {g ∈ G|∀m ∈ B : gIm}. A pair (A, B), such that A′ = B and B′ = A, is called
a formal concept, where A is called the extent and B the intent of the concept (A, B).
The set of all formal concepts of (G, M, I) created by a partial order relation ≤ , is a
subconcept-superconcept hierarchy and is called the concept lattice L.

2.2 Implication Rules

Implication rules S =⇒ T, where S,T ⊆ M holds in context (G,M,I) if S′ ⊆ T′ i.e.,
each object having all attributes from S also has all attributes from T. These rules are
significant as they expresses the underlying knowledge of interaction among attributes
and moreover, also contains statistical values like support and confidence.

2.3 Classification Analysis

Classification analysis is done to predict the category of new as well as existing ob-
jects. This is carried out by defining a target attribute in the dataset, generating concept
lattices for each value of the target attribute and then comparing new/existing object’s
attributes with the intents of the concept lattice for each category. In this analysis, a
query asking for object details is posed. Lattice structures corresponding to each target
value is stored in the memory. Moreover, if an intent i of a lattice contains some in-
tent j of another lattice, then intent j is not considered in the analysis. At the run time,
attributes set matching of the new/existing object is done with each of the lattices in
the memory. If there is only one lattice L whose some concept’s intent contains the in-
tent of new/existing object, then the corresponding category is assigned to that object
otherwise the result ”not determine” is declared.

2.4 Semantic Enrichment using Domain Ontology

Ontology is the formal specification of concepts and relationships for a particular do-
main (e.g. in the domain of finance, US-GAAP is widely used ontology). Ontology has
a formal semantic representation that can be used for sharing and reusing knowledge
and data. We have downloaded ontology for diabetes from bioportal.bioontology.org/
ontologies/DIAB. In the next step, these concepts and relationships are subsequently
coded in the Web Ontology Language (OWL) with Protege.

bioportal.bioontology.org/ontologies/DIAB
bioportal.bioontology.org/ontologies/DIAB


Table 1: Example of Diabetes Ontology

Subject Predicate Object
type 2 diabetes mellitus has exact synonym type II diabetes mellitus
type 2 diabetes mellitus has exact synonym non-insulin-dependent diabetes mellitus
type 2 diabetes mellitus has exact synonym NIDDM
type 2 diabetes mellitus is subClassOf diabetes mellitus
diastolic blood pressure has low range < 70
diastolic blood pressure has high range > 100
body mass index has normal range < 23

This ontology (stored as a Resource Description Framework graph) stores the con-
cepts of the domain and their relationships with a <subject-predicate-object>
structure for each of the concepts. For instance, Table 1 shows an example of diabetes
ontology. Here, concepts like diabetes etc. are defined along with concept relationships
and synonyms. Additionally, ontology also define the categorical partitioning of dia-
betic attributes based on medical experts opinion. For example, ontology suggests the
normal, low and high ranges for blood pressure. This ontology also assists in deriving
implication rules which assists in classification analysis through FCA.

3 Results

The data for diabetes prediction is taken from www.kaggle.com/uciml/pima-indians-diabetes-database.
The datasets consist of several medical predictor (independent) variables and one target
(dependent) variable, Outcome. Independent variables include the number of pregnan-
cies the patient has had, their BMI, insulin level, age, and so on.

Data pre-processing involves removing missing/invalid values. Thereafter, we en-
rich the data using a domain ontology. This involves defining ranges for the records and
also building concept hierarchy. Thereafter, we build a ML model to classify if a certain
object has diabetes or not. At the same time, we also use FCA approach to classify the
same set of objects. Note that the objective of using FCA based classification was just
to explain the outcome of ML model, which has been used as a black box. Results are
summarized in Table 2.

Table 2: Results using FCA and ML Model
ML Model FCA

Accuracy 70% 73%
Precision 77% 72%
Recall 63% 90%

www.kaggle.com/uciml/pima-indians-diabetes-database


3.1 Classification using ML Approach

We used a LSTM based deep neural network based binary classification to train on
the processed dataset. Number of training samples were 540 and testing samples were
150. We used all 11 features available in the data such as BMI, Blood Pressure, Insulin
etc. The test accuracy of diabetes classification was 70% (See Table 2). Interestingly,
accuracy of FCA approach was better. This can be due to the fact that size of dataset was
not very large. It might be possible that on a larger dataset ML model might perform
better. However, the scope of this work was never to compare the accuracy of two
approaches, but to use FCA based lattice theory to explain the output of black box ML
model. The explanation of the outcomes was generated using FCA model as explained
in the next subsection.

3.2 Classification using FCA Approach

We divided the training data (the same data that was used in ML model) into two classes:
diabetes and no diabetes. Then, we created two separate concept lattices for both classes
as shown in Figure 2 and 3. For each sample in test set, we created its lattice alongwith
extent and intent of each concept in the lattice. Thereafter, we compared the intents
of concept in sample lattice with concept in both lattices (class lattices i.e. lattices of
diabetes and no diabetes). The comparison is based on subset matching between sam-
ple lattice and class lattices. Wherever there is a match between lattices, that class is
assigned as predicted class for the test sample.

3.3 Explaining the ML Model Outcome using FCA

We compared the outcomes of ML model and FCA based classification. We take each
sample in the test set and we try to map to the feature set. The goal of explanation is to
identify the feature which may be prominent to classify a given sample into a particular
class. In order to achieve this, we change the features and observe the outcome with
modified features. If the outcome with modified features change (i.e. changing a feature
fi, leads to change in Outcome Oj), we can assert that fi is responsible for the outcome
(See Algorithm 1 for details).

Table 3 shows the identified feature set for two classes. It shows the relative im-
portance of each feature for identifying a sample into diabetes or no diabetes. In the
scope of current work, we present the results with individual features only. Similar ex-
periments can be performed to compute the feature sets as well. As we observe, Age
is least important feature for an outcome of diabetes class, whereas Blood Pressure is
most important feature. Similarly, for an outcome to be in non-diabetes class BMI is the
most prominent feature.

Outcome (Based on the features and Implication rules): Aarav doesn’t have dia-
betes.

In order to qualitatively evaluate the results, we identified implication rules from
the training data as shown in Table 5. For a given test sample, we also used implication
rules to validate the output. For Example: Predict that whether Aarav has diabetes or
not from his blood pressure, body mass index and age (See Table 4).



Table 3: Feature Interpretation for two classes (Diabetes and Non Diabetes)
Diabetes Non Diabetes

Number of times of pregnancy — (# Preg) 15.6% 36.7%
Plasma glucose concentration every 2 hours in
an oral glucose tolerance test — (Plasma)

13.2% 37.5%

diastolic blood pressure (mm Hg) —- (Diast
BP)

16.4% 42.18%

triceps skin fold thickness (mm) —- (skin) 12.5% 41.4%
2-Hour serum insulin (mu U/ml) —- (insulin) 11.7% 43.7%
body mass index (weight in kg/(height in
(mm)2) —- BMI

10.9% 45.3%

diabetes pedigree function — Pedigree 9.3% 43.7%
Age in years —- Age 5.4% 40.6%

Table 4: Classification Example using FCA
Person details Input from user
Name Aarav
Age 25, Age-range(2)
Blood Pressure 66, BP-range(1)
Body Mass Index 23.2, BMI-Range(2)

4 Related Work

Most machine learning model rely on validation set accuracy as a way of primary mea-
surement of trust. However, there are limitations of these approaches in using models
in a real world paradigm. Recognizing the importance of interpretations in assessing
trust, various frameworks have been proposed that focus on interpretable models, es-
pecially for the medical domain [2,3,4]. While such models may be appropriate for
some domains, they may not apply equally well to others. In the domain of computer
vision, systems that rely on object detection to produce candidate alignments [5] or
attention [6] are able to produce explanations for their predictions. However these mod-
els are constrained to specific neural network architectures. Our focus is on building
general, model-agnostic explanations that can be applied to any classifier.

Another common approach for generating explanation is to build another model
over the outcome of original model [7,8]. One limitation of this approach is that these
models approximate the original model globally, thus interpreting outcomes at a fine
grain level becomes a significant challenge. In order to interpret model at fine grain
local level, LIME is a promising approach that approximates the original model lo-
cally [9]. Recent works such as SHAP (SHapley Additive exPlanations) provide robust
framework to interprete predictions of Ml models [10]. Machine learning models have
also been described in terms of Formal Concept Analysis (FCA) [11]. Similarly, Formal
concept analysis has been successfully used in other areas such as knowledge process-
ing [12].



Table 5: Implication rules
Rule # instances
BP-range(2), Age-range(2) =⇒ Outcome(0) 226
BMI-range(1), BP-range(1) =⇒ Outcome(0) 128
BMI-Range(2), BP-Range(2) =⇒ Outcome(1) 63
Age-Range(1), BMI-Range(2), BP-Range(1) =⇒ Outcome(1) 41
BP-Range(0), Age-Range(2), BMI-Range(0) =⇒ Outcome(0) 95
BP-Range(0), Age-Range(2), BMI-Range(2) =⇒ Outcome(1) 86
BP-Range(1), Age-Range(1), BMI-Range(2) =⇒ Outcome(1) 178

Fig. 2: No Diabetes Fig. 3: Diabetes

Our approach is model and domain agnostic. However, using FCA based interpre-
tation approach, the outcome can be interpreted with a sound theoretical basis.

5 Conclusion and Future Work

We considered Formal Concept Analysis in context of interpretation of machine learn-
ing models particularly focusing on classification and assuming that model to be ex-
plained is a black box model. The main attention was drawn to the lattice based classifi-
cation analysis of attributes. We showed the significance using well known classification
problem i.e. diabetes prediction. In this paper, we limited our experiments to two class
classification problems, however the proposed approach can be generalized to multi-
class classification problems easily. In future, we want to extend this work to various
other domains such as computer vision.
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