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Abstract. The main result of the paper provides a lower bound on
sufficient number of randomly generated formal concepts to correctly
predict all important positive test examples with given confidence level.
The technique coincides with modern approach to the famous theorem of
V.N. Vapnik and A.Ya. Chervonenkis. However the situation is dual to
the classical one: in our case test examples correspond to fixed subsets
and probabilistically generated formal concepts must fall into selected
areas of sufficient large volume.
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1 Introduction

Formal Concept Analysis (FCA) [1] is a popular means based on lattice theory
for formalizing methods of data analysis in case of small samples.

Applicability of FCA to Big Data has several obstacles:

– Exponentially large number of hypotheses with respect to size of the initial
formal context in the worst case.

– Many problems of FCA belong to famous classes of NP - and #P -complete
problems [3].

– There is a positive probability of “accidental” concepts appearance that
correspond of overfitting phenomenon [7].

The paper [6] introduces the Markov chain approach to probabilistic gener-
ation of formal concepts (so-called VKF-method). The computer VKF-system
uses the coupling Markov chain to generate random sample of concepts. Each run
of this chain terminates with probability 1. Since each hypothesis (formal con-
cept) is generated by independent run of the Markov chain, the system makes
the induction step in parallel by several threads. Finally the system predicts
target class of each test example by the analogy reasoning.
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The key question of the approach is how to determine sufficient number
of hypotheses to predict target class with given level of confidence. The paper
proposes an answer to this question.

Used technique mostly coincides with modern approach to the famous theo-
rem of V.N. Vapnik and A.Ya. Chervonenkis. However the situation is dual to
the classical one: in our case test examples correspond to fixed subsets and prob-
abilistically generated formal concepts must fall into selected areas of sufficient
large volume. The general approach of Vapnik-Chervonenkis uses the “Occam
razor” principle where no assumption on selected hypothesis made except to its
correctness on all training examples. Hence a hypothesis coincides with area of
objects space. To reject a bad hypothesis is needed to randomly pick training
objects from the corresponding subset.

2 Background

2.1 Basic definitions and facts of FCA

Here we recall some basic definitions and facts of Formal Concept Analysis
(FCA) [1].

A (finite) context is a triple (G,M, I) where G and M are finite sets and
I ⊆ G × M . The elements of G and M are called objects and attributes,
respectively. As usual, we write gIm instead of 〈g,m〉 ∈ I to denote that object
g has attribute m.

For A ⊆ G and B ⊆M , define

A′ = {m ∈M |∀g ∈ A(gIm)}, (1)

B′ = {g ∈ G|∀m ∈ B(gIm)}; (2)

so A′ is the set of attributes common to all the objects in A and B′ is the set of
objects possesing all the attributes in B. The maps (·)′ : A 7→ A′ and (·)′ : B 7→
B′ are called derivation operators (polars) of the context (G,M, I).

A concept of the context (G,M, I) is defined to be a pair (A,B), where
A ⊆ G, B ⊆ M , A′ = B, and B′ = A. The first component A of the concept
(A,B) is called the extent of the concept, and the second component B is
called its intent. The set of all concepts of the context (G,M, I) is denoted by
B(G,M, I).

Let (G,M, I) be a context. For concepts (A1, B1) and (A2, B2) in B(G,M, I)
we write (A1, B1) ≤ (A2, B2), if A1 ⊆ A2. The relation ≤ is a partial order on
B(G,M, I).

A subset A ⊆ G is the extent of some concept if and only if A′′ = A in which
case the unique concept of which A is the extent is (A,A′). Similarly, a subset
B of M is the intent of some concept if and only if B′′ = B and then the unique
concept with intent B is (B′, B).



Proposition 1. [1] Let (G,M, I) be a context. Then (B(G,M, I),≤) is a lattice
with join and meet given by∨
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Corollary 1. For context (G,M, I) the lattice (B(G,M, I),≤) has (M ′,M) as
the bottom element and (G,G′) as the top element. In other words, for all
(A,B) ∈ B(G,M, I) the following inequalities hold:

(M ′,M) ≤ (A,B) ≤ (G,G′). (5)

ut

Definition 1. For (A,B) ∈ B(G,M, I), g ∈ G, and m ∈M define

CbO((A,B), g) = ((A ∪ {g})′′, B ∩ {g}′), (6)

CbO((A,B),m) = (A ∩ {m}′, (B ∪ {m})′′). (7)

so CbO((A,B), g) is equal to (A,B) ∨ ({g}′′, {g}′) and CbO((A,B),m) is equal
to (A,B) ∧ ({m}′, {m}′′).

We call these operations CbO because the first one is used in Close-by-One
(CbO) Algorithm to generate all the elements of B(G,M, I), see [2] for details.

Useful properties of introduced operations are summarized in the following
Lemmas.

Lemma 1. Let (G,M, I) be a context, (A,B) ∈ B(G,M, I), g ∈ G, and m ∈M .
Then

g ∈ A⇒ CbO((A,B), g) = (A,B), (8)

m ∈ B ⇒ CbO((A,B),m) = (A,B), (9)

g /∈ A⇒ (A,B) < CbO((A,B), g), (10)

m /∈ B ⇒ CbO((A,B),m) < (A,B). (11)

Lemma 2. Let (G,M, I) be a context, (A1, B1), (A2, B2) ∈ B(G,M, I), g ∈ G,
and m ∈M . Then

(A1, B1) ≤ (A2, B2)⇒ CbO((A1, B1), g) ≤ CbO((A2, B2), g), (12)

(A1, B1) ≤ (A2, B2)⇒ CbO((A1, B1),m) ≤ CbO((A2, B2),m). (13)

Now we represent the coupling Markov chain algorithm that is a core of
probabilistic approach to machine learning based on FCA (VKF-method).



Data: context (G,M, I), external function CbO( , )
Result: random concept (A,B) ∈ B(G,M, I)
X := G tM ; (A,B) := (M ′,M); (C,D) = (G,G′);
while ((A 6= C) ∨ (B 6= D)) do

select random element x ∈ X;
(A,B) := CbO((A,B), x); (C,D) := CbO((C,D), x);

end
Algorithm 1: Coupling Markov chain

The order on two concepts (A,B) ≤ (C,D) at any intermediate step of the
while loop of Algorithm 1 follows from Lemma 2.

2.2 Probabilistic algorithms for FCA-based machine learning

Now we represent the general scheme of machine learning based on FCA (VKF-
method). The reader can learn the classical deterministic FCA-based approach
to machine learning from Kuznetsov [4]. Our technique uses probabilistic Algo-
rithm 1 for computing a random subset of formal concepts.

As usual, there are two sets of objects called the training and test samples,
respectively.

From positive examples of the training sample the program generates a formal
context (G+,M, I). The negative examples form the set G− of counter-examples
(obstacles).

Set Gτ of examples to predict the target class contains all test objects.

After that the program applies the coupling Markov chain algorithm 1 to
generate a random formal concept (A,B) ∈ B(G+,M, I). The program saves
the concept (A,B), if there is no obstacle o ∈ G− such that B ⊆ o′.

Data: number N of concepts to generate
Result: random sample S of formal concepts without obstacles
G+ := (+)-examples, M := attributes; I ⊆ G+ ×M is a formal context
for (+)-examples;
G− := (-)-examples; S := ∅; i := 0;
while (i < N) do

Generate concept 〈A,B〉 by Algorithm 1; hasObstacle := false;
for (o ∈ G−) do

if (B ⊆ o′) then
hasObstacle := true;

end

end
if (hasObstacle = false) then

S := S ∪ {〈A,B〉};
i := i+ 1;

end

end
Algorithm 2: Inductive generalization



Condition (B ⊆ o′) of Algorithm 2 means the inclusion of intent B of concept
〈A,B〉 into the fragment (attributes subset) of counter-example o.

If a concept avoids all such obstacles it is added to the result set of all the
concepts without obstacles.

We replace a time-consuming deterministic algorithm (for instance, ”Close-
by-One”) for generation of all concepts by the probabilistic one to randomly
generate the prescribed number of concepts.

The goal of Markov chain approach is to select a random sample of formal
concepts without computation of the (possibly exponential size) set B(G,M, I)
of all the concepts.

Finally, machine learning program predicts the target class of test examples
and compares the results of prediction with the original target value.

Data: random sample S of concepts, list of (τ)-objects
Result: prediction of target class of (τ)-examples
X := (τ)-examples;
for (o ∈ X) do

PredictPositively(o) := false;
for (〈A,B〉 ∈ S+) do

if (B ⊆ o′) then
PredictPositively(o) := true;

end

end

end
Algorithm 3: Prediction of target class by analogy

3 Main result

Algorithm 3 gives the following

Definition 2. Object o with fragment (attributes subset) o′ ⊆ M is positively
predicted by concept 〈A,B〉 if B ⊆ o′.

If there are n = |M | attributes then intent B of any concept 〈A,B〉 is a point
of n-hypercube {0, 1}n.

Definition 3. Lower half-space H↓(o) corresponding to object o with frag-
ment o′ ⊆M is defined by linear inequality xj1 + . . .+ xjk <

1
2 , where M \ o′ =

{mj1 , . . . ,mjk}. The empty lower half-space 0 < 1
2 (equals to {0, 1}n) is allowed

too and corresponds to o′ = M .

Remark that cardinality of all possible lower half-spaces is equal to 2n.
Key observation is

Lemma 3. Object o is positively predicted if and only if lower half-space H↓(o)
contains a fragment B of at least one concept 〈A,B〉.



Definition 4. Object o is called ε-important if probability of occurrence of
random concept 〈A,B〉 with B ∈ H↓(o) is greater than ε.

A family of concepts is called ε-net if for each ε-important object o there is
at least one its member 〈A,B〉 with B ∈ H↓(o).

Now we are interested only in 1-st type error probability (positive prediction
fails): we need to determine a number N (depending on ε and δ) such that a
random sample of cardinality N forms ε-net with probability greater than 1− δ.

Lemma 4. For all ε with l > 2
ε and for any independent random samples S1

and S2 of concepts of cardinality l the following inequality holds:

Pl{S1 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅,PH > ε]} ≤
≤ 2 ·P2l{S1S2 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅, |S2 ∩H| > ε · l/2]}.

Lemma 5. For all ε and for any independent random samples S1 and S2 of
concepts of cardinality l the following inequality holds:

P2l{S1S2 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅, |S2 ∩H| > ε · l/2]} ≤
≤ mSub↓(2l) · 2−εl/2.

Theorem 1. For n = |M | and for any ε > 0 and 1 > δ > 0 random sample of
concepts of cardinality

N ≥ 2 · (n+ 1)− 2 · log2 δ

ε

forms ε-net with probability > 1− δ.

Proof. Solve inequality 2 · 2n · 2−εN/2 ≤ δ with respect to N to obtain the
estimate.

Conclusions

In this paper we provided a lower bound on sufficient number of randomly gen-
erated formal concepts to correctly predict all important positive test examples
with given confidence level. The technique mostly coincides with modern ap-
proach to the famous theorem of V.N. Vapnik and A.Ya. Chervonenkis, but the
situation is dual to the classical one.
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