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Abstract. Performing simple keyword-based search has long been the
only way to access information. But for a truly comprehensive search on
multimedia data, this approach is no longer su�cient. Therefore seman-
tic annotation is a key concern for an improvement of the relevance in
image retrieval applications. In this paper1 we propose a system archi-
tecture for an automatic large-scale medical image understanding which
aims at a formal fusion of feature extraction techniques operating on
the bit-level representation of images (and time series data) with for-
mal background knowledge represented in ontologies. We put forward a
hierarchical framework of ontologies to formulate a precise and at the
same time generic representation of the existing high level knowledge in
the medical domain. We present a system architecture which aims at an
integration of high- and low-level features on various abstraction levels
allowing cross-modal as well as cross-lingual retrieval through Content
Based Image Retrieval (CBIR), query by keyword/text, and query by
concept. Experiences from implementing a framework supporting these
features are reported as well as our e�orts to select and acquire relevant
domain knowledge.

1 Introduction

As more and more hospitals switch to a complete IT-based management of pa-
tient data, e. g., by using Electronic Health Records (EHR), huge amounts of
medical information has to be stored and made accessible using computer tech-
nology. The nature of this data is diverse in more than one aspect. Textual de-
scriptions contain all sorts of information. The range goes from patients' names,
age, gender across descriptions of particular diagnosis reports to complete med-
ical cases which can span across long periods of time.

But medical information is not limited to text documents. Rapid advances
in imaging technology have dramatically increased the amount of medical image
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data generated daily by hospitals, pharmaceutical companies, and academic med-
ical research.2 Technologies such as 4D 64-slice Computer Tomography (CT),
whole-body Magnetic Resonance Imaging (MRI), 4D Ultrasound, and the fu-
sion of Positron Emission Tomography and CT (PET/CT) can provide incredi-
ble detail and a wealth of information with respect to the human body anatomy,
function, and disease associations. Therefore, one has to take into account data
from various modalities (text documents, various imaging modalities etc.) to
obtain comprehensive information. Meanwhile, search and retrieval should be
independent of the concrete modality. We will use the term cross-modal to ad-
dress the modality independence throughout this document. Another aspect is
the independence of particular languages like English or German; we will use
the term cross-lingual to refer to this.

Fig. 1. Annotated Neck Region

The increase in the volume of data has brought about signi�cant advances in
techniques for analyzing such data. The precision and sophistication of di�erent
image understanding methods, such as object recognition and image segmen-
tation, have also improved to cope with the increasing complexity of the data.
However, these improvements in analysis have not resulted in more �exible or
generic image understanding techniques. Instead, the analysis methods are very
object speci�c and di�cult to scale across di�erent applications. Consequently,
current image search techniques, whether for Web sources or for medical Pic-
ture Archiving and Communications System (PACS), are still dependent on the
manual and subjective association of keywords to images for retrieval.

2 For example, University Hospital of Erlangen, Germany, has a total of about 50
TB of medical images. Currently they have approx. 150,000 medical examinations
producing 13 TB per year.



Manually annotating the vast numbers of images which are generated and
archived in the medical practice is not an option and also unnecessary since
several object recognition algorithms already exist. The problem of current sys-
tems is that it still needs human intelligence to decide which object recognition
algorithm to apply because knowledge from various dimensions has to be taken
into account (see Sect. 3.2). Our goal is to eventually allow a fully automatic
image segmentation and abstract annotation as shown in Fig. 1 (image taken
from Radiologic Anatomy Browser3).

Section 2 reviews related work in this �eld of research and foundations that
we base our system on. In Sect. 3 we describe in detail the design considerations
for modeling the background knowledge across various abstraction levels starting
with very generic concepts like time and space down to speci�c concepts from the
medical practice. In Sect. 4 we give an overview about our proposed system ar-
chitecture which integrates techniques from both the symbolic and sub-symbolic
world of AI. Then, in Sect. 5, we give an overview of the software framework
that we have started to implement. Finally, in Sect. 6 we present a conclusion
of our experiences and de�ne our next steps.

2 Related Work

[Buitelaar et al., 2006] investigate methods that integrate the annotation of
multimedia data of all forms within one single retrieval framework. Once our
proposed system is running, their work could be an extension. [Romanelli et al.,
2007] show how MPEG74 can be used as a generalized formalism for segmenta-
tion of arbitrary document formats and annotation of segments. This technique
was already applied successfully in the project SmartWeb.5

There are numerous advanced object recognition algorithms for the detection
of particular objects on medical images: [Hong et al., 2006] at the anatomical
level, [Tu et al., 2006] at the disease level, and [Comaniciu et al., 2004] at the
functional level. But the speci�city of these algorithms is also their limitation:
Existing object recognition algorithms are not at all generic. One challenge in
automatic medical image annotation that we want to address is to implement a
framework which is able to decide automatically which object identi�er to apply
for certain images and image regions.

In the recent past, applications like FIRE [Deselaers et al., 2004] showed that
image retrieval only based on sub-symbolic interpretation of the images works
reasonably well for a number of applications. In the IRMA project6 [Lehmann
et al., 2003], such technology was applied to the medical domain.

A number of research publications in the area of ontology-based image re-
trieval emphasize the necessity to fuse sub-symbolic object recognition and ab-
stract domain knowledge. [Vompras, 2005] proposes an integration of spatial

3 http://rad.usuhs.mil/rad/iong/homepage.html
4 MPEG Homepage: http://www.chiariglione.org/mpeg/
5 http://www.smartweb-project.de
6 IRMA: Image Retrieval in Medical Applications, http://irma-project.org/
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context and semantic concepts into the feature extraction and retrieval process
using a relevance feedback procedure. [Papadopoulosa et al., 2006] combine sub-
symbolic machine learning algorithms with spatial information from a domain
ontology. [Su et al., 2002] present a system that aims at applying a knowledge-
based approach to interpret X-ray images of bones and to identify the fractured
regions. [Mechouche et al., 2007] present a hybrid method which combines sym-
bolic and sub-symbolic techniques for the annotation of brain Magnetic Reso-
nance images. While it focuses only on one modality and body region, their ap-
proach shares the use of OWL DL [McGuinness and van Harmelen, 2004], SWRL
rules [Horrocks et al., 2004] and DL reasoning with our proposal. The BOEMIE
EU project7 also focuses on knowledge acquisition independent from modalities.
But while we obtain the formal medical domain knowledge from existing large-
scale ontologies they use a bootstrapping approach to evolve ontologies to also
cover missing concepts [Castano et al., 2006].

3 Ontological Modeling

As for the term ontology in this document we follow the de�nition by [Gruber,
1995]: �An ontology is a formal speci�cation of a (shared) conceptualization.�
Ontologies are usually structured in various layers or levels, with the rationale
that those at higher levels are more stable, shared among more people, and thus
change less often than those at lower levels. Usually, one distinguishes represen-
tational ontologies, upper-level ontologies, mid-level ontologies, and low-level or
domain ontologies.

3.1 Proposed Ontology Hierarchy

In the following paragraphs we will describe the ontology hierarchy that we
designed for the presented problem in the medical domain. Fig. 2 illustrates this
hierarchy.

Representational Ontologies de�ne the vocabulary with which the other on-
tologies are represented; examples are RDF/S [Brickley and Guha, 2004] and
OWL. The used Representational Ontology may vary for the ontology we want
to include. We do not need Open World Assumption as in OWL and reasoning
for the descriptions of documents and images but we need it for concepts in the
Medical Ontologies.

The Upper Ontology is a high-level, domain-independent ontology, providing
a framework by which disparate systems may utilize a common knowledge base
and from which more domain-speci�c ontologies may be derived [Kiryakov et al.,
2001]. It describes very general concepts like time, space, organization, person,
and event which are the same across all domains.

The Information Element Ontology belongs to the mid-level ontologies which
serve as a bridge between abstract concepts de�ned in the upper ontology and

7 http://www.boemie.org/
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domain speci�c concepts speci�ed in the domain ontologies. While ontologies
may be mapped to one another at any level, the mid-level and upper ontologies
are intended to provide a mechanism to make this mapping of concepts across
domains easier. Mid-level ontologies may provide more concrete representations
of abstract concepts found in the upper ontology [Semy et al., 2004].

The Information Element Ontology contains the information elements that
we want to annotate (images, text documents, videos, ...). Building upon the
aforementioned generalized segmentation provided by MPEG7 segments of im-
ages and documents are treated the same way as complete documents.

Representational Ontology (RDFS,OWL,…)
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Fig. 2. Proposed Ontology Hierarchy

Clinical Ontologies belong to the low-level domain ontologies. These ontolo-
gies �specif[y] concepts particular to a domain of interest and represent concepts
and their relationships from a domain speci�c perspective. While the same con-
cept may exist in multiple domains, the representations may widely vary due
to the di�ering domain contexts and assumptions. [...] Reusing well established
ontologies in the development of a domain ontology allows one to take advan-
tage of the semantic richness of the relevant concepts and logic already built into
the reused ontology.� [Semy et al., 2004]. We use the clinical ontologies to spec-
ify roles and domain speci�c abstract data aggregations (like Electronic Health
Records) from the clinical practice. For example, the concepts nurse, doctor,
patient, and medical case belong to these ontologies.

For the Medical Ontologies a clear separation into mid- and low-level on-
tologies is not possible since they have to cover a broad spectrum of concepts.
It ranges from particular disease symptoms to abstract descriptions of human
anatomy and abstract relations between anatomical entities.



In the medical domain, huge amounts of knowledge are already formulated
in abstract ontologies like, e. g., within the Foundational Model of Anatomy
(FMA) Ontology [Rosse and Mejino, 2003]. To be able to map concepts from
this ontology to other ontologies, we rely on work by [Noy and Rubin., 2007]
which translates the frame-based FMA to OWL. Due to the intractability of
the FMA with current reasoners caused by its high complexity, we only use
fragments which are relevant for object detection on medical images. To cover
not only anatomical concepts but also diseases and functional relations between
anatomical entities we will integrate pathological and physiological ontologies as
well.

The Annotation Ontology includes concepts which are used to annotate el-
ements from the ontologies on the left-hand side of Fig. 2 with concepts from
the Medical Ontologies that were detected during object recognition. Using an
ontology (instead of just a simple relation) allows us to express that, e. g., an
image partially deals with a speci�c concept from the anatomical ontology, be-
cause only parts of it are on the picture. Since we use automatically computed
annotations, these annotations come only with a certain likelihood. At least in
some cases we want to annotate the relations with a probability. The Annotation
Ontology allows to express such quali�cations as properties of attributes.

3.2 Examples of Use for Fusion of Syntax and Semantics

To explain the bene�ts of an integration of existing low-level object recognition
techniques with declarative domain knowledge from an ontology we will give four
scenarios. For the proposed system we can separate two di�erent tasks: analysis
while new documents are added to the system and search and retrieval when
queries are answered. The �rst two scenarios apply for analysis as well as for
search and retrieval. The remaining two only apply for search and retrieval.

Search Space Reduction One of the key challenges in semantic image annotation
is the huge search space of possible objects that can be depicted. In the medical
domain several highly speci�c object recognition algorithms exist. Each of them
is very accurate at detecting a particular type of object in medical images from
a speci�c modality (CT, PET, ultrasound, etc.).

Given an arbitrary image it still needs human intelligence to select the right
object recognizers to apply to an image. Aiming to gain a pseudo-general ob-
ject recognition one can try to apply the whole spectrum of available object
recognition algorithms. But it turns out that in generic scenarios even with
state-of-the-art object recognition tools the accuracy is below 50 percent [Chan
et al., 2006,Müller et al., 2006].

Therefore we propose to implement an iterative object recognition process. In
the �rst step, generic algorithms try to detect landmarks like bones. The formal
background knowledge about anatomy can then be applied to decide by means
of a reasoner, which objects are likely to be around the detected landmark and
the image regions to search. Possible dimensions for limiting the search space
using background are body region, image modality (certain anatomical entities



can be made visible only by certain imaging modalities), anatomical knowledge
(if there is a heart on an image, it does not make sense to look for a knee joint),
etc.Thus the search space can be limited drastically making the object detection
faster: only speci�c image regions are searched for particular objects which are
likely to appear in these regions.

Semantic Relevance Test Applying purely low-level object recognition algo-
rithms on a given image will end up in a list of objects that were detected.
By using the formal knowledge about anatomy, these results can be checked
whether their combination makes sense from an abstract anatomical point of
view. If, e. g., the left ventricle is found on an image, it makes sense to look for
the right ventricle as well. But it does not make sense at all to look for a knee
joint in the immediate neighborhood. This information can be fed back into the
object recognition algorithms and used as a reinforcement signal, to focus the
erroneous algorithms to other image regions etc.

Query using Semantic Similarity Typical CBIR retrieves only those images from
a database which are visually similar. CBIR based on semantic similarity means
that in the �rst step the query image is searched for objects which can be mapped
to concepts in the ontology. In the second step the ontology is used to infer similar
concepts and select images which deal with the same or similar concepts (for
details see Sect. 4.5). Only after this step, the query is performed across all sorts
of media which are stored semantically annotated in the knowledge base. Using
semantic similarity allows a fully cross-modal as well as cross-lingual retrieval,
since the document space is searched via the associated concepts and not the
concrete contents.

Query Re�nement During search the formal background knowledge can be used
to analyze a query before the actual retrieval of results from the knowledge base
is begun. Starting from a simple search phrase that is entered by the user, the
reasoner can deduce related concepts in the ontology and provide the user with a
list of concepts from which he can choose. The anatomical knowledge can also be
used to deduce whether the entered concept is too generic (like, e. g., searching
for the concept �organ�), and request the user to re�ne the query. Thus, in an
iterative process, the user can be guided in formulating his query without time
consuming retrieval and relevance sorting of huge result sets.

4 System Architecture

Fig. 3 gives an overview of the proposed system architecture. As stated above
we aim to combine various access methods to provide the user with a generic
and scalable search and retrieval across medical information of all formats. Our
experiences from integrating this framework are delineated in Sect. 5.



4.1 Graphical User Interface

The graphical user interface allows the user to formulate queries in di�erent
ways. These options can be divided into two main categories: Either the query
is to be evaluated and executed in a syntactic or in a semantic way. Only for
the purpose of explanation we will split them up into isolated components. In
our implementation we allow combinations of all query types.

Query by Concept The most straight-forward type of Query by Concept interface
is to allow the user to select concepts from ontologies. A more elaborate way of
Query by Concept is to allow the user to type in keywords which he wants to
search for in the knowledge base. Before starting retrieval of search results from
the knowledge base, the keywords are mapped to concepts from the ontology. If
disambiguation is needed the matching concepts are returned to the user and he
can select those which he intents to search for. This method is closely related to
what is described in Sect. 3.2 in the paragraph about Query Re�nement.
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Fig. 3. Proposed System Architecture



Syntactic Query by Image CBIR can be performed both in a purely syntactic
or a semantic way. In the case of syntactic CBIR the user is actually looking
for visually similar images. Sect. 2 refers to existing work in this area. For this
type of CBIR the search engine will only return images from the same imaging
modality and only those which are visually similar. This technique requires an
e�cient index of low-level images features. The similarity measure is calculated
exclusively based on comparison of low-level features extracted from the query
image and features in the index.

Semantic Query by Image The other case is CBIR based on semantic similar-
ity. That means, the image is analyzed with the Data Analysis component. This
analysis results in annotations with concepts from the Medical Ontologies on the
right-hand side of the ontology hierarchy (see Fig. 2. Only after this step, the
query is performed across all sorts of media which is stored semantically anno-
tated in the knowledge base. Only those documents (medical diagnosis reports,
EHRs, images, etc.) are returned which were annotated with concepts that were
extracted from the query image.

Query by Keywords/Text This case can be divided into (1) syntactic and (2)
semantic cases. Like in most current search engines users formulate their queries
using keywords. The most simple case is using one keyword or a logical combina-
tion of them to search for documents which contain these keywords. This type of
search belongs to (1). It is well understood, robust, fast, and performed millions
of times everyday via all major search engines on the Internet. Another advan-
tage is that users are very familiar with this this way of searching. Therefore we
will include this technique as one component in our system.

The main drawback of plain syntactical (1) search by keyword is that it is
dependent on language and modality. Adding semantics to query by keywords
(2) has already been described in the paragraph about Query by Concept.

Image retrieval based on search by keyword usually depends on the associ-
ation of keywords which appear in the text around an image with the image
itself�which is prone to errors�or on manual annotations which are strongly
in�uenced by the subjective view of the person who is annotating the image.

Another approach is to allow users to formulate queries in longer text blocks.
Again, this scenario can be divided into (1) a syntactic and (2) a semantic case.
To answer such queries, (1) the Application Logic can use purely statistical
methods to compare the text to all other documents in the index. The semantic
approach (2) is to parse the query sentence(s) using techniques from natural
language processing (NLP), represent their meaning using concepts from the
domain ontology and perform a query based on semantic similarity. Thus, this
type of search can be cross-modal and cross-lingual.

4.2 Application Logic

The Application Logic connects the graphical user interface with the Query and
Inference Layer. As described above some of the GUI components require access



to metadata and ontology. The Application Logic abstracts from the Semantic
Search and Retrieval Engines (see Sect. 4.4) and provides an interface for such
requests.

In most cases di�erent types of queries will be linked together, i. e., to per-
form a semantic CBIR which is limited to images of patients whose names match
a certain (key)word. In such cases, the application logic has to demultiplex the
complex query which is coming from the GUI and split it up into multiple re-
quests for the Conventional Search Engines (see Sect. 4.3) and the Semantic
Search and Retrieval Engines (see Sect. 4.4). After collecting the results of all
sub-queries, the results have to be combined and �ltered for the display through
the GUI. For the Query Re�nement (see Sect. 3.2) the Application Logic is con-
trolling the iterative communication between user (via GUI) and search engines.

4.3 Conventional Search Engines

This component consists of various image query engines with associated indexes
of low-level features. These query engines answer queries for images based on
visual similarity. To allow better retrieval results we combine indexes of di�erent
low-level feature extraction algorithms (see Sect. 5).

The text query engine performs keyword-based search on a full-text index.
After an initial indexing phase, searching this index is fast, robust, and accu-
rate at the same time. As stated above, we rely on existing technology for this
component.

Queries from the Application Logic are executed by the di�erent engines, re-
sult lists are generated and returned via a well-de�ned interface. At the lower end
the databases and storage systems (see Sect. 4.7) are interfaced which contain
the data that is to be indexed and searched. This access is abstracted through
the Data Access Layer (see Sect. 4.6).

4.4 Semantic Search and Retrieval Engines

This component provides all other sub-components with access to stored meta-
data, the ontology framework (see Sect. 3), and reasoning services. Depending
on the expressivity of the di�erent ontology components and metadata, di�er-
ent query interfaces are available. For ontology components that have a more
database-like schema we use RDFS-based storage, a SPARQL [Prud'hommeaux
and Seaborne, 2007] query interface and F-Logic [Kifer et al., 1995] as the rule
language for retrieval of semantic data. For those ontology components which
cover concepts with a higher expressivity and which are used with open-world
reasoning (i. e., the Medical Ontologies) we use OWL DL and DL reasoners
like Pellet [Sirin and Parsia, 2004] which have support for rule languages, e. g.,
SWRL [Horrocks et al., 2004].

4.5 Data Analysis

For the Data Analysis we can di�erentiate two basic situations: The (1) query
analysis versus the (2) data analysis from legacy systems in batch mode. Situation



(1) occurs whenever a query has to be mapped to concepts from the ontology.
When new documents have to be added to the index, they have to be analyzed
as well. We assign the latter task to situation (2). In (1) the data originated
from the GUI and �ows top-down through the system architecture. In (2) the
application logic controls the indexing process of new documents. In this case
the data originates from the External Data and Systems Layer (see Sect. 4.7)
and the data �ow is bottom-up.
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Fig. 4 is an expansion of the miniature in the Data Analysis subcomponent
in the System Architecture diagram (Fig. 3). For simpli�cation we included the
Reasoner and Ontology/KB. In fact�and as shown in the System Architecture
diagram�, the Semantic Search and Retrieval Engines subcomponent is inter-
faced to connect the Data Analysis to the high-level knowledge.

As described in Sect. 2 we can build our system upon numerous existing
speci�c object recognition algorithms. The crucial point is to add a tight fusion
with background knowledge represented in ontologies. The �nal goal is a close
interaction of low-level object recognition and reasoning on the high-level domain
knowledge. Therefore we chose to integrate the functionality within multiple
components as shown in Fig. 4. We use the term symbolic feature extractor to
emphasize that the sub-symbolic algorithms on the left-hand side output only
sub-symbolic feature vectors. In contrast the right-hand side algorithms' output
can be mapped directly to symbolic concepts in the ontology.



For each image (as well as volume data set, video etc.) the raw input data is
�rst passed to a central controller which starts analyzing the input with low-level
algorithms from the left side, i. e., to perform shape detection, calculate color
histograms, and so on. The image can be accompanied by contextual data that
is already stored in the knowledge base, e. g., information from previous (seman-
tically annotated) diagnosis reports for this patient (see dashed line). From the
data �ow perspective, this data will be available through the interface of the
reasoner. The results from these low-level processing steps are passed back to
the controller which can decide which other feature extractors to apply next.
Since many of the more sophisticated object recognition algorithms depend on
low-level preprocessing, the output of the �rst step can be reused in further pro-
cessing steps. These low-level features are saved in the low-level image features
index (Sect. 4.3) for search and retrieval based on visual similarity. Combined
with the metadata from the DICOM header8 the extracted low-level information
is used to select a number of object recognition algorithms from the right-hand
side of Fig. 4. In the Feature Associations part of the ontology we store associa-
tions between abstract medical concepts and feature extractor con�gurations to
detect these concepts.

A similar architecture could also be applied for the extraction of high-level
concepts from textual documents. Similar to the sub-symbolic feature extractors
for images on the left-hand side of Fig. 4 statistics based methods can be used
to extract simple features. Techniques from NLP can be used to extract more
abstract information from the texts and map them to concepts in the ontology.

4.6 Data Access

This component provides an abstraction from existing clinical databases for our
proposed retrieval system. The various data archiving systems which are already
in use in modern hospitals are usually specially tailored to archive only docu-
ments from a speci�c modality or type of diagnosis. The Data Access Layer
provides the rest of the system with a uni�ed access to all data sources.

4.7 External Data and Systems

The External Data and Systems Layer consists of the various available data
sources. Medical images are usually stored in PACS (Picture Archiving and Com-
munications Systems). Electronic Health Records (EHRs) are stored in other
database systems. Those records include comprehensive diagnoses, medical re-
ports etc.Today, these databases are heterogeneous in the way they store infor-
mation and in the interfaces they have to make the data available. But since
all these sources contain valuable information for medical diagnoses we aim at
integrating as many as possible. The semantic abstraction from the concrete
document modality allows us to retrieve textual reports along with images from
di�erent medical imaging modalities as the result for a single query.

8 Digital Imaging and Communications in Medicine (DICOM) is a standard for meta-
data storage for medical images (see http://medical.nema.org/).

http://medical.nema.org/


5 Implementation

For our implementation we chose to extend the existing metadata extraction
framework Aperture9 which already supports indexing a large variety of doc-
ument formats. It has a plug-in architecture which allows a simple extension
by feature extractors for currently unsupported document formats or additional
objects. Extracted features are returned in RDF [Hayes, 2004] format which is
stored in a Sesame triple store.10 The framework always extracts the full text
from all supported text document formats. Depending on the type of document,
additional attributes like author and date of creation are extracted. To allow
matching of keywords and phrases within the extracted full text, it is stored in
a Lucene11 index. The key of the document in the Lucene index refers to the
URI which is assigned during the crawling with the Aperture framework and
links the RDF data to the elements within Lucene. For search by keyword, we
rely on the functionality provided by Lucene. Retrieval based on other metadata
attributes is performed by querying the triple store via a SPARQL endpoint.

To also cover images we extended the Aperture framework by three low-level
MPEG7 feature extractors: ScalableColor (basic color distribution description),
ColorLayout (spatial distribution of colors) and EdgeHistogram (edge distribu-
tion with a histogram based on local edge distribution).

Based on the implementation of Lucene Image Retrieval Engine (LIRE)12

we can already support content based image retrieval using visual similarity
by applying vector space based similarity measures on the extracted feature
vectors. Higher sophisticated object recognition algorithms like those mentioned
in Sect. 2, e. g., to detect ventricles, have to be integrated to also allow a truly
semantic annotation of the images.

6 Conclusion and Future Work

In this paper we proposed a close integration of sub-symbolic pattern recognition
algorithms and semantic domain knowledge represented in formal ontologies. The
vision is to combine the techniques from both �elds to bridge the gap between a
symbolic and sub-symbolic world for a generic understanding of medical images
and text. The use of formal ontologies, together with the reasoning capabili-
ties on top of them, forms the essence behind better information retrieval. By
abstracting from the syntactic content representation, it is possible to perform
semantic matching between queries and the content. Additionally, the user is
provided with an extremely �exible interface which allows cross-modal as well
as cross-lingual queries. In a number of scenarios we discussed bene�ts of the
integration of syntactic and semantic techniques for a faster and more scalable
information retrieval application.

9 http://aperture.sourceforge.net/
10 http://www.openrdf.org/
11 http://lucene.apache.org/
12 http://www.semanticmetadata.net/lire/



We proposed an ontology framework to model the background knowledge of
our application domain which aims to reuse and map together existing ontologies
from the medical domain. We have shown a system architecture detailing the
integration of sub-symbolic and symbolic components. Basic components have
already been implemented through extensions of existing software projects. At
the current state our system is able to perform Query by Keyword and Query by
Image based on visual similarity. Among our next steps will be the integration of
existing object recognition algorithms as described in Sect. 2 and mapping their
output to concepts in the ontology. Another area of work will be the selection
of relevant fragments from the existing medical ontologies in cooperation with
medical experts.
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