
What Matters to Students –
A Rationale Management Case Study

in Agile Software Development
Mathias Schubanz

Software and Systems Research Group
Brandenburg University of Technology

Cottbus, Germany
M.Schubanz@b-tu.de

Claus Lewerentz
Software and Systems Research Group
Brandenburg University of Technology

Cottbus, Germany
Claus.Lewerentz@b-tu.de

Abstract—Documenting design decisions and their rationale
(Design Rationale, DR) in software development projects is vital
for supporting the comprehension of the product, product quality,
and future maintenance. Although an increasing number of re-
search publications address this topic, systematic approaches and
supporting DR tools are found very rarely in practice. In software
engineering education, DR is usually not well covered in teaching.
The lack of suitable decision documentation is mainly an issue in
agile software development. In agile approaches, documentation
is regarded as less important than working products. To explore
possibilities for integrating decision documentation into Scrum
processes for educational software development projects, we
conducted a series of eight case studies. These were part of
software lab courses in three universities, i.e., BTU Cottbus, PUT
Poznan, University of Stuttgart, with about 400 participants in
82 project teams. We introduced additional process elements in
Scrum and developed a lightweight capture technique to support
the decision capture.

This paper describes the case study setup and corresponding
implementation and, thus, an example approach of managing
rationale in Scrum. Additionally, it presents a data analysis of
the students’ most relevant decisions documented throughout the
case studies. We conclude the paper with a discussion on the
observations we made during the case study executions and the
applicability of the approach in educational software projects.

Index Terms—rationale management, agile software develop-
ment, scrum, teaching, case study, decision types, design decision

I. MOTIVATION

During a software development project, the members of the
project team make many decisions. These decisions concern
technical issues on all levels of detail as the software archi-
tecture or the selection of particular implementation platform
technology as well as organizational aspects as the prioritiza-
tion of requirements or the use of specific development tools.

The overall set of decisions profoundly influences the
quality properties of the developed product as well as the
efficiency and effectiveness of the development process itself.
Explicit and conscious handling of decisions together with
their rationale (i.e., decision alternatives, selection criteria,
and reasoning) and observed consequences is vital for the
comprehension and sustainable maintenance processes for
software products [7] [14]. The management of decisions and

so-called design rationale (DR) allow for traceability and
comprehension of typical “why”-questions on the products
and processes. Furthermore, decision management creates an
essential opportunity for reflection and learning.

The relevance of DR for software developers was examined
and confirmed several times, for example, by Tang et al. [46].
In their study, software engineers confirmed that they capture
DR and consider this to be relevant in their work processes.
Despite the many supporting arguments and the advocates for
the documentation and use of DR, sustaining and managing
decisions and their rationale is said to be applied seldom in
practice [2], [6]. Its intangible nature is just one of many
driving factors behind this contradiction. Another is the lack
of adequate process integration and tool support for handling
rationale information [30]. Furthermore, the structured and
systematic handling of decisions is only dealt with very
selectively in teaching, as described in Kleebaum et al. [23].

The explicit management and documentation of decisions
seem particularly crucial in agile software development (ASD).
The very concept of agility promotes frequent independent
decision making by the single developer or the development
team. At the same time, ASD deprioritizes documentation in
favor of working software (cf. Agile Manifesto [3]).

Moreover, ASD promotes efficiency in knowledge transfer
through direct informal face-to-face communication [5], [10],
[15], [35]. In addition to the fact that developers, in general, are
reluctant to document decisions, especially when it is unclear
which ones are to be documented [1], they understand ASD
in particular as the liberation from recording any information
at all [44]. Sometimes developers also tend to refer to source
code as the only real documentation artifact [38], [39], [44].
However, even well-structured and readable code only covers
the ”What?“, not the ”Why?“ and especially not the ”Why
not?“.

As part of an ongoing research project [42] with a focus
that is now tailored to ASD, we try to empirically analyze the
described area of conflict with the help of grounded theory [9]
and propose corresponding solutions. In order to do so, we
have observed the work of students and conducted eight case

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 17

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

studies, where they were required to document their most
important decisions actively. These case studies were carried
out within the scope of software engineering lab projects in the
computer science courses of three universities, i.e., Branden-
burg University of Technology Cottbus - Senftenberg (BTU),
Poznan University of Technology (PUT), and the University
of Stuttgart (US). We aimed to use the experience and data
from the case studies to answer the following three research
questions (RQ) and at the same time, achieve the following
learning objective (LO):

RQ1 What are suitable ways to introduce decision captur-
ing and reflection in an agile development process?

RQ2 Which types of decisions are crucial in agile educa-
tional software development projects?

RQ3 To what extent do students capture decision alterna-
tives and their rationale?

..
LO1 Raise the awareness of students for decision making

and rationale management in software engineering.

The remainder of the paper is structured as follows: Sec-
tion II discusses related work in the field of rationale man-
agement in general and in an educational context. Section III
presents the case study setup and details on its execution.
Section IV elaborates on our results with respect to our re-
search questions and the learning objective. Subsequently, we
discuss these findings and some conclusions in Section V. We
conclude by describing potential future work in Section VI.

II. RELATED WORK

In this section, we discuss related work. Section II-A
elaborates on the topic of rationale management in the context
of software engineering. Section II-B focusses on rationale
management in ASD. Finally, Section II-C examines related
work on teaching rationale management.

A. Rationale Management in Software Engineering

Early research on rationale management dates back to the
1970s and aimed at the use in politics (cf. Kunz and Rit-
tel [28]). The ideas were quickly translated into first practical
projects. Conklin and Yakemovic [11] reported on the system-
atic capture and use in various engineering disciplines which
already took place in the 1980s. A few years later, research
in the field of Human-Computer-Interaction (HCI) recognized
the relevance of managing rationale, and various contribu-
tions appeared (cf. Fischer et al. [16], Lee and Lai [32],
MacLean et al. [34]). These then gradually served as a basis
for research on rationale management in software engineering.
Much of this research identified the decision making process
as a central point for improvement. Accordingly, many ap-
proaches propose models, tools, and methods for documenting
decisions. To name just a few, these include the Architecture
Rationalization Method (ARM) by Tang and Han [47] which
attaches rationale to software architecture with the help of fine-
grained model elements, an extendable meta-model facilitating
the RUSE model by Wolf [52] which integrates system models,

collaboration models and organizational models with the help
of a tool called Sysiphus, or the Architecture Tradeoff Analysis
Method (ATAM) by Kazman et al. [22] which evaluates an
architecture against a set of defined quality goals to derive
analyses and rationale.

Later work focused primarily on overcoming the obstacle
of capturing decisions. According to Burge and Brown [7],
the problem to be solved is that many possible applications
of rationale do not come into effect because the methods
and tools are not in place to support these opportunities.
Approaches that try to mitigate this obstacle include Ishino and
Jin [21] or Myers et al. [36] that integrated decision capture
directly into CAD tools and thus into the working environment
of the engineers. The same idea with a closer relationship
to software development was implemented in DecDec tool
by Hesse et al. [17], which is directly integrated into the
Eclipse IDE [13] and thus into the toolchain of a devel-
oper. As a documentation tool for decision knowledge, it is
geared towards collaborative and incremental decision making
processes. Similarly, Helaba [33] offers a joint workspace
to support communication around design artifacts and activ-
ities in multidisciplinary teams. There are many other tools
available to assist in capturing decisions. An overview of the
area of software architecture documentation in this context is
provided, for example, by Tang et al. [45].

B. Rationale Management in Agile Software Development

Based on previous work, research presented many con-
tributions on the topic of documenting decisions and their
rationale in the context of the increasingly popular ASD.
Among other aspects, they present new decision modeling
approaches for ASD in general and Scrum in particular. For
instance, Waagenaar et al. [50] propose a concrete Scrum
artifact model or Wang et al. [51] elaborate on safety-related
documentation by introducing safety-epics and safety-stories.

Other papers also focus on identifying best practices for
documentation in ASD. For instance, Hoda et al. [19] present a
structured approach to experience-based patterns in agile docu-
mentation. With five concrete patterns, they strive to enable de-
velopers to create exactly the right amount of documentation.
Rüping presents another much more comprehensive pattern
approach in his book on agile documentation [40]. Based on
experience and concrete cases from previous projects, Rüping
derives documentation patterns tailored to several problems in
ASD.

Researchers also developed ASD-specific tools to capture
rationale. Echo [31], for instance, facilitates agile requirements
gathering under consideration of the relationship to decisions
and their rationale. Voigt et al. [49] also proposed sprintDoc,
which introduces developing documentation artifacts (wiki
pages). Due to the existing history, changes to issues are
directly linked to changes in the documentation and thus
traceable. Other approaches even employ machine-learning
techniques to extract undocumented design decisions (cf.
Bhat et al. [4]).

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 18

C. Rationale Management in Teaching

Despite the many contributions from research addressing the
trade-off between agile principles and rationale management,
there are so far only a few contributions in the area of
integrating decision documentation into agile process models.
In practice, developers seem not to have a high awareness of
the importance of DR and DR is yet very rarely included in
software engineering education. The literature describes only
a few approaches. For instance, Kleebaum et al. [23] integrate
rationale management in the context of a software develop-
ment project both in the lecture and in practical development
tasks. Lago et al. [29] go a similar way here. In the context of a
software architecture lecture, the topic of software architecture
decision making is dealt with and then deepened by a specially
designed card game, called DecidArch. Other approaches
include a card game developed by Schriek et al. [41] who
intend to prompt the students to consider design elements
more intensively or De Boer et al. [12] who teach students
how to elicit, communicate, and document architecture design
decisions.

III. CASE STUDY DESIGN

In this section, we present the case study design. Initially,
Section III-A gives a general overview of how the case
study was carried out. We then describe the pilot study that
was conducted in advance and its findings (Section III-B).
Section III-C explains how we have incorporated these find-
ings into the case study setup. Subsequently, Section III-D
describes the data collection procedure. A description of the
analysis procedure is provided in Section III-E, followed by
elaborations on the validation procedure in Section III-F.

A. Case Study Overview

Between 2015 and 2019, we conducted eight case studies
with computer science students from the Brandenburg Uni-
versity of Technology Cottbus - Senftenberg (BTU), Technical
University Poznan (PUT), and the University of Stuttgart
(US). We integrated the case studies into mandatory software
development projects as part of the Bachelor’s or Master’s
study programs.

The tasks of small student teams were to develop com-
prehensive software products during the lecturing period of
one semester, i.e., about 15 weeks. The products were mostly
interactive web or desktop applications, e.g., online versions
of popular board games. The expected work effort for a project
was between 500 h (PUT) and 1.000 h (BTU, US), thus 100-
200 h per person.

In addition to the development task, the students attended
complimentary lectures that discussed software engineering
techniques. The lectures did neither specifically address deci-
sion making techniques nor the topic of rationale management.

All projects used the Scrum process, which served as the
common agile organizational structure for the case study. The
typical project team consisted of four to five undergraduate
students (BA program) working as developers. The roles of
Product Owner (PO) and Scrum Master (SM) were typically

taken over by graduate students (MA program). Occasionally
not enough graduate students were available. In these cases,
the SM was taken over by the undergraduate students or by
the study organizers. In the latter case, the study organizers,
however, did not get involved in the selection of important
decisions.

After an initial setup and exploration phase, the teams
worked in two-week (BTU) or four-week (PUT, US) devel-
opment sprints. In total, the case studies included 82 devel-
opment teams with about 350 undergraduate developers and
50 graduate students (cf. Table I). In this context, it must be
noted that the graduate students often worked with several
teams simultaneously, for example, as PO for one team and
as SM for another team.

TABLE I
OVERVIEW OF CONDUCTED CASTE STUDIES.

University Semester Teams
BTU 2015 Winter 2
PUT 2016 Summer 27
BTU 2016 Winter 5
PUT 2017 Summer 31
US 2017 Summer 1

BTU 2017 Winter 4
BTU 2018 Winter 6
BTU 2019 Winter 6 1

82

B. Pilot Case Study
According to research question RQ1, the main objective was

to integrate the capture and documentation of decisions into
a Scrum process. It was one of our main goals to change
the textbook version of the Scrum process only as much as
necessary because we had to assume that most students in that
early phase of their studies used the Scrum process for the
first time. Furthermore, too many additional process elements
contradict the first agile principle (cf. agile manifesto [3]).

To meet these requirements, we conducted a pilot case study
over one semester with two teams at the BTU in advance of
the case studies listed in Table I. Thus, in the first two sprints,
we conducted workshops together with the students. During
these workshops, we discussed issues being significant to the
students, elicited alternatives, made decisions, and documented
them.

Based on the experiences from the interaction among the
students, the interaction between the students and the teaching
staff as well as the dynamics of the decision making, we
identified the need for the following extensions to the Scrum
process, called Extension Requirements (ER) in the following:

ER1 The team has to have a clear vision of who will ex-
ecute tasks related to the case study. Thus, one team
member is responsible for recording the decisions.

ER2 The case study setup has to embed this responsibility
in clearly defined process elements that provide a
context and time frame within the sprint.

1At the time of publication, the case study was still ongoing.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 19

ER3 The quality of recorded decisions needs to be assured
through corresponding measures to enable rationale
reuse, as discussed by Thurimella et al. [48].

ER4 Capturing decisions must be regulated in a way that
certain documentation templates and tools are to be
used. Additionally, the case that a team might not
agree on a set of decisions to capture has to be
addressed as well.

C. Case Study Setup

To address the ERs listed above and enable a systematic ap-
proach to capture decisions, we decided to extend the textbook
Scrum by two process elements, as shown in Figure 1.

Decision Capture At the end of each sprint planning
(ER2) the Scrum Master (ER1) is responsible for
identifying and documenting the three most relevant
decisions for the current sprint together with the
team. Once recorded, these have to be uploaded to
the project repository.

Decision Review At the end of the sprint, during the retro-
spective (ER1), the Scrum Master (ER2) is responsi-
ble for reviewing the documented decisions together
with the team (ER3). In case of changes, incon-
sistencies, or recently emerged important decisions,
the Scrum Master has to revise the documentation.
(ER3).

In addition to these extensions, a case study guideline was
provided to students. It contained additional instructions on
how to carry out the identification and selection of the most
relevant decisions if there is no immediate consent (ER4).
The guidelines also contained the requirements for the use of
documentation templates and the corresponding tools (ER4).
For more information, please refer to Section III-D.

Furthermore, a git [8] repository was made available to the
students, which provided the documentation templates (ER4),
as well as an extensive collection of sample documentation
(ER4). However, there were no instructions on what types of
decisions should be documented in order not to restrict them
in their thinking and decision making.

D. Data Collection – From Mindmaps to Markdown Records

The data collection process varied throughout the different
parts of the case studies. Apart from the pilot study, it
was carried out by the students over the entire period. The
capture technique, as well as the associated tools and templates
for recording decisions, were repeatedly examined for their
usability and improved throughout the pilot case study and
the case studies.

Initially, during the pilot case study, we have chosen
lightweight tool support, i.e., Text2Mindmap [20], to record
decisions. For this purpose, we used the Questions Options
Criteria (QOC) model [34] model and mapped it using Text-
ToMindmap. By this means, the case study organizers captured
the decisions made during the architecture workshops of the
pilot study. After the workshops, the generated mind maps

Scrum Master

Sprint Planning

Daily ScrumBacklog
Refinement

Review

Retrospective
Decision
Capture

Decision
Review

Scrum Master

Fig. 1. Altered Sprint Procedure.

were converted into images using screenshots and uploaded
to the students’ project repositories.

This approach showed insufficient usability and transferred
too much responsibility to the case study organizers. Addition-
ally, the generated mindmaps did not show optimal readability.
Subsequent changes due to, for instance, changed requirements
or feedback could not be incorporated. We needed to either
recreate the documentation entirely or save the raw data along
with the results to regenerate the mindmap. We also found
that students rarely documented their decisions when none of
the case study organizers were attending the sprint planning.
All of these issues were reasons for the authors to refine the
capture technique for the planned case studies.

Autonomy in Decision Capture:
With the goal of more active engagement of the students,
the authors decided to give the students more responsibility
and thus to increase the autonomy in the documentation of
decisions. It was necessary to choose another handling of the
templates. For the first three case studies in 2015 (BTU) and
2016 (BTU, PUT), Excel templates were compiled based on
the previous QOC-based [34] modeling and distributed to the
students. This way, the responsibility lay solely with the team,
respectively, the Scrum Master, as envisioned in the case study
setup in Section III-C. Additionally, sprint planning meetings
no longer had to be accompanied by the case study organizers
for decision documentation. This change required the students
to manage decisions consciously and independently and not
to let this happen as a passive process triggered by a third
party. According to the case study setup (cf. Section III-C)
the Scrum Master was responsible for uploading the completed
documentation to the project repository at the end of the sprint.

MADR – Markdown Architecture Decision Records:
Based on the feedback and experience of the 2016 case studies
as well as a simultaneously conducted industry case study, we
refined the handling of templates in the following case studies.
A crucial point of criticism was the manageability. Working
with Excel files proved to be impractical and cumbersome.
Thus, it was perceived as too time-consuming to perform
reviews of the captured decisions by the team or revise the
documented decisions. Accordingly, the case study organizers
sought alternatives in dialogue with the students and the
industry partner. The choice fell on the use of Markdown (MD)
files. MD is a lightweight markup syntax, which makes it easy

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 20

to build documents [37]. Since both students and industry
partners version their development projects with git [8] and
its management frontend GitLab [18], the use of MD also
offered direct integration into the tool environment, since
GitLab renders MD files in the web interface nicely.

Besides, the management of MD files in git, combined with
a corresponding branching strategy, enables collaborative work
with short feedback cycles. Since we already used git in the
case study, it seemed reasonable to make the MD templates
available in a public GitHub repository (cf. [43]).

The revised methodology, including the new templates,
was supposed to be implemented in the first case study of
2017 (PUT), but could not be implemented for organizational
reasons. The recording using Excel templates was applied
once again. During the second case study in 2017 with
the University of Stuttgart (US), the students used the new
methodology. Recording vital decisions and their rationale
with the help of MD files attracted such interest that our
partners from the University of Stuttgart have forked and
further refined the original GitHub project. The result is a new
open-source (OS) project that was not only used in the second
case study in 2017, which is an OS project itself (cf. [26])
but has reached into the OS community. Currently, more than
ten completely independent OSS projects employ Markdown
Architecture Decision Records (MADR) [25] to capture their
decisions. Besides, other developers from the community have
worked on the MADR GitHub project (cf. [24]).

Subsequently, we used MADR for the following case studies
in 2017, 2018, and 2019 (BTU). Thanks, among other things,
to the comprehensive instructions, there was hardly any neg-
ative feedback from the students.

E. Data Analysis – Coding and Classification

To answer research question RQ2, we searched the literature
for a comprehensive classification of decision types, e.g.,
Kruchten [27]. However, in our opinion, the classifications
found did not provide structures clear enough to be intuitive
and intelligible for a data analysis like this. Accordingly, we
used an inductive approach and coded the data. Each of the
authors did this individually. Subsequently, we tried to derive
a consistent categorization from the codes, which resulted in
several discussions and involved several iterations. Discrepan-
cies in the two result sets had to be identified and also resolved
on a case-by-case basis. After further iterations, we refined
the codes into a simple and straightforward classification. The
results can be found in Section IV-C.

F. Validitation Procedures

We have taken various measures to address potential threats
to validity. Concerning internal validity, for example, we did
not get involved in the selection of decisions to be documented.
The authors explicitly pointed out to the students that the case
study will not affect the evaluation of the lecture. Another
aspect of internal validity was the integration of free-text
answers into the follow-up survey. This way, students could
provide individual answers if they considered the predefined

answers to be inappropriate. Furthermore, we tried to reduce
the individual influence of the authors during data analysis by
coding the data separately by each author. Only afterward,
the results were compared and standardized to a uniform
categorization.

Concerning threats to external validity, one needs to be
aware that the software development labs and their associated
lectures had an impact (as discussed in Section V). It was
hardly possible to mitigate this influence. The limited project
duration of only a few weeks and the steep learning curve also
affected the external validity. Nevertheless, the free choice of
development topics coupled with the high number of partici-
pating groups and the resulting large amount of documented
decisions should be favorable to external validity.

IV. RESULT EVALUATION

In this section, we try to give answers to the research
questions and the learning objective outlined in the Motivation
section based on the results of the case studies. As a basis for
this discussion, we surveyed the students after completing the
case study. The survey comprised three predefined questions
(survey questions SQ1 to SQ3) and one open question for
individual feedback. Participation was voluntary. The survey
resulted in a response of 56 answers. Considering all of the
students who already completed the case study by the time of
publication, the response rate is about 18%.

Based on the results of this follow-up survey, Section IV-A
elaborates on the achievement of learning objective LO1.
Subsequently, Section IV-B answers research question RQ1
as far as possible and reports on the students’ perspective
in which Scrum phase decisions have to be documented. In
Section IV-C, we then report on our findings on the types
of decisions captured by the students and thus try to answer
RQ2. Section IV-D concludes with a discussion on the scope
and nature of the information collected for a decision, i.e.,
research question RQ3.

A. LO1 – Raise the Awareness for Rationale Management

To check the achievement of our learning goal, we asked the
students to rate the usefulness of the conducted case study. The
question had a dedicated focus on the communication within
the team, respectively, with stakeholders (survey question SQ1,
cf. Figure 2): As can be seen, it turned out that roughly equal
parts of the students strongly agree or agree on the usefulness
of decision documentation (∼ 37%), respectively disagree or
disagree strongly (∼ 43%).

Fig. 2. Results for SQ1: usefulness of documented decisions, in percent.

Besides, we asked students whether they reused documented
decisions (survey question SQ2, cf. Figure 3) and if so, for
what purpose. Here about 38% denied, and a further 14%

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 21

sec:Motiv

replied that they used the decisions merely as a template for
recording further decisions. The remaining 48% of the students
opposed this by stating an explicit use case. These included

Fig. 3. Results for SQ2: reuse of captured decisions, in percent.

the following scenarios:
• A review was conducted.
• A wrong decision was made and had to be reconsidered.
• A bug had to be fixed.
• A similar problem had to be decided on.
• One team member needed advice.
• The requirements had changed.
The above answers indicate that the participating students

have become aware of the topic and its importance. Several
students also confirmed this impression in an open question
on feedback on the case study. For example, one student
wrote: “captured decisions help you to understand the problem
thoroughly and [. . .] have a better picture of the project and
its structure so that you can develop better software.“

B. RQ1 – Suitability of the Chosen Approach

As described earlier, building on initial ideas and the
results of the pilot case study, we decided on an approach to
integrate rationale management into Scrum (cf. Section III).
Accordingly, for research question RQ1, we can only discuss
the applicability of our specific approach. As the answers to
questions SQ1 and SQ2 show, there is no uniform opinion
among the participating students. However, a considerable
share of the students considers the decision capture approach
to be helpful and applicable. In this context, it was vital
for us to find out how the participants in the case study
assessed the timing of the decision capture. Accordingly, we
have asked students to indicate phases in which they consider
documentation of decisions to be most appropriate (survey
question SQ3, cf. Figure 4). Several answers could be given.

Again, there is no uniform opinion on the part of the
students. However, a clear majority (59%) voted for capturing
decisions during the sprint planning. The second most votes
came with 43% and 39% for review and retrospective, the
phases at the end of a sprint. Still, just over a quarter of
the respondents (27%) were in favor of capturing decisions
while working on the backlog. The least preferred approach is
decision capture during planning poker (21%). We explicitly
neglect that 23% of the students who argue for capturing de-
cisions during the Daily Scrum because it would conceptually
contradict the Daily Scrum.

The three most frequently mentioned responses also reflect
our observations during the execution of the case studies.
Although the case study setup clearly states that the most
important decisions should be captured during sprint planning,
the students occasionally documented them at various other

Fig. 4. Results for SQ3: phases to capture decision in, in percent.

points throughout the sprint. Reasons given by the students
include the fact that it was just forgotten and was made up
for at the end of the sprint. Sometimes it also happened that
the vital decisions only emerged in the course of the sprint.
Correspondingly, the integration of the decision capture into
sprint planning is a possible and preferred option, although it
is not the only feasible option for process integration.

Still, the authors, like the students, consider the integration
of the decision capture into the sprint planning to be the
preferred way, since working with the recorded and thus
communicated decisions during the sprint is thereby made
possible.

C. RQ2 – What Matters to Students?
Based on the classification derived from the coding, Table II

lists 702 currently recorded decisions grouped by the corre-
sponding categories. Decisions that we could not attribute to
any of the available classification types are listed under N/A.
With about 2% and 12 decisions respectively, this includes
decisions that were not clear enough as well as decisions in
which the students deliberately wrote nonsense. Accordingly,
a successful mapping of more than 98% of available decisions
to the categorization appears sufficiently accurate for us and
confirms the appropriateness of the chosen classification.

TABLE II
AGGREGATED NUMBER OF CAPTURED DECISIONS PER TYPE.

Decision type Count Percent

Definition / refinement of features / requirements 133 19
Development libraries / frameworks 100 14.3
Software architecture 97 13.8
Development process 89 12.7
Software quality measures (testing, etc.) 67 9.5
Prioritization of tasks / features 66 9.4
Development tools 62 8.8
Development platform 49 7
Deployment (Other in Fig. 5) 10 1.4
Communication within the team (Other in Fig. 5) 10 1.4
To-Do decisions (Other in Fig. 5) 7 1
N/A (Other in Fig. 5) 12 1.7

702

The resulting distribution of decision types within all cap-
tured decisions shows that there is not a single relevant

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 22

Fig. 5. Distribution of decision types over all case studies.2

decision type, but rather a group of important types. As can
be seen in Figure 5, the five most frequently documented
decision types account for more than two-thirds of all captured
decisions (∼ 69%). Combining the seven most documented
decision types even accounts for nearly 88% of all decisions.
On closer inspection of these seven, one can see that the most
frequently documented decision type ”Definition / refinement
of features / requirements“ is closely related to the ”Prioritiza-
tion of tasks / features.“ Topics related to requirements analysis
and its prioritization together represent a considerable part
of all documented decisions with roughly 29%. A second
thematic group also stands out on closer inspection, solving
implementation problems relating to software architecture and
those relating to the use of frameworks and libraries. Fre-
quently, they go hand in hand anyway. These two together
account for about 28% of all decisions and thus have a
considerable influence on software development processes.

Even more striking is the evolution of documented de-
cisions over time. In Figure 7, we have broken down the
different types of decisions by the sprints from which they
originate. Upon mere observation, considerable differences
in the distribution of the types of documented decisions are
noticeable. In the first sprints, for example, one can find
an above-average number of decisions on the development
tools, the libraries / frameworks used, and especially the de-
velopment platform. These become considerably less over
time. The decisions addressing the development platform,
which in the beginning make up almost 20%, then disappear
almost completely. Equally noteworthy is the progress of
decisions on software quality. They play a subordinate role
at the beginning and then gain considerably in importance
throughout the sprints. Especially in the third sprint, the topic
of software quality plays a vital role, with a share of 25% in
all documented decisions. Subsequently, relevance decreases
again. Just as important is the development of the decisions on
features / requirements as well as on the software architecture.

These two together account for a little less than 20% in the
first sprint, while it is about 40% and more from the fourth
sprint onwards.

Fig. 6. Aggregated number of captured decisions per sprint, absolute.

For reading the graph, it is necessary to know that the
projects have lasted a maximum of seven sprints. The de-
velopment of the open-source project, to which the students
of the University of Stuttgart contributed (cf. Section III-D),
was continued afterward and resulted in further documented
decisions. These are listed in the ”Subsequent Dev.” column.

Furthermore, it is necessary to read the graph in the context
of the total number of captured decisions per sprint. As one
can see from Figure 6, this has changed permanently. Although
the students were required to write down the three most
important decisions, they sometimes recorded less or none at
all. In individual cases, they even recorded more. In the first
sprint, the number of documented decisions was still very high
(avg = 2.7 decisions), but decreased afterward. During the
third sprint, the students recorded significantly less (avg = 1.7
decisions). As the development projects at the PUT lasted only
three sprints (cf. Section III), from the fourth sprint on only the
teams of the US and the BTU documented their decisions (24
teams in total). In the following, the amount of documented
decisions is somewhat more stable again.

It should be noted that for sprint five and six, there is no
data from the 2019 case study of the BTU available at the
time of publication. Accordingly, only 18 teams documented
in sprints five and six. In particular, this means that in the
fourth and fifth sprint, an average of about 2.3 decisions per
team was documented, and in the sixth sprint, an average of
2.1 decisions per team was documented. For the seventh sprint
(4 teams) as well as the subsequent development (1 team), the
number of documented decisions increased again. However,
each of these two, with 12 decisions each, accounted for just
under two percent of the decisions recorded and thus have
little significance.

In summary, the trend analysis also provides interesting
insights for answering the research question RQ2. However,
there is no simple answer to this question. Besides, the
character of the projects, in which the case studies took place,

2All decision types with less than 2% share are subsumed under Other.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 23

Fig. 7. Relative distribution of decision types over all case studies per sprint.

influences the results too. All projects started from scratch and
did have a rather brief lifespan.

D. RQ3 – What Information has been Documented?

Another aspect that has been of interest to us while exercis-
ing the case studies is the quantity of information students cap-
ture for a decision. Specifically, we are interested in whether
students only document the issue itself and the decision to
solve or whether they also record additional information such
as the alternatives considered. Also, this information, for
example, can be accompanied by further rationales.

TABLE III
DECISIONS CLASSIFIED BY THE EXTENT OF DOCUMENTED INFORMATION.

Given answer type Count Percent

Alternatives & Rationale 273 38.9
Multiple alternatives 262 37.3
One alternative 123 17.5
No alternative (Other in Fig. 8) 20 2.9
Rationale only (Other in Fig. 8) 9 1.3
Explicit exclusion (Other in Fig. 8) 1 0.1
N/A (Other in Fig. 8) 14 2

702

To answer research question RQ3, we went through all
documented decisions again and categorized them according
to the degree to which the students completed the templates.
Content-related considerations did not play a role.

In analogy to the left column from Table III, we dis-
tinguished between the simple naming of the problem, the
documentation of the selected solution alternative, the naming
of none, one, or more alternatives. We also classified the
provision of further rationale according to the template.

The result was that about 94% of all cases, at least one
considered solution alternative was specified for the docu-
mented decisions (cf. Figure 8). In nearly three-quarters of

Fig. 8. Distribution of decisions classified by the amount of avail. information.

all cases (∼ 76%), students recorded two or more solution
alternatives for the documented decision. Additional rationales
on the selected solution alternative and the reasoning behind
were recorded in about 39%. This number includes cases with
simple explanations formulated in one sentence as well as
statements in which the rationale behind the decision was
broken down into, e.g., positive and negative decision criteria.

V. DISCUSSION

The results presented in this paper suggest that the capture
of decisions and their rationale is an issue that should have
its place in software engineering education. Although the
opinions from the follow-up surveys are not uniformly positive
with the students, the early stage of their studies is affecting
their judgment. Some students lack the experience that would
change the assessment of such an approach. We observed that
the more advanced the students were in their studies, the more
positive was the feedback on the setup of our case study.

Furthermore, according to the opinion of the authors, the
concrete context in which the respective case study took place

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 24

influenced on the quantity of the documented decisions, the
amount of information recorded per decision as well as the
type of documented decisions. For the authors, this impression
is based on, for example, the complementary lectures that
implicitly and unconsciously emphasize certain software en-
gineering aspects. A repeatedly increased number of captured
decisions on the topic of software quality aspects in the same
sprints support this observation.

In the following, we briefly discuss the results of the
research questions and the achievement of the learning goal:

RQ1 – Suitable Ways to Introduce Rationale Management:
The follow-up surveys with the participating students showed
that the case study setup provides a viable way to integrate
the capture and management of decisions and their rationale
into an agile process. The selected implementation also offers
sufficient possibilities for adaptation to one’s own needs.
Feedback and experience have also shown, however, that it
is not the only viable way to capture decisions. Adjustments
are easy to implement, especially in the phases to which the
decision recording is coupled.

RQ2 – Crucial Types of Decisions:
For research question RQ2, it has to be stressed that there is
no simple answer. A simple analysis of the distribution of all
documented decisions would be very short-sighted. A closer
look at the available data reveals that the phase of development
has a significant influence on which decisions are essential
for students. In the specific case of the case studies, the
organizational structure of the software development projects
also has a notable influence here. Almost all projects started
from scratch and only lasted for a limited time. Accordingly,
the students needed to make technical decisions that would not
occur at such frequency in projects running for a prolonged
time. The credit points awarded in the respective courses are
a limiting factor here.

All in all, it can be emphasized that two major topics
account for a large proportion of the documented decisions.
One relates to requirements analysis, features, their refinement
as well as the sequence of realization. Decisions on how
to implement these features, how are they mapped to the
software architecture, which libraries and frameworks are to
be employed, define the other one.

RQ3 – What Information do Students Capture?: With
research question RQ3, the authors wanted to find out to
what extent students document a decision. It turned out that
they document more than expected. In the pilot case study,
students sometimes only did what the guidelines specified.
Throughout the case studies, however, the students provided
several considered alternatives for a decision in the majority of
the cases. More than that, the students added further rationale
for the decisions made in more than a third of the cases.

LO1 – Raise the Awareness for Rationale Management:
In the follow-up surveys conducted with the participating
students, it has become apparent that a considerable number
of students have become aware of the topic of decision

making and rationale management in software engineering.
Moreover, the management of decisions and their rationale, as
already mentioned in related works, can certainly be seen as
a controversial issue.

VI. FUTURE WORK

Upon completion of the current case study, it is necessary
to enter the new data and update the evaluation. Building on
this, we see the necessity to integrate the lessons learned from
the case studies into teaching in a more structured way. To
this end, it is also necessary to increase the response rate
to the follow-up surveys carried out subsequently with the
participating students. In this way, we can incorporate more
and more detailed feedback into further rationale management
applications. Another aspect is addressing the topic of software
architecture decision making in the context of the supplemen-
tary lectures to the software development project, as done by,
e.g., Lago et al. [29].

The logical next step is to generalize the approach used here
for the Scrum process in teaching. Thereby the experiences of
the case studies, as well as the feedback of the students, play
a crucial role. The goal is to make the approach applicable to
other scenarios, if not to other agile process models.

Another strategy for future work is to conduct a similar
case study setup in an industrial context. It has been done in a
single case so far, however, for comparability with industrial
projects, considerably more data needs to be collected. An-
other approach is to compare the findings with applications
in the open-source community. To this end, it would be
necessary to find projects that systematically record decisions
and make them accessible. The decision data could then be
compared with the data from the industry and from the case
studies with the students. However, comparability from the
perspective of the applied process model is questionable here.
We hypothesize that only the type of essential decisions will
be comparable.

ACKNOWLEDGMENT

The authors gratefully acknowledge the fruitful cooperation
with our colleagues from PUT Poznan and the University
of Stuttgart, namely Miroslaw Ochodek, Bartosz Walter, and
Oliver Kopp. Furthermore, we thank all students for participat-
ing in the case studies and taking some extra time and effort
to support us. Without all of them, these case studies would
not have been possible.

REFERENCES

[1] ALEXEEVA, Z., PEREZ-PALACIN, D., AND MIRANDOLA, R. Design
Decision Documentation: A Literature Overview. In European Confer-
ence on Software Architecture (2016), Springer, pp. 84–101.

[2] BASS, L., CLEMENTS, P., AND KAZMAN, R. Software Architecture in
Practice, 2 ed. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[3] BECK, K., BEEDLE, M., VAN BENNEKUM, A., COCKBURN, A., CUN-
NIGHAM, W., FOWLER, M., HIGHSMITH, J., HUNT, A., JEFFRIES, R.,
KERN, J., MARICK, B., MARTIN, R. C., SCHWABER, K., SUTHER-
LAND, J., AND THOMAS, D. Manifesto for Agile Software Develop-
ment. http://agilemanifesto.org/, February 2001.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 25

[4] BHAT, M., SHUMAIEV, K., BIESDORF, A., HOHENSTEIN, U., AND
MATTHES, F. Automatic Extraction of Design Decisions From Issue
Management Systems: A Machine Learning Based Approach. In Eu-
ropean Conference on Software Architecture (2017), Springer, pp. 138–
154.

[5] BRIAND, L. C. Software Documentation: How Much is Enough? In
Proceedings of the 7th European Conference on Software Maintenance
and Reengineering (2003), IEEE, pp. 13–15.

[6] BURGE, J. E. Design Rationale: Researching Under Uncertainty. Arti-
ficial Intelligence for Engineering Design, Analysis and Manufacturing
22, 4 (2008), pp. 311–324.

[7] BURGE, J. E., AND BROWN, D. C. Software Engineering Using
RATionale. Journal of Systems and Software 81, 3 (2008), 395–413.

[8] CHACON, S., AND STRAUB, B. Pro Git. Apress, 2014.
[9] CHARMAZ, K., AND BELGRAVE, L. L. Grounded Theory. In The

Blackwell Encyclopedia of Sociology. American Cancer Society, 2015.
[10] CLEAR, T. Documentation and Agile Methods: Striking a Balance.

SIGCSE Bull. 35, 2 (June 2003), 12–13.
[11] CONKLIN, E. J., AND YAKEMOVIC, K. C. B. A Process-Oriented

Approach to Design Rationale. Human–Computer Interaction 6 (Sept.
1991), 357–391.

[12] DE BOER, R. C., FARENHORST, R., AND VAN VLIET, H. A Commu-
nity of Learners Approach to Software Architecture Education. In 22nd

Conference on Software Engineering Education and Training (2009),
IEEE, pp. 190–197.

[13] DES RIVIÈRES, J., AND WIEGAND, J. Eclipse: A Platform for In-
tegrating Development Tools. IBM Systems Journal 43 (April 2004),
371–383.

[14] DUTOIT, A. H., MCCALL, R., MISTRÍK, I., AND PAECH, B. Rationale
Management in Software Engineering: Concepts and Techniques. In
Rationale Management in Software Engineering. Springer, 2006, pp. 1–
48.

[15] DYBÅ, T., AND DINGSØYR, T. Empirical Studies of Agile Software De-
velopment: A Systematic Review. Information and software technology
50, 9-10 (2008), 833–859.

[16] FISCHER, G., LEMKE, A. C., MCCALL, R., AND MORCH, A. I. Mak-
ing Argumentation Serve Design. Hum.-Comput. Interact. 6 (September
1991), 393–419.

[17] HESSE, T.-M., KUEHLWEIN, A., AND ROEHM, T. DecDoc: A Tool for
Documenting Design Decisions Collaboratively and Incrementally. In
1st International Workshop on Decision Making in Software ARCHitec-
ture (MARCH) (2016), IEEE, pp. 30–37.

[18] HETHEY, J. M. GitLab Repository Management. Packt Publishing Ltd,
2013.

[19] HODA, R., NOBLE, J., AND MARSHALL, S. How Much is Just Enough?
Some Documentation Patterns on Agile Projects. EuroPLoP2010; 15th
European Pattern Languages of Programs (2010).

[20] IONA, J. Text 2 Mind Map. The School Librarian 65, 3 (2017), 150.
[21] ISHINO, Y., AND JIN, Y. An Information Value Based Approach to

Design Procedure Capture. Advanced Engineering Informatics 20, 1
(2006), 89–107.

[22] KAZMAN, R., KLEIN, M., AND CLEMENTS, P. ATAM: Method
for Architecture Evaluation. Tech. rep., CMU / Software Engineering
Institute, 2000.

[23] KLEEBAUM, A., JOHANSSEN, J. O., PAECH, B., AND BRUEGGE,
B. Teaching Rationale Management in Agile Project Courses. In
Tagungsband des 16. Workshops ”Software Engineering im Unterricht
der Hochschulen” (2019).

[24] KOPP, O. Markdown Architectural Decision Records. GitHub, Mar.
2017. https://adr.github.io/madr/.

[25] KOPP, O., ARMBRUSTER, A., AND ZIMMERMANN, O. Markdown
Architectural Decision Records: Format and Tool Support. In ZEUS
(2018), pp. 55–62.

[26] KOPP, O., BINZ, T., BREITENBÜCHER, U., AND LEYMANN, F.
Winery– A Modeling Tool for TOSCA-Based Cloud Applications.
In International Conference on Service-Oriented Computing (2013),
Springer, pp. 700–704.

[27] KRUCHTEN, P. An Ontology of Architectural Design Decisions in
Software Intensive Systems. In 2nd Groningen Workshop on Software
Variability (2004), pp. 54–61.

[28] KUNZ, W., AND RITTEL, H. W. J. Issues as Elements of Information
Systems. Tech. rep., Systemforschung, Heidelberg, Germany Science
Design, University of California, Berkeley, 1970.

[29] LAGO, P., CAI, J. F., DE BOER, R. C., KRUCHTEN, P., AND VERDEC-
CHIA, R. Decidarch: Playing Cards as Software Architects. In
Proceedings of the 52nd Hawaii International Conference on System
Sciences (2019).

[30] LATOZA, T. D., AND MYERS, B. A. Hard-To-Answer Questions About
Code. In Evaluation and Usability of Programming Languages and
Tools (2010), ACM, p. 8.

[31] LEE, C., GUADAGNO, L., AND JIA, X. An Agile Approach to Capturing
Requirements and Traceability. In Proceedings of the 2nd International
Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE) (2003), vol. 20.

[32] LEE, J., AND LAI, K.-Y. What’s in Design Rationale? Hum.-Comput.
Interact. 6 (September 1991), 251–280.

[33] LOPEZ, M. G., HAESEN, M., LUYTEN, K., AND CONINX, K. Helaba:
A System to Highlight Design Rationale in Collaborative Design Pro-
cesses. In Cooperative Design, Visualization, and Engineering. Springer,
2015, pp. 175–184.

[34] MACLEAN, A., YOUNG, R. M., BELLOTTI, V. M. E., AND MORAN,
T. P. Questions, Options, and Criteria: Elements of Design Space
Analysis. Hum.-Comput. Interact. 6 (September 1991), 201–250.

[35] MELNIK, G., AND MAURER, F. Direct Verbal Communication as a
Catalyst of Agile Knowledge Sharing. In Agile Development Conference
(2004), IEEE, pp. 21–31.

[36] MYERS, K. L., ZUMEL, N. B., AND GARCIA, P. Automated Capture
of Rationale for the Detailed Design Process. In AAAI/IAAI (1999),
pp. 876–883.

[37] OVADIA, S. Markdown for Librarians and Academics. Behavioral &
Social Sciences Librarian 33, 2 (2014), 120–124.

[38] REEVES, J. W. What is Software Design. C++ Journal 2, 2 (1992),
14–12.

[39] RUBIN, E., AND RUBIN, H. Supporting Agile Software Development
Through Active Documentation. Requirements Engineering 16, 2 (2011),
117–132.

[40] RÜPING, A. Agile Documentation: a Pattern Guide to Producing
Lightweight Documents for Software Projects. John Wiley & Sons, 2005.

[41] SCHRIEK, C., VAN DER WERF, J.-M. E., TANG, A., AND BEX, F.
Software Architecture Design Reasoning: A Card Game to Help Novice
Designers. In European Conference on Software Architecture (2016),
Springer, pp. 22–38.

[42] SCHUBANZ, M. Design Rationale Capture in Software Architecture:
What has to be Captured? In Proceedings of the 19th International
Doctoral Symposium on Components and Architecture (2014), ACM,
pp. 31–36.

[43] SCHUBANZ, M. Making Decisions Sustainable in
Agile Software Development. GitHub, March 2017.
https://github.com/schubmat/DecisionCapture/.

[44] SELIC, B. Agile Documentation, Anyone? IEEE Software 26, 6 (2009),
11–12.

[45] TANG, A., AVGERIOU, P., JANSEN, A., CAPILLA, R., AND BABAR,
M. A. A Comparative Study of Architecture Knowledge Management
Tools. Journal of Systems and Software 83, 3 (2010), 352–370.

[46] TANG, A., BABAR, M. A., GORTON, I., AND HAN, J. A Survey of
Architecture Design Rationale. Journal of Systems and Software 79, 12
(2006), 1792–1804.

[47] TANG, A., AND HAN, J. Architecture Rationalization: A Methodology
for Architecture Verifiability, Traceability and Completeness. In ECBS
(2005), pp. 135–144.

[48] THURIMELLA, A., SCHUBANZ, M., PLEUSS, A., AND BOTTERWECK,
G. Guidelines for Managing Requirements Rationales. Software, IEEE
34, 1 (2017), 82 – 90.

[49] VOIGT, S., HÜTTEMANN, D., GOHR, A., AND GROSSE, M. Agile
Documentation Tool Concept. In Developments and Advances in
Intelligent Systems and Applications (Cham, 2018), Á. Rocha and L. P.
Reis, Eds., Springer International Publishing, pp. 67–79.

[50] WAGENAAR, G., HELMS, R., DAMIAN, D., AND BRINKKEMPER, S.
Artefacts in Agile Software Development. In International Conference
on Product-Focused Software Process Improvement (2015), Springer,
pp. 133–148.

[51] WANG, Y., BOGICEVIC, I., AND WAGNER, S. A Study of Safety
Documentation in a Scrum Development Process. In Proceedings of
the XP2017 Scientific Workshops (2017), ACM, pp. 22:1–22:5.

[52] WOLF, T. Rationale-Based Unified Software Engineering Model. VDM
Verlag, Saarbrücken, Germany, 2008.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 26

https://adr.github.io/madr/
https://github.com/schubmat/DecisionCapture/

	Motivation
	Related Work
	Rationale Management in Software Engineering
	Rationale Management in Agile Software Development
	Rationale Management in Teaching

	Case Study Design
	Case Study Overview
	Pilot Case Study
	Case Study Setup
	Data Collection – From Mindmaps to Markdown Records
	Data Analysis – Coding and Classification
	Validitation Procedures

	Result Evaluation
	LO1 – Raise the Awareness for Rationale Management
	RQ1 – Suitability of the Chosen Approach
	RQ2 – What Matters to Students?
	RQ3 – What Information has been Documented?

	Discussion
	Future Work
	References

