
Automatic Generation of Learning Assignments

for Software Engineering Formalisms

Michael Steinle

Department of Computer Science

Albert-Ludwigs-Universität Freiburg

Freiburg, Germany

steinlem@informatik.uni-freiburg.de

Bernd Westphal

Department of Computer Science

Albert-Ludwigs-Universität Freiburg

Freiburg, Germany

westphal@informatik.uni-freiburg.de

Abstract—Creating learning or examination assignments is a
re-occurring activity in the context of teaching. In particular
new examination assignments are often desired for each season
of teaching a course. In our teaching, we have observed that our
creation of assignments for software engineering formalisms uses
certain intuitive constraints to obtain assignments at a designated
level of difficulty and, e.g., with particular properties to be
analysed in the assignment.

In this work, we present an approach where we formalise
our (formerly intuitive) constraints and use constraint solving
tools to automatically synthesise learning assignments that satisfy
these constraints. In our approach we leverage the fact that our
software engineering course teaches the majority of software
description languages fully formal. That is, an artefact using
such a software description language is then a mathematical
object for which we can give precise constraints. We demonstrate
our approach on the example of learning and examination
assignments for the notion of determinism on decision table and
discuss applications of our assignments synthesis procedure.

I. INTRODUCTION

Learning assignments are, following Seel [1], selected and

prepared learning objects with the aim to initiate, control,

and organise learning processes. Following Renkl [2], learning

assignments in this sense are used to learn and practice knowl-

edge and capabilities. Renkl observes that different learning

assignments can lead to comparable acquisition of knowledge

and that ‘well meant but badly done’ stimulations for thought

and embeddings of learning assignment into teaching contexts

can disturb the learning process. Learning assignments have

thus to focus on the knowledge or capability to learn, and be

designed for and embedded into the teaching context.

The question what makes a learning assignment a good

learning assignment in general and how to use certain learning

assignments in teaching is in our perception still actively re-

searched in didactics. A requirement for most learning assign-

ments will be that they are solvable. Another requirement is

that learning assignments match the knowledge and experience

of the learners. Advanced learners hardly benefit from easy

learning assignments on the competence level ‘remember’ [3]

while beginners may be frustrated by difficult assignments on

the competence level ‘create’ [3].

In this work, we consider the problem of creating learning

assignments with the purpose of practising analysis procedures

(competence level ‘apply’) for formal software specification

languages in the context of our undergraduate introduction to

software engineering [4]–[6]. Creating learning assignments in

this context is challenging because it is not always completely

obvious that a proposed assignment is solvable. To lower

the student’s cognitive load, we also prefer to use learning

assignments where a single artefact is supposed to, e.g., be

analysed for multiple aspects. Therefore, the artefacts for our

learning assignments need not only be solvable but they need

to equally well support multiple learning goals. Hence, simple

mutations of existing artefacts does not provide a reliable

procedure to create new learning assignment.

When creating new assignments, e.g., to not have the same

tasks in each seasons or for exams, we observed that we can

identify different levels of difficulty within the same class of

learning assignments. Furthermore, we gained the impression

that we can precisely characterise those classes of difficulty

using properties of the (formal) artefacts.

We propose to develop an approach to (a) formalise our

understandings of didactical aspects of learning assignments

on software description languages (like solvability, learning

goals, and level of difficulty) and (b) use existing procedures

and tools to automatically generate learning assignments with

desired properties. In this article, we report on an investigation

of the feasibility of this approach. To this end, we have

developed, implemented, and evaluated a synthesis procedure

for the formalism of decision tables.

The article is structured as follows. In Section II, we illus-

trate our approach on the example of learning assignment for

basic calculus. Section III recalls decision tables and gives an

example of an exam task that we would like to automatically

generate. Sections IV and V describe our synthesis procedure

and preliminary empirical results, Sections VI and VII discuss

our results and related work, and Section VIII concludes.

II. AN ANALOGY: LEARNING ASSIGNMENTS FOR

ADDITION WITH CARRY

In this section, we want to illustrate the proposed approach

on an example of learning assignments for elementary school

arithmetic, namely ‘paper & pencil’ addition with carry of

two positive decimal numbers. As a teacher, one may want

to present learning assignments with an increasing level of

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 61

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



1 2 3 4
+ 6 2 5
1 8 5 9

(a)

1 2 3 4
+ 6 216
1 8 6 0

(b)

1 2 3 4
+1 81716
2 1 1 0

(c)

xn · · · x1 x0

+c
n+1

yncn· · ·c2 y1c1 y0
zn+1 zn · · · z1 z0

(d)

TABLE I: Addition with carry can be simple, e.g. (a), inter-

mediate, e.g. (b), or advanced, e.g. (c). Case (d) provides an

abstract formal view on the task of adding two numbers.

difficulty to let pupils practice the routine of ‘paper & pencil’

addition without carry before moving to the general case, and

possibly in between having some learning assignment with

exactly one carry. So the teacher may have identified the

following three levels of difficulty: Easy tasks where no carry

is needed (cf. Table Ia), intermediate level tasks where exactly

one carry is needed (cf. Table Ib), and the general case where

one carry may cause a subsequent carry (cf. Table Ic).

To create new learning assignments for addition, e.g., in an

e-learning tool, the teacher could firstly formalise the addition

of two n-digit decimal numbers as shown in Table Id. The

task of adding two numbers in decimal representation consists

of two numbers x and y with their decimal representation

xn, . . . , x0 and yn, . . . , y0. The first carry, caused by adding

the least significant digits x0 and y0, is c1, which has value 1
if and only if x0 + y0 > 10, and value 0 otherwise.

Viewing addition tasks as mathematical objects, the teacher

could secondly precisely characterise the sets of addition tasks

corresponding to the levels of difficulty described above. An

easy addition task is one where all carries ci, 1 ≤ i ≤ n,

have value 0. Intermediate level and general case tasks can

be characterised similarly. With this formalisation of learning

assignments and the level of difficulty, the teacher could finally

use any integer constraint solver that supports addition and

comparison to obtain tasks that are, e.g., in the class of easy

tasks: We are asking for a solution to the constraint solving

problem that the open symbols xi and yi are assigned values

between 0 and 9 (decimal digits) such that the valuation

satisfies the constraint that all carries remain 0. Note that the

number of digits n is a parameter of the constraint solving

problem with which the teacher can control, e.g., the time it

takes to solve a task as an additional teaching aspect.

That is, we propose to formalise didactical intents on

learning assignments that involve mathematical objects (such

as addition tasks) in form of constraints and to use appro-

priate constraint solving techniques to automatically generate

learning assignments for a given intent.

III. DECISION TABLES

Decision tables are a simple software engineering formalism

that can, e.g., be used to formalise requirements [7], [8].

Formally, a decision table T is an (m + k) × n matrix with

entries from the set {−,×, ∗}. The top m rows correspond to

conditions c1, . . . , cm from the set of conditions C, and the

bottom k rows to actions a1, . . . , ak from the set of actions A,

which is disjoint from C. Columns are called rules. The top

m entries of a rule (the premise) v1,i, . . . , vm,i are elements

T : decision table r1 · · · rn

c1 description of condition c1 v1,1 · · · v1,n

.

.

.
.
.
.

.

.

.
. . .

.

.

.

cm description of condition cm vm,1 · · · vm,n

a1 description of action a1 w1,1 · · · w1,n

.

.

.
.
.
.

.

.

.
. . .

.

.

.

ak description of action ak wk,1 · · · wk,n

Fig. 1: Concrete syntax of decision tables.

of the set {−,×, ∗}, and the bottom k entries of a rule (the

effect) w1,i, . . . , wk,i are from the set {−,×}. That is, ‘∗’ may

not occur in an effect of a well-formed decision table.

The semantics of decision tables is given by a function

F that assigns to each rule r in T a propositional logic

formula over C and A. Given premise (v1, . . . , vm) and effect

(w1, . . . , wk) of r, the semantics function is defined as

F(r) :=
∧

1≤i≤m F (vi, ci)
︸ ︷︷ ︸

=:Fpre(r)

∧
∧

1≤j≤k F (wj , aj)
︸ ︷︷ ︸

=:Feff (r)

(1)

where F := {(×, x) 7→ x, (−, x) 7→ ¬x, (∗, x) 7→ true}.

For a discussion of the use of this semantics in requirements

engineering we refer the reader to [4], [5].

We can formally define different properties of decision

tables that are useful in requirements engineering such as

completeness, consistency, existence of useless rules, etc..

For the purpose of this article it is sufficient to provide the

definition of (non-)determinism. A decision table T is called

deterministic, if and only if for all different rules r1 and r2 in

T , their premise formulae are (logically) disjoint, i.e. if

∀ r1 6= r2 ∈ T • |= ¬(Fpre(r1) ∧ Fpre(r2)). (2)

Intuitively, a decision table is deterministic if and only if there

is no valuation of the conditions in C that satisfies the premise

formulae of two different rules.

To practice the analysis of decision tables for determinism,

learning assignments can start on the competence level of

‘apply’. In the course, we present a truth table-based approach

to decide determinism for a given decision table: For each

valuation of the observables in C note down which rules’

premises are satisfied. The table is deterministic if and only if

no valuation satisfies more than one rules’ premises.

A proof of determinism needs an argument on the rules’

premise formulae (e.g., the truth table), while a proof of

non-determinism strictly speaking only needs one valuation

and the argument that this valuation satisfies the premise

formulae of two different rules. Hence the workload for a

given deterministic table can be higher (construction of truth

table) than for a given non-deterministic table (give a counter-

example as explained above). Thus in the role of a teacher,

we often want to control whether the decision table given as

a learning assignment is deterministic or non-deterministic.

Figure 2 shows a simplified example of an exam task on

decision tables. The Subtask (1) tests that students are able

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 62



T r1 r2 r3

c1 × × −

c2 × − ∗

c3 − × ∗

a1 × − −

a2 − × −

1) Give the rule formulae for r1, r2, r3.

2) It is claimed that T is deterministic.
Prove this claim.

3) Does T have a useless rule?
Prove your claim.

Fig. 2: Example exercise task on decision tables.

to use the semantics function (competence level ‘apply’).

This kind of task is obviously solvable for each well-formed

decision table, yet to be most useful, one may wish to provide

a table that comprises all possible entries. Subtask (2) tests

competences in applying a particular proof strategy for a

particular decision table property. This subtask is only solvable

(or at least not strongly confusing) if the considered decision

table has the claimed property. Subtask (3) tests competences

on analysing a decision table for whether it has a certain

property such as useless rules (hence touching the competence

level ‘analyse’). Depending on the correct answer, different

proof strategies apply that may need a significantly different

amount of time to solve. One may aim at a decision table for

which Subtasks (2) and (3) need different proof strategies so to

test both and to limit the necessary effort. Note that using only

one decision table lowers the cognitive load for the learners

since only one artefact needs to be read and the learners can

concentrate on the analysis tasks as such.

Creating learning assignments as shown in Figure 2 is

difficult because multiple constraints need to be considered

together. A change in one cell of the decision table may

unintentionally render the table non-deterministic, or make the

analysis for determinism too easy (for example by having two

identical rules). To simplify the process of creating learning

assignments or exam tasks on decision tables, we propose

to exploit the fact that decision tables are introduced as

mathematical objects in our course. Properties of decision

tables, such as determinism, are formally defined and thus can

be used as constraints in a synthesis procedure. In addition, we

propose to formalise our didactical understanding of classes of

learning assignments on decision tables. For example, that an

analysis for non-determinism is trivial if there are two identical

rules in the table. Other examples aim at the corner cases of

the definition of determinism from the course and we may

want to leave out these cases in beginner’s exercises. The task

to create, e.g., a complete decision table of a particular size

then reduces to a mathematical constraint solving problem.

IV. GENERATING LEARNING ASSIGNMENTS ON

DETERMINISTIC DECISION TABLES

In the following, we outline a procedure to generate de-

terministic decision tables of a specified size. We focus

on deterministic decision tables. Non-deterministic decision

tables are the dual case (we negate one of the learning

assignment creation constraints), yet to be useful learning

assignments, non-deterministic decision tables need further

didactic constraints, e.g., on the level of difficulty. We discuss

learning assignment
specification

decision table

constants formulae

model

(1)

(2)

(3)

Fig. 3: Intermediate artefacts of decision table task generation.

some of these further constraints at the end of this section. The

basic idea of our procedure to generate deterministic decision

tables is to reduce the generation problem to an SMT-problem.

SAT modulo theory (SMT) is a natural problem domain due

to the logical nature of the decision table semantics.

Finite sets C and A of conditions and actions and a

number n ∈ N0 of rules constitute the learning assignment

specification (cf. Figure 3). In Step (1), we define the signature

of the SMT-problem as a set of constants, one constant per

decision table cell. Over this signature, we generate formulae

that, e.g., specify the allowed content of decision table cells

and also the determinism property. In Step (2), an SMT-solver

generates a model, i.e., an interpretation of the signature such

that the considered formulae hold under this interpretation (if

and only if a deterministic decision table of the desired size

exists). In Step (3), we interpret the model as a decision table.

To obtain a second, different deterministic decision table, the

model from the previous run can be encoded as an additional

formula. Then, taking Step (1) again, we obtain a model that

encodes a different deterministic decision table (if and only if

a second decision table of the desired form exists).

The idea of the encoding is as follows: For each premise

cell of the desired decision table, there is one constant in the

signature that can take values ‘×’, ‘−’, or ‘∗’, and similarly

for each effect cell, then with possible values ‘×’ or ‘−’. So

to obtain a table over m conditions and k actions with n rules

(cf. Figure 1), we would have constants v1,1, . . . , vm,n and

w1,1, . . . , wk,n. Now any model of the trivial formula ‘true’

as returned by an SMT-solver is already an encoding of a well-

formed decision table: The entry of cell, e.g., vi,j takes the

interpretation of the constant vi,j , which is ‘×’, ‘−’, or ‘∗’.

Providing a constraint that corresponds to determinism is

a bit more involved. Firstly, the definition of determinism

(cf. (2)) refers to a fixed decision table with fixed premise

formulae. For decision table generation, we need a formula

that refers to the decision table as encoded by the constants

vi,j and wi,j . Secondly, the definition of determinism refers

to validity of propositional formulae by using the validity

operator ‘|=’ (read: for each valuation of the conditions in C,

the negation of two different rules’ premise formula evaluates

to true). Such a validity operator is usually not directly

available in SMT-solvers.

We observe that the premise formula of a rule r in a decision

table is obtained using the helper function F . Function F

basically says, that a given valuation σ : C → {0, 1} of the

conditions in C is enabling the i-th cell (in the row of condition

ci) of the j-th rule if and only if this cell holds symbol ‘×’ and

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 63



300

250

200

150

100

50

t/s

2 3 4 5 6 7 8 9 10 11 12 13 n
(a) Generation of one decision
table of size (n+ n)× n.

30

25

20

15

9

5

t/s

1 5 10 15 20 N
(b) Generation of a new bunch of 100
decision tables of size (3 + 3)× 3.

Fig. 4: Runtimes for two kinds of decision table generation

tasks (�: user time, �: elapsed time, �: kernel time).

σ(ci) = 1, or this cell holds symbol ‘−’ and σ(ci) = 0, or this

cell holds symbol ‘∗’ (“don’t care”). In the SMT-encoding, the

symbol in “this cell” is given by the value of constant vi,j ,

hence the equivalence stated above corresponds to the formula

Gi,j := (vi,j = × ∧ ci) ∨ (vi,j = − ∧ ¬ci) ∨ (vi,j = ∗) (3)

over a logical variable ci. Formula (3) holds if and only if the

current value of ci enables the currently considered entry of the

decision table cell as given by the interpretation of constant

vi,j . A rule r is enabled by a valuation σ if and only if σ

satisfies Fpre(r), which is the case if and only if σ enables

all cells that constitute the premise of r. Hence the formula

Gj := G1,j ∧ · · · ∧ Gm,j corresponds to the enabledness of

rule rj (where the rule is given by the current interpretation

of the vi,j ). So to obtain a deterministic decision table, we

conjoin the overall formula

G := ∀ 1 ≤ j1 6= j2 ≤ n ∀ c1, . . . , cm • ¬(Gj1 ∧Gj2) (4)

to the SMT-problem. The particular SMT-problem is now to

provide an interpretation of the signature (i.e., the constants

vi,j and wi,j) such that G is satisfied. For details of the

encoding, we refer the reader to [9]. Note that all quantifiers

in G (cf. (4)) range over finite domains and can hence be

expanded into a finite conjunction. The expanded formula

is then treatable by efficient SMT-solvers for quantifier-free

theories. The unfolding grows in the number of conditions

and desired rules. Yet, since we aim to create decision tables

that are supposed to be solved by humans, we expect that the

unfolding of G into a quantifier-free formula is usually still

well-treatable by today’s SMT-solvers. Prelimary evaluation

results as reported below confirm our expectation.

V. EVALUATION

We have implemented our approach using the API of the

SMT-solver SMTInterpol [10]. We imagine to offer to teachers

a choice of decision tables for a given learning assignment

specification, and the possibility to refine the specification,

e.g., to limit the number of ‘∗’ symbols (the fewer ‘∗’ symbols

a decision table has, the more obvious the determinism).

Figure 4 shows the runtime of decision table generation

using our implementation. The practically most relevant graph

is elapsed time (blue); the total user time (yellow) grows

faster because the underlying solver effectively uses multi-core

systems. The top graph shows the time needed to generate one

decision table of size (n+n)×n (n conditions and actions, and

n rules). For values of n up to 10, the runtime is in the order

of seconds. Hence generating decision tables for our exercises

and exams is well feasible, because our tasks usually have 3
to 5 conditions, about 3 actions, and not more than 7 rules.

Working on larger decision tables in ‘paper & pencil’ style is

in our opinion not supporting the learning but just tedious.

One use case that we envision for our procedure is to

generate bunches of decision tables as task candidates for

the teacher to choose from. The bottom graph in Figure 4

shows that the time needed for generating bunches of 100

decision tables for n = 3 is in average about half a second. An

inspection of the bunches shows that using SMTInterpol has

the effect that the tables in the bunches do not feel too regular

(i.e., not like a mere enumeration of decision tables) and that

we do not get too many symmetric decision tables. Still, we

plan to give teachers the possibility to refine the specification,

e.g., to limit the number of ‘∗’ symbols (the fewer ‘∗’ symbols

a decision table has, the more obvious the determinism).

VI. DISCUSSION

The previous sections show that it is possible to synthe-

sise learning assignments for software description formalisms

(viewed as mathematical objects) that satisfy certain precisely

stated constraints. These constraints can be very generic,

in our case the full power of logic over some theory is

available. Here we see a strong potential of our approach:

We formalise conditions that make learning assignments good

learning assignments, relative to the teacher’s intention and the

students’ situation in the same way as sketched for addition

tasks in the introduction.

In the case of decision tables, we have for example ob-

served that the tasks that we create anew each season for the

exercises and the exam follow certain principles. One is of

course the size of the tables (as already considered in our

generation procedure). With non-deterministic decision tables,

we do consider more aspects. For example, a table where

two rules are just copies of each other could be too easy

to analyse. We can immediately formalise that there are no

two identical rules and add that constraint to the learning

assignment specification. Then, our definition of determinism

has the particularity that actions are not considered. So if

two rules can be enabled by one valuation of the conditions

and have the same effect, they are still (by definition) non-

deterministic. A table with all different effects could be a

good choice when starting with non-deterministic tables, yet

the corner-case of overlapping premise and equivalent effect

should be presented to the advanced learner. Again, we can

formalise both cases as constraints. Furthermore, an analysis

for non-determinism could be too easy if there are too many

‘∗’ symbols in the table, so we may want to add a constraint

that limits the number of ‘∗’ symbols overall, or just per rule.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 64



The same applies to other properties of decision tables, such

as completeness, consistency, presence of useless rules, etc..

Once we have established a set of constraints that can be

added to learning assignment generation runs, there are mani-

fold applications. The most obvious application is to generate

exercises or exam tasks tailored to a particular teaching or

testing goal (cf. Figure 2). It is easy to embed our decision

table synthesis procedure into a tool where a teacher only

selects the kind of task to obtain a task statement and a

matching decision table. We envision a tool that presents a

selection of tasks to teachers. We feel that the teacher needs

to decide and should not blindly rely on a tool. The experience

from our experiments is that a set of 10 (or even 100) decision

tables usually includes many examples of good exercises.

Having decision tables available in machine readable form

allows us to generate much of the necessary material automat-

ically, including correction schemes and slides for tutorial ses-

sions. In tutorials that discuss non-determinism, there could be

overlays for the case with disjoint effects and the corner-case

with equivalent effects. Further applications could be to offer

an e-learning tool, e.g., a website or a mobile application, that

generates new learning assignments for a student-controlled

or heuristically adapted level of difficulty. Note that we want

to address learning activities that focus on the formalisms

and analysis procedures as such. To this end, it is perfectly

adequate that the generated decision tables do not model an

existing system. In our opinion, students should not firstly

assess the pragmatics of a decision table model, or try to look

out for non-determinism in their imagination of the modelled

system, but they should learn to rely on the purely abstract

application of analysis procedures.

From our experience with exercises for our software en-

gineering course, we anticipate that our approach can be

extended to class diagrams, object diagrams, OCL constraints

together with class diagrams, and even Statechart-like for-

malisms. It is an open research question which synthesis

procedure is adequate for which formalism.

VII. RELATED WORK

The idea to generate learning assignments is not new.

worksheets for elementary school arithmetic are generated

randomly (e.g., [11]) and, e.g., [12] use mutations of templates

for state-machine problems. Singh et al. [13] infer a set of

similar problems on algebraic equivalence proofs from an

abstraction of a given problem into a so-called query, where

queries can also serve to give learning assignment specifica-

tions. Similarly, Ahmed et al. [14] propose to abstract natural

deduction proofs and to then generate comparable problems.

Alvin et al. [15] targets the synthesis of geometry problems

from an example with a set of properties to be preserved.

They suggest that proof width and length, and the number

of deductive steps are useful metrics to control the synthesis.

Andersen et al. [16] propose to characterise the difficulty of

problems by the execution trace of a procedure that solves the

problem, and to synthesise problems along such a procedure

to obtain a controlled learning progression. Sadigh et al. [12]

provide a procedure to generate problems that ask to construct

a DFA that accepts a certain language from a set of so-called

seed problems. They propose a metric of difficulty based on

number of states, depth, and number of counter-examples used

by a learning algorithm.

Our approach can be seen to take one step back since we

feel that teaching of software description languages is not yet

as well-researched as, e.g., geometry or algebra. We put the

teachers’ understanding of learning assignments first and want

to provide problem encodings such that teachers can formalise

their understanding of problem classes and have complete

control over generated problems.

VIII. CONCLUSION

We have presented a logic-based approach to characterise

and synthesise learning assignments for a subset of the formal

software description language of decision tables. A first eval-

uation shows that our procedure quickly generates problems

of the size needed for ‘paper & pencil’ tasks. We argue to

put computer science teachers into a prominent position when

generating learning assignments: A formalisation of software

engineering problems allows us teachers to formalise and

investigate our understanding of good learning assignments.

Future research includes to extend the set of supported

learning assignments (also for different formalisms), and fur-

ther research into the nature of instructionally good learning

assignments and their formal characterisation.

REFERENCES

[1] N. M. Seel, Lernaufgaben und Lernprozesse, ser. Studienbuch
Pädagogik. Stuttgart: W. Kohlhammer, 1981.

[2] A. Renkl, “Lernaufgaben zum Erwerb prinzipienbasierter Fertigkeiten,”
in Lernaufgaben entwickeln, bearbeiten und überprüfen, ser. Fachdidak-
tische Forschungen, vol. 6, 2014, pp. 12–22.

[3] L. W. Anderson, D. R. Krathwohl et al., Eds., A Revision of Bloom’s

Taxonomy of Educational Objectives. Longman, 2001.
[4] B. Westphal, “An undergraduate requirements engineering curriculum

with formal methods,” in REET@RE, M. Moshirpour, M. Moussavi,
A. M. Grubb, S. Gregory, and B. Far, Eds. IEEE, 2018, pp. 1–10.

[5] ——, “Formale methoden in der Softwaretechnik-Vorlesung,” in SEUH,
V. Thurner et al., Eds., vol. 2358. CEUR-WS.org, 2019, pp. 21–33.

[6] ——, “Teaching software modelling in an undergraduate introduction to
software engineering,” in EduSymp. IEEE, 2019, pp. 0–0.

[7] H. Balzert, Lehrbuch der Softwaretechnik: Basiskonzepte und Require-

ments Engineering, 3rd ed. Spektrum, 2009.
[8] ——, Lehrbuch der Softwaretechnik: Entwurf, Implementierung, Instal-

lation, Betrieb, 3rd ed. Spektrum, 2011.
[9] M. Steinle, “Automatische Generierung von Lernaufgaben für Entschei-

dungstabellen,” 2019, B. Sc. thesis, Universität Freiburg.
[10] J. Christ, J. Hoenicke, and A. Nutz, “SMTInterpol: An Interpolating

SMT Solver,” in SPIN, ser. LNCS, A. F. Donaldson and D. Parker,
Eds., vol. 7385. Springer, 2012, pp. 248–254.

[11] mathworksheetwizard.com. (2019)
[12] D. Sadigh, S. A. Seshia, and M. Gupta, “Automating exercise generation:

a step towards meeting the MOOC challenge for embedded systems,”
in WESE, P. Marwedel, Ed. ACM, 2012, p. 2.

[13] R. Singh, S. Gulwani, and S. K. Rajamani, “Automatically generating
algebra problems,” in AAAI, 2012.

[14] U. Z. Ahmed, S. Gulwani et al., “Automatically generating problems
and solutions for natural deduction,” in IJCAI, 2013, pp. 1968–1975.

[15] C. Alvin, S. Gulwani, R. Majumdar, and S. Mukhopadhyay, “Automatic
synthesis of geometry problems for an intelligent tutoring system,”
CoRR, vol. abs/1510.08525, 2015.

[16] E. Andersen et al., “A trace-based framework for analyzing and synthe-
sizing educational progressions,” in SIGCHI. ACM, 2013, pp. 773–782.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 65


