
Teaching Software Engineering Principles in
Programming and Non-Programming Activities at

Schools
Claus Pahl

Faculty of Computer Science
Free University of Bozen-Bolzano

Bozen-Bolzano, Italy

Ilenia Fronza
Faculty of Computer Science

Free University of Bozen-Bolzano
Bozen-Bolzano, Italy

Abstract—Software engineering principles are relevant to
students at school, irrespective of whether they will become
professional developers. We discuss two types of situations for
teaching software engineering principles that we covered in a
number of publications. Firstly, we discuss app development and
robotics examples as more traditional settings for software devel-
opment. Secondly, we show how the creation of infographics and
videos represents an opportunity to promote agile approaches.
In schools, computer science subjects are often taught in the
context of other subjects, which we address through the second
situation above. We focus on a range of activities that aim at
fostering software engineering principles, while also considering
the achievement of the existing curricular learning objectives.

Index Terms—Software Engineering; Software Engineering
Training and Education; End-User Software Engineering.

I. INTRODUCTION

Bollin et al. [6] looked at the need for teaching Software
Engineering (SE) principles in schools. Their feasibility analy-
sis revealed that this is effective in training skills needed today
beyond the actual software development. These skills include
for instance group dynamics, psychology and communication
skills as well as general soft skills, but also logic, planning,
modelling, and computational thinking as a problem solving
ability. End-User Software Engineering (EUSE) [7] refers to
non-professional, untrained developers – thus a definition that
applies to students at school from primary to high school lev-
els. The challenge of EUSE in schools is often understanding
how to leverage existing curricular activities (that do not have
software development as their main objective) to foster Soft-
ware Engineering principles if focussed programming courses
are not part of the curriculum.

Central in this effort for schools are the acquisition of
software quality notions from a product perspective, but also
SE principles from a process perspective. This aim creates
a number of challenges. Often, direct SE lectures should be
avoided as school pupils often do not realise the usefulness of
learning SE principles. Furthermore, when computing topics
are taught as part of other subjects, meeting their core curric-
ular learning objectives becomes difficult.

The work presented here has been supported by the COCONATS project
(https://coconats.inf.unibz.it/), Free University of Bozen-Bolzano.

We consider teaching formats that aim at achieving com-
puter science objectives and specifically foster SE principles,
while also guaranteeing the achievement of the existing cur-
ricular learning objectives. Here, EUSE can aid the student’s
goals, without aiming to transform them into professional
software engineers with targeted direct courses.

The EUSE field has largely focused on adult, mainly
professional contexts, only a few contributions are dedicated
to schools. Most of these studies target the teaching of agile
methods, which turn out to be suitable for schools. For
example, we propose a framework in which a series of agile
methods can be adapted for middle schools. We have published
on the two settings outlined [1]–[4] and will describe the main
approach and insights here. We will cover programming and
non-programming activities.

II. SOFTWARE ENGINEERING PRINCIPLES IN SCHOOLS

In order to bring the benefits of a Software Engineering
(SE) approach to end-users, Burnett and Myers recommend
to consider and respect the student’s (i.e., end-users in EUSE
terminology) goals and working style [8]. The latter can often
be opportunistic and incremental, collaborative, and organised
into trial-and-error phases. Agile methods are consequently a
good candidate in this endeavor, simply because they inher-
ently favor a flexible, iterative approach. Their focus is also
more on the product than on the production of documentation.
The latter would negatively impact on students’ motivation.

The existing attempts to introduce agile principles to schools
have been compared with a long waterfall development ap-
proach. Though here the focus was more in the final product,
rather than the process through which students developed the
product. Adopting agile, as we propose, fills this gap. This is
also more transferable, e.g., to non-STEM subjects, since the
agile focus is less in technical product quality. As a conse-
quence, software engineering principles also become relevant
for non-technology oriented students. Software engineers do
not just write programs; they think in terms of satisfying
needs and solving problems. Moreover, following a (software)
engineering process teaches how to manage all the steps from
initial customer inception to the release of the finished product.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 68

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



The selection of infographics and videos for our sample
courses had the following reasons. 1) They are transversal
to many disciplines, and can be adapted to different types
of schools, e.g., creating videos and infographics takes into
account the need for visual communication skills. 2) They also
engage them to learn subjects they are not particularly gifted
at. Videos and infographics are good candidates, as the current
generation of students has grown up with digital media.

III. APPROACH

In this work, we focus on middle and high schools, covering
an age range of 10 to 17 years, with the additional goal
of connecting to students before they choose their future
career. However, apart from enticing students into computer
science studies, we realise that not all will become professional
developers, but will nonetheless need to be equipped with
capabilities suitable for a digitalised world.

We discuss here two different types of activities:
• apps and robots as computing topics, with a clear link to

programming and development [5],
• information and media, as concerns of the wider digital

world, without any concrete software connection [3], [4].

A. Robotics, Apps and Blogs

The goal of one proposed teaching module is completing a
robotics project. This is accompanied by documenting these
development activities in a blog, which is often also of
curricular value in school. Writing a blog can link to the
students’ interests and social communication habits, and thus
engage them better in the technical work. Here, using smart
phones or other mobile devices to document project activities
also helps towards a more competent and responsible use of
these devices. The blogs are anyway a good opportunity for
an integration in a traditional curricula.

A module focusses on combining robotics with digital
media, consisting of four main parts:

Introduction and team creation (4 hours);
Blogs: introduction and first posts (6 hours);
Unplugged introduction to robotics (4 hours);
Robotics project (6 hours).

Here, from a software engineering perspective, a software
process is clearly applicable. This could be in the form of agile
methods with a focus on early implementation and testing,
with intensive interaction with the ‘customer’, which is the
instructor in this case. The challenge is here the assessment.
Generally software quality aspects could be applied, more
research is here needed to develop assessment methods that
will work in a school’s curriculum.

B. Digital Media

We applied a set of agile (eXtreme Programming XP) prac-
tices in these courses: a) Incremental development, through
small releases, frequent testing, and user stories; b) Customer
involvement, by having the instructor playing this role; and c)
Change, through regular system releases, test-first, refactoring,
and continuous integration.

The infographics and video course is organised as follows:

Introduction (2h): tips on infographics/videos but no SE/Agile
Paper-based prototype (6h): small releases (20-min cycles), user
stories (storyboards), on-site customer (10-min with teacher)
Creation of infographic (4h): small releases (20-min cycles),
testing, on-site customer (10-min revision) + peer evaluation
Presentation (2h): conformance with the initial requirements and
paper-based prototype user stories and testing

Based on frequent small releases, it provides an opportunity
for formative assessment. Focusing on the process side (rather
than on the product), we have selected a set of XP practices,
which are recommended to be adopted together. The table
below shows the XP practices that can be implemented.

Practice Description
On-site
customer

The customer (i.e., teacher) is always present to
provide continuous and direct feedback.

Testing Acceptance testing (to allow continuous feedback),
and test-first (to test as soon as possible thus
minimizing long-term testing costs).

User stories Informal prototypes (e.g., storyboards) that de-
scribe requirements.

Small
releases

Decomposition of activities in short iterations in
order to obtain timely and continuous feedback.

IV. RESULTS AND CONCLUSIONS

We introduced two separate contexts in order to foster soft-
ware engineering skills and principles in schools: a computing-
oriented robotics/apps module and a digital media-oriented
creation of infographics and videos. In both cases, this was
an opportunity to promote process-oriented principles (here
agile) in middle and high schools.

Our assessment included both product and process aspects.
We observed a quality improvement of the product throughout
the iterations. The results also show that students started
adopting a software engineering approach, and managed to
organize their activities in order to be able to present a
prototype at the end of each iteration.

Our future work includes the further verification of
how fostering SE practices through programming and non-
programming activities can be beneficial to students when they
start programming. More experiments would be beneficial to
further clarify the effectiveness.

REFERENCES

[1] I Fronza, N El Ioini, C Pahl, L Corral. Bringing the Benefits of Agile
Techniques Inside the Classroom: A Practical Guide. Agile and Lean
Concepts for Teaching and Learning, 133-152. 2019.

[2] A Colombi, I Fronza, C Pahl, D Basso. COCONATS: Combining
Computational Thinking Didactics and Software Engineering in K-12.
19th SIG Conference on Information Technology Education. 2018.

[3] I Fronza, C Pahl. End-User Software Engineering in K-12 by Leveraging
Existing Curricular Activities. ICSOFT, 283-289. 2019.

[4] I Fronza, C Pahl. Teaching Software Engineering Principles in Non-
Vocational Schools. CSEDU. 2019.

[5] I Fronza, L Corral, C Pahl. Combining Block-Based Programming
and Hardware Prototyping to Foster Computational Thinking. SIG
Conference on Information Technology Education (SIGITE ’19). 2019.

[6] A. Bollin, S. Pasterk, P. Antonitsch, B. Sabitzer. Software engineering
in primary and secondary schools-informatics education is more than
programming. Intl Conf on SE Education and Training, 2016.

[7] S. Chimalakonda, K. V. Nori. What makes it hard to teach software en-
gineering to end users? some directions from adaptive and personalized
learning. IEEE Conf on SE Education and Training, 2013.

[8] M. M. Burnett, B. A. Myers, B. A. Future of end-user software
engineering: beyond the silos. In Future of Software Engineering. 2014.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 69


