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Abstract. An important problem in Multimedia Flow Management of schedul-

ing jobs on identical parallel machines aiming to minimize total completion 

time is studied. Based on the problem peculiarities, the prominence of applying 

cutting-plane approaches is justified. A new such approach called a spherical 

cutting-plane method (SСPM) is developed for solving linear permutation-

based problems. It uses a fundamentally new way to construct cutting planes for 

sets inscribed into a hypersphere, and it is superior to existing methods of the 

optimization problems’ class. The generic SCPM is adapted to the scheduling 

problem under consideration. For that, the problem’s statement as a linear par-

tially combinatorial permutation-based problem is built, and the SCPM is gen-

eralized for solving partially combinatorial problems. 

Keywords: Scheduling, parallel machines, cutting plane method, permutation-

based problem, Euclidean combinatorial problem, spherical-located set, 

well-described set. 

1 Introduction 

In the Smart Multimedia field, minimizing the completion time of jobs on parallel 

machines and solving other scheduling problems are inevitable components of 

efficient Multimedia Flow Management [1]. Most of the problems belong to a class of 

combinatorial or partially combinatorial optimization problems resulting in their 

higher computational complexity [1-3]. As a field of Optimization Theory, Combina-

torial Optimization offers a variety of methods and algorithms to solve the problems 

of lower dimension exactly or get an approximate solution of the ones of high dimen-

sion in a reasonable time [4-7]. Nevertheless, steadily increasing demands to the solu-

tions’ accuracy along with a reduction in the time of their obtaining results in a need 

to develop new optimization approaches for both generic and special statements of the 

problems [1-3,8,9].  

In this paper, a new method of partial combinatorial optimization, called a spheri-

cal cutting-plane method (SCPM), is offered for solving a scheduling problem for 
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jobs with non-identical job sizes processed on parallel machines having the same 

capacity, which aims to minimize total completion time. For that, a new mathematical 

model of the problem as a linear partial permutation-based program is built, the ge-

neric SCPM is justified and then is adapted to solving the scheduling problem.  

2 Problem Statement 

The problem of scheduling jobs on identical parallel machines to minimize total com-

pletion time may be stated as follows [8-10]. Each of n  jobs (numbered 1 nA ,..., A ) is 

to be processed on one of m  identical parallel machines (numbered 1 mM ,...,M ). No 

machine can handle more than one job at a time. Each job iA  is available for pro-

cessing at time zero and requires a positive integer processing time jt  on the machine 

to which it is assigned (  1nj J , ,n  ). The objective is to find a schedule that 

minimizes the completion time of all these jobs. 

Let      '
i

m

'
i i mj I

i J
P j , I n , i J




    be a partition of the jobs induced the 

schedule, where   "
i

j j I
A


 are jobs completed at the machine iM  ( mi J ).  

The completion time T  is a maximum of completion time in each of the machines. 

Thus, 

  where  
'm
i

i i i m
i J

j I

T max T , T t , i J




   .  (1) 

It is required to determine such a partition, where T  is minimized. Thus, an issue 

is to find the partition: 

 T min , (2) 

where additional constraints  

 PP , (3) 

are satisfied, where P  is a set of admissible partitions. 

Due to the presence of max(.) in the formulation of the problem (1)-(3) (further re-

ferred to as Problem 1), this one is a nonlinear partially combinatorial problem given 

in the form of its combinatorial statement. Here, the real-valued variable is T . The 

statement is suitable for algorithmization if (3) is missing, and heuristics based on 

generating the partitions are applied [11-15]. The situation gets worse if additional 

constraints are present, which is a typical case in practical applications [11,16,17]. 

Therefore, it is often not so easy to find the required number of feasible partitions to 

apply these heuristics and metaheuristics. Moreover, in many cases, a feasibility prob-

lem needs to be solved to get any of the feasible partitions [18].  



In this paper, we propose a technique for solving Problem 1, provided that an ap-

proximate solution yielding **T T  has been found. The approach is based on em-

bedding Problem 1 in Euclidean space and then treating it as a linear partially discrete 

optimization problem. 

First, examine Problem 1 in order to reformulate it as a linear permutation-based 

optimization problem [12,13]. For that, at first, define a dimension of Euclidean space 

for the embedding. Let min maxn ,n  be a minimal and maximal number of the jobs 

scheduled on a single machine.  

Without loss of generality, assume that  1 nt ... t  , then  

1 1

1 1
1 1 1 1

  

min min max minn n n n
min max ** ** ** **

n i n i i i
i i i i

n ,n : t T , t T ; t T , t T .
 

   
   

        

Now, set the dimension of Euclidean space as follows – 
maxN m n  . After, we 

complement the multiset  
n

i i J
t


 by N n  dummy zeros and form a multiset  

       10
N n

N n
i i ni J i J

G g t : g ... g
 

     , (4) 

with exactly k  different values     10
k

i ki J
S G e : e ... e


    . 

Introduce a vector of variables  

  11 11 max maxmn mn
x x , ..., x , ..., x , ..., x .  

In these denotations, Problem 1 can be formulated as finding Nx R : 

 

1

max

m

n

ij
i J j

z max x min
 

  , (5) 

  Nkx E G , (6) 

where  NkE G  – is a basic generalized set of Euclidean permutation configurations 

(the generalized permutation b -set) induced by G  [19,20]. The problem (5), (6) – is 

a nonlinear nondifferentiable Euclidean combinatorial problem [19,21], which be-

comes much easier for dealing with by its lifting into space 1NR  . For that, let us 

introduce an additional variable 
1

0y R  such that 

1m

N

ij
i J j

y max x
 

  . Now, (5) is re-

written as – find  x, y , z : 

 z y min  , (7) 



subject to (6) and constraints 

 

1

0  
N

ij m
j

x y , i J



   . (8) 

Assume that, if constraints (3) are present, then after the embedding, they become 

linear and are of the form: 

 0   m' N m'A" x b" , A" R , b" R    . (9) 

The obtained problem (6)-(9), further referred to as Problem 2, is a linear con-

strained partially permutation-based problem with a single real-valued variable y . 

3 The relevance of developing a cutting-plain approach to 

Problem 2 

Problem 2 belongs to such a class of Euclidean linear partially combinatorial prob-

lems:  

  f x, x' cx c' x' min   , (10) 

subject to  N n'c R , c' R  , 

  where   M N M n' MAx A' x' b, A R , A' R , b R ,M m' m        , (11) 

  Nx E R , E   , (12) 

where  NkE E G , 1n'  .  

Numerous features of set  NkE G  underlie various optimization methods of solv-

ing problems such as (10)-(12).  

One of the properties is that  NkE G  lies on a hyperplane and hyperspheres cen-

tered at aa e , where  1a R \   is a parameter, e  is a vector of units [14]. In the 

family is a circumsphere of minimal radius corresponding to the parameter 

1

1 N

i
i

a g
N



  . It results in another peculiarity of crucial importance for us that 

 NkE G  coincides with a vertex set of a polytope     Nk NkP G conv E G . Such 

a set is called vertex-located (VLS) [22].  

The class  NkE G  is intensively studied the last couple of decades [4,11-

16,19-25] in various directions, most of which concern optimization. Here, we outline 

the main approaches to solving linear permutation-based problems based on utilizing 



the above properties. First, there is a method of tightening constraints presented in 

[21] for solving linear combinatorial programs. Let us formulate its generalization for 

partially combinatorial linear programs. First, additional constraints (11) need to be 

replaced by Ax A' x ' b   , where MR  is chosen in a specific way. Then the 

original partially combinatorial problem is replaced by a polyhedral relaxation of the 

new problem. Finally, the relaxation’ solution  0 0'x , x  is rounded combinatorially 

thus yielding a point  0 0'y , y , where 0y E .   depends on E  and is chosen such, 

that  0 0'y , y  is an admissible solution, i.e.,    0 0** '** 'x , x y , y . The method of 

tightening constraints is approximate, which can be effectively combined with exact 

approaches. One of the exact techniques is a polyhedral-spherical method [23], which 

is a Branch&Bound approach exploiting simultaneously polyhedral-sphericity of E , 

its decomposition into generalized permutation b -sets of lower dimension lying in 

parallel hyperplanes [23]. In [26], some graph-theoretic approaches to solving such 

optimization problems, both exact and approximate, are offered. They explore an 

equivalent statement of these problems as optimization ones on a node-set of graphs 

extracted from a transposition graph [27]. One more important group of methods is 

cutting-plane ones [28-31]. Among them are a combinatorial cutting method [29,30], 

combinatorial polytope cutting method [31], surface cutting method [31]. They are 

based on the absence of admissible solutions in an interior of faces on any dimension, 

as well as on most of circumsphere. All the exact methods are intended to solve com-

binatorial programs only. Thus, they require developing relevant generalization to the 

partially combinatorial case. The only exception is the combinatorial cutting method, 

which has been reformulated for partially combinatorial programs in [29]. An issue of 

applying the listed cutting-plane techniques is that they require finding a set of adja-

cent vertices to solutions of auxiliary polyhedral relaxation problems (the solutions’ 

neighborhood). It is caused by, generally, the exponential on N  number of con-

straints in an H-representation of  NkP G  making impossible processing the whole 

collection of  NkP G -constraints. It turns out that it is sufficient to involve incon-

siderable part of the H-representation [21]. However, in this case, to extract the 

above-mentioned neighborhood becomes problematic. Therefore, in this paper, we 

aim to develop a new cutting-plane method SCPM for solution linear constraint per-

mutation-based and partially permutation-based problems, which utilizes solutions of 

polyhedral relaxation problems, spherical locality of  NkE G , and properties of 

linear functions over the set. Our final goal is to adapt this method for solving Prob-

lem 2.  

4 Cutting-plane method for linear optimization on WD-SpLSs 

Consider an optimization problem of finding x  such that 



  f x cx min   (13) 

subject to constraints 

   M n MAx b, A R , b R   , (14) 

   n
rx E S a R   , (15) 

 E  is a well-described set (WDS), (16) 

where  rS a  – is a hypersphere centered at na R with a radius 0r  . The condi-

tion (16) means that the problem (13) is effectively solvable on  , i.e., it is polynomi-

ally solvable [32]. The condition (15) implies that   is a spherically-located set (SpLS) 

[16,17]. Thus, the problem (13)-(16) is a general linear constraint optimization prob-

lem (further Problem 3) on SpLS and WDS E  (further WD-SpLS). The conditions 

(15), (16) allow using specifics of WD-SpLS in optimization, in particular, when 

cutting-plane optimization schemes are developed. 

Theorem 1. If E  is SpLS, then for any 
0 nx R , there exists 

nc R  such that 

problems (13) and  

  
2

0

x E
h x x x min


    (17) 

are equivalent. 

Proof. Let us assume that SpLS E  satisfies (15), wherefrom  

 
22 2 22

E
r x a x ax a .      (18) 

Single outing 2x  from (18) and substituting it in (17) yield 

 

       

   

2 2 2
0 2 0 0 2 2 0 0

2
0 2 2 0

2 2 2

2

h x x x x xx x r ax a xx x

a x x r a x .

          

 
     

 

  

The expression can be rewritten as follows: 

      
2

0 2 2 0 where =2  =h x cx d , c a x , d r a x .      (19) 

In (19), d  is a constant; hence the projection problem (17) has been reduced to a 

minimization of linear function cx d , which is equivalent to the problem (13), 

where c  is found from (19). 



Corollary 1. If E  is WD-SpLS, then, for any 0 nx R , the projection problem 

(17) is polynomially solvable. 

Indeed, in this case, (17) is reducible to a linear program over E , which is effec-

tively solvable by definition of WDS. 

4.1 SCPM outline 

The spherical cutting-plane method (SCPM) is an iterative approach, and it will be 

stated in terms of a single iteration.  

Let  0 0L Ll J J    be an iteration number, where an iteration numbered 0  is 

initial, while the one numbered L  is last. On iteration l , a linear program (13) under 

constraints (15), (16), 

   
l ll l l m n l mA x b , A R , b R    (20) 

is solved (further Problem 3.l), which is equivalent to Problem 3, through its contin-

uous relaxation. For that, the constraint (15) is replaced by 

   rx P conv E S a   . (21) 

For instance, if E  is finite, P will be a polytope, respectively, the problem (13), 

(16), (20), (21) (further Problem 4.l) is a polyhedral relaxation of Problem 3.l.  

Let a solution of Problem 3 be denoted 
* * * *x , z x ,cx , of Problem 4.l – 

l l l lx , z x ,cx .  

Step 0. On initial iteration  0 0 00    l , A A, b b, m M    . 

Step l. On iteration l , if  then l * * l lx E, x , z x , z  , end. If 
lx E , we 

form a cut for 
lx . For that, find a projection 

ly  of the point 
lx onto E : 

 Prl l
Ey x . (22) 

By construction, 
l ly x , thus there exists a sphere 

lS  of a positive radius cen-

tered at 
lx  having no points in common with E , which can be cut off from a feasible 

domain of the Problem 4.l. Choose  l
l l

r
S S x , where  

    
2 2

l l lr y x  , (23) 

because this sphere contains no points of E  in an interior. So, a deep nonlinear cut of 
lx E  is 



    
2 2

l lx x r  , (24) 

which can be added to the current constraints. An issue is that the constraint (24) is 

nonlinear. Moreover, it is concave. Therefore, the utilization of (24) makes a new 

problem harder than it was. Meanwhile, it is easy to see that the cut is not unique, and 

it is possible to find a linear constraint cutting off lx  and the relevant cutting plane. 

Let us construct the cutting plane based on Theorem 1. Preliminarily, the theorem 

will be generalized as follows,      00     l l l
Ll, h x h x , c c , d d , l J     . 

Corollary 2. If E  is SpLS, then for any l nx R , there exists l nc R  such that 

problems l

x E
c x min


  and   

2
l l

x E
h x x x min


    are equivalent, namely, 

      
2

2 2 where =2  =l l l l l l lh x c x d , c a x , d r a x .      (25) 

Now, inequality (24) can be rewritten equivalently on 

E    
2 2

l lr x x    l l l

E
h x c x d    or 

  
2

l l lc x d r  , (26) 

where lr  is given by (23), l lc ,d  – by (25). 

By construction,  
2

l l l lc x d r  , hence  
2

l l lc x d r   is a cutting plane for 

lx . Instead of (24), let us add inequality (26) to the current constraints (20) obtaining 

input data 1 1 l lA , b   for Problem 3.(l+1).  

Set 11  1l ll l , m m     . Go to solving Problem 3.l through Problem 4.l. Repeat 

until the method terminates, which can occur, if the maximal number of iteration has 

been reached, 
*x  was found, the current lower and upper bound coincide (then 

* * ** **x , z x , z ), or incompatibility of Problem 4.l was proven. 

Remark 1. Throughout the iterative process, a lower bound lbz  on *z  are con-

stantly improved. Namely, by construction, 
0 1 Lz z ... z    that is why: a) initially 

0lbz z ; b) on iteration 1,  1 1lb lbz max z , z z   ; …; c) on iteration L 

 Lb L Lb Lz max z , z z  . In order to reduce a search domain, it makes sense to 

solve a feasibility problem of finding admissible point 
**x  of Problem 3 and then to 

monitor improving the initial upper bound 
ub ** **z z cx  . The current upper 



bound is improved on iteration l , if the point (22) satisfies (14), and 

 ub l lz z y cy  , wherefrom     ub l lb lz min z y , z z y  .  

For the increasing probability of improving the upper bound in such a way, it is 

worthful to explore a whole projection l
EPr x  of lx  onto E , which implies replac-

ing formula (22) by l l
EY Pr x .  Now, if  lY E   , there is a chance to 

improve the current lower bound if the whole neighborhood is examined. 

5 Adaptation SCPM to Problem 2 

Let us adjust the SCPM to solving the general linear partially combinatorial problem 

(10) (12). The following substitution will be made in the SCPM and formulations of 

Problems 3.l, 4.1: n N , 
      . . ' .

x x , x ,  c c,c' ; (20) should be replaced 

by 

    
  

l lm N n'l l l l mA x, y b , A R , b R
 

   , (27) 

     . . ' .
z cx c ' x  , where  0A A, A' ,    . l ,*,** .  

Step l is reformulated as follows: on iteration l , if 

    then l * * * l l lx E, x , y , z x , y , z  , end. If 
lx E , then find 

ly  by (22) 

and form a cut for lx  in accordance to (26).  

To the generalization of the SCPM (further referred to as a generalized SCPM 

(GSСPM)). It is directly applicable to solving Problem 2. For that, constraints (8), (9) 

are presented in the form of (11), where 1 ln' , x y  . Matrix 0A  is of the dimen-

sion 
0m m m'   by 1N  , the objective function vector in (10) is    1c,c' , 0 , 

where 
NR0  is a zero-vector. 

Remark 2. When solving Problem 2 by the GSCPM, a search domain can be re-

duced depending on the type of values of elements in (4). Without loss of generality 

assume that a greatest common divisor    1
n

i i J
GCD t


 , then an initial lower 

bownd will be 

1

1 n
lb

i

i

z t
m



 
  
  
 . At the same time, an initial upper bound can be 

found by a well-known heuristic, where the least filled bin associated with a machine 

is filled first, while jobs are considered in random order. Then the initial bin packing 

may be improved by adjacent transposition of a vector 
**x  associated with this pack-

ing.  



Conclusion 

An actual problem of organizing effective parallelization of a job batch is considered. 

This problem is modeled as linear constrained partially combinatorial. For linear con-

strained problems over well-described spherically-located sets, such as permutation 

set, Boolean set, or permutation matrices’ set, a special exact solution method is of-

fered, called a spherical cutting-plane method (SСPM).  

The SСPM is generalized to solving partially combinatorial problems resulting in 

the generalized SСPM (GSСPM) and is adapted for the scheduling problem under 

consideration. SСPM and GSСPM can be applied to a wide class of real-world prob-

lems in which combinatorial structures are singled out, such as permutations and 

Boolean vectors [2-13,23-26,33-35]. It can also be generalized to nonlinear combina-

torial and partially combinatorial problems [36-40], where, in order to solve optimiza-

tion problems globally, our method should be combined with the convex extension 

theory [16,17,20,23] and continuous functional representation theory [17,20,22]. 

References 

1. Basu, A., Berretti, S. eds: Smart Multimedia: First International Conference, ICSM 2018, 

Toulon, France, August 24–26, 2018, Revised Selected Papers. Springer (2018). 

2. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems in mul-

ticast routing. Computers & Operations Research. 32, 1953–1981 (2005). 

https://doi.org/10.1016/j.cor.2003.12.007. 

3. Szkaliczki, T.: Combinatorial Optimization Problems in Multimedia Delivery. Handbook 

of Research on Emergent Applications of Optimization Algorithms. 67–92 (2018). 

https://doi.org/10.4018/978-1-5225-2990-3.ch004. 

4. Yemelichev, V.A., Kovalëv, M.M., Kravtsov, M.K.: Polytopes, graphs and optimisation. 

Cambridge University Press, Cambridge (1984). 

5. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer Science & 

Business Media (2002). 

6. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, New 

York, NY (2018). 

7. Sergienko, I.V., Shilo, V.P.: Discrete Optimization Problems: Issues, Solution Methods, 

and Investigations. Naukova Dumka, Kyiv (2003). 

8. Cheng, B., Yang, S., Hu, X., Chen, B.: Minimizing makespan and total completion time 

for parallel batch processing machines with non-identical job sizes. Applied Mathematical 

Modelling. 36, 3161–3167 (2012). https://doi.org/10.1016/j.apm.2011.09.061. 

9. Low, C., Lin, W.-Y.: Minimizing the total completion time in a single-machine scheduling 

problem with a learning effect. Applied Mathematical Modelling. 35, 1946–1951 (2011). 

https://doi.org/10.1016/j.apm.2010.11.006. 

10. Belouadah, H., Potts, C.N.: Scheduling identical parallel machines to minimize total 

weighted completion time. Discrete Applied Mathematics. 48, 201–218 (1994). 

https://doi.org/10.1016/0166-218X(92)00176-M. 

11. Butenko, S., Pardalos, P.M., Shylo, V. eds: Optimization Methods and Applications : In 

Honor of Ivan V. Sergienko’s 80th Birthday. Springer International Publishing, Cham 

(2017). 

https://doi.org/10.1016/j.cor.2003.12.007
https://doi.org/10.4018/978-1-5225-2990-3.ch004
https://doi.org/10.1016/j.apm.2011.09.061
https://doi.org/10.1016/j.apm.2010.11.006
https://doi.org/10.1016/0166-218X(92)00176-M


12. Gmys, J.: Heterogeneous cluster computing for many-task exact optimization - Applica-

tion to permutation problems, https://hal.inria.fr/tel-01652000/document, (2017). 

13. Mehdi, M.: Parallel Hybrid Optimization Methods for permutation based problems, 

https://tel.archives-ouvertes.fr/tel-00841962/document, (2011). 

14. Yakovlev, S., Kartashov, O., Pichugina, O., Korobchynskyi, K.: Genetic Algorithms for 

Solving Combinatorial Mass Balancing Problem. In: 2019 IEEE 1st Ukraine Conference 

on Electrical and Computer Engineering, UKRCON 2019 - Proceedings. pp. 1061-1064, 

Lviv (2019). https://doi.org/10.1109/UKRCON.2019.8879938 

15. Yakovlev, S., Kartashov, O., Pichugina, O.: Optimization on Combinatorial Configura-

tions Using Genetic Algorithms. In: Proceedings of the Second International Workshop on 

Computer Modeling and Intelligent Systems (CMIS-2019). pp. 28–40. CEUR Vol-2353 

urn:nbn:de:0074-2353-0, Zaporizhzhia, Ukraine (2019). 

16. Yakovlev, S., Pichugina, O.: On Constrained Optimization of Polynomials on Permutation 

Set. In: Proceedings of the Second International Workshop on Computer Modeling and In-

telligent Systems (CMIS-2019). pp. 570–580. CEUR Vol-2353 urn:nbn:de:0074-2353-0, 

Zaporizhzhia, Ukraine (2019). 

17. Pichugina, O., Yakovlev, S.: Quadratic Optimization Models and Convex Extensions on 

Permutation Matrix Set. In: Shakhovska, N. and Medykovskyy, M.O. (eds.) Advances in 

Intelligent Systems and Computing IV. pp. 231–246. Springer International Publishing 

(2020). https://doi.org/10.1007/978-3-030-33695-0_17. 

18. Hwang, F.K., Rothblum, U.G., Chen, H.-B.: Partitions-optimality and clustering. Vol II. 

Multi-parameter. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2013). 

19. Pichugina, O., Yakovlev, S.: Euclidean Combinatorial Configurations: Typology and Ap-

plications. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineer-

ing (UKRCON 2019) Conference Proceedings. pp. 1065–1070, Lviv (2019). 

https://doi.org/ 10.1109/UKRCON.2019.8879912. 

20. Pichugina, O., Yakovlev, S.: Euclidean Combinatorial Configurations: Continuous Repre-

sentations and Convex Extensions. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vyno-

kurova, O., Vyshemyrskaya, S., and Radetskaya, S. (eds.) Lecture Notes in Computational 

Intelligence and Decision Making. pp. 65–80. Cham : Springer, Zalizniy Port, Ukraine 

(2019).  

21. Stoyan, Y.G. Yemets, O.O. Theory and Methods of Euclidean Combinatorial Optimiza-

tion. ISSE, Kyiv (1993) (in Ukrainian) 

22. Yakovlev, S.V.: The theory of convex continuations of functions on vertices of convex 

polyhedra. Comp. Math. and Math. Phys. 34, 1112–1119 (1994). Stoyan, Y.G., 23. Ya-

kovlev, S.V., Parshin, O.V.: Quadratic optimization on combinatorial sets in Rn. Cybern. 

Syst. Anal. 27, 561–567 (1991). https://doi.org/10.1007/BF01130367. 

23. Pichugina, O., Yakovlev, S.: Continuous Approaches to the Unconstrained Binary Quad-

ratic Problems. In: Bélair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., and Spiteri, 

R.J. (eds.) Mathematical and Computational Approaches in Advancing Modern Science 

and Engineering. pp. 689–700. Springer International Publishing (2016). 

https://doi.org/10.1007/978-3-319-30379-6_62. 

24. Pichugina, O.: Placement problems in chip design: Modeling and optimization. In: 2017 

4th International Scientific-Practical Conference Problems of Infocommunications. Sci-

ence and Technology (PIC& S T). pp. 465–473 (2017). 

https://doi.org/10.1109/INFOCOMMST.2017.8246440. 

25. Pichugina, O., Farzad, B.: A Human Communication Network Model. In: CEUR Work-

shop Proceedings. pp. 33–40, Kyiv (2016). 

https://doi.org/10.1007/BF01130367
https://doi.org/10.1007/978-3-319-30379-6_62


26. Koliechkina, L., Pichugina, O.: A Horizontal Method of Localizing Values of a Linear 

Function in Permutation-Based Optimization. In: Le Thi, H.A., Le, H.M., and Pham Dinh, 

T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applica-

tions. pp. 355–364. Cham : Springer (2019). https://doi.org/10.1007/978-3-030-21803-

4_36. 

27. Chase, P.: Transposition Graphs. SIAM J. Comput. 2, 128–133 (1973). 

https://doi.org/10.1137/0202011. 

28. Yakovlev, S.V., Valuiskaya, O.A.: Optimization of linear functions at the vertices of a 

permutation polyhedron with additional linear constraints. Ukr. Math. J. 53, 1535–1545 

(2001). https://doi.org/10.1023/A:1014374926840. 

29. Ēmets′, O.O., Ēmets′, Ē.M.: Cut-off in linear partially combinatorial problems of Euclide-

an combinatorial optimization. Dopovīdī Natsīonal′ noï Akademīï Nauk Ukraïni. Matemat-

ika. Prirodoznavstvo. Tekhnīchnī Nauki. 105–109 (2000). 

30. Yemets, O.A., Yemets, Y.M.: A modification of the method of combinatorial truncation in 

optimization problems over vertex-located sets. Cybern. Syst. Anal. 45, 785–791 (2009). 

https://doi.org/10.1007/s10559-009-9147-8. 

31. Pichugina, O.S.: Surface and combinatorial cuttings in Euclidean combinatorial optimiza-

tion problems. Math. and Comp. Model., Ser. Phys. and Math. 1, pp. 144-160 (2016). (in 

Russian) 

32. Berstein, Y., Lee, J., Onn, S., Weismantel, R.: Parametric nonlinear discrete optimization 

over well-described sets and matroid intersections. Math. Program. 124, 233–253 (2010). 

https://doi.org/10.1007/s10107-010-0358-6. 

33. Crama, Y., Hammer, P.L. eds: Boolean Models and Methods in Mathematics, Computer 

Science, and Engineering. Cambridge University Press (2010). 

34. Kirichenko, L., Radivilova, T., Bulakh, V.: Binary Classification of Fractal Time Series by 

Machine Learning Methods. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, 

O., Vyshemyrskaya, S., and Radetskaya, S. (eds.) Lecture Notes in Computational Intelli-

gence and Decision Making. pp. 701–711. Springer International Publishing (2020). 

35. Hulianytskyi, L., Riasna, I.: Formalization and Classification of Combinatorial Optimiza-

tion Problems. In: Optimization Methods and Applications. pp. 239–250. Springer, Cham 

(2017). https://doi.org/10.1007/978-3-319-68640-0_11. 

36. Dolgui, A., Kotov, V., Nekrashevich, A., Quilliot, A.: General parametric scheme for the 

online uniform machine scheduling problem with two different speeds. Information Pro-

cessing Letters. 134, 18–23 (2018). https://doi.org/10.1016/j.ipl.2018.01.009. 

37. Grebennik, I.V., Kovalenko, A.A., Romanova, T.E., Urniaieva, I.A., Shekhovtsov, S.B.: 

Combinatorial Configurations in Balance Layout Optimization Problems. Cybern Syst 

Anal. 54, 221–231 (2018). https://doi.org/10.1007/s10559-018-0023-2. 

38. Kozin, I.V., Maksyshko, N.K., Perepelitsa, V.A.: Fragmentary Structures in Discrete Op-

timization Problems. Cybern Syst Anal. 53, 931–936 (2017). 

https://doi.org/10.1007/s10559-017-9995-6. 

39. Stoyan, Y.G., Patsuk, V. N.: A method of optimal lattice packing of congruent oriented 

polygons in the plane. European Journal of Operational Research. 204–216 (2000). 

https://doi.org/10.1016/S0377-2217(99)00115-0. 

40. Stetsyuk, P.I.: Shor’s r-Algorithms: Theory and Practice. In: Optimization Methods and 

Applications. pp. 495–520. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-

68640-0_24. 

https://doi.org/10.1007/s10559-009-9147-8
https://doi.org/10.1007/s10107-010-0358-6
https://doi.org/10.1007/978-3-319-68640-0_11
https://doi.org/10.1007/s10559-018-0023-2
https://doi.org/10.1007/s10559-017-9995-6
https://doi.org/10.1016/S0377-2217(99)00115-0
https://doi.org/10.1007/978-3-319-68640-0_24
https://doi.org/10.1007/978-3-319-68640-0_24

