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A method of classification of hyperspectral images of terrain is described. It includes 

preprocessing of the spectral data in the form of conversion to the principal components, spatial 

processing consisting of finding the empirical mode of the principal components (Hilbert-Huang 

transform), and classification itself using RBF neural networks. Experiments are conducted on a 

large-format (580x580) hyperspectral image, and difficult-to-distinguish classes are not united. 
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Introduction As observation tools are developed and improved, classification of terrain 

regions on the basis of hyperspectral data has recently become one of the most important aspect of 

remote sensing science. It allows solving various problems of land tenure in agriculture, forest 

management, environmental science, minimization of detrimental effects induced by natural 

disasters, etc. This problem was discussed in many publications, and a good review can be found in 

[1]. This review describes a large number of classification methods based on hyperspectral data 

finalized by particular results obtained by the authors personally on a large-format hyperspectral 

image (HSI). Unfortunately, they only briefly mentioned one of the image processing methods, 

whereas it provided good results on previous medium-format multispectral and hyperspectral 

images [2, 3]. In the present work, we want to demonstrate that our approach applied to a large-

format HSI yields results that can be ranked among the best results obtained by other methods. 

However, a few words have to be said about the method itself. It was described in much detail in 

[3]; therefore, only a brief presentation of the method is given below.  

Object of classification As it is obvious from Introduction, we want to compare our method 

with other options described in publications. For this purpose, the methods have to be checked on a 

similar object (the best option is to use identical objects). In our study, we used a large-format HSI 

obtained within the framework of the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 

program at the Indian Pines test field (Indiana, USA) [4]. The image size was 614 × 2677 pixels, 

and the resolution was 20 m/pixel. The image was divided into 58 classes. In addition to a highway, 

railway, and residential buildings, the image displays cultivated crops (including 15 classes of corn 

and 18 classes of soya produced by different method of soil treatment). The number of spectral 

channels is 220 in the range of 0.4-2.5 µm, and 20 most noisy channels were eliminated from 

consideration. An informative fragment of 580х580 pixels was chosen (it is shown in pseudo-colors 

in Fig. 1a). All classes captured within the chosen fragment are shown in pseudo-colors in Fig. 1b. 

The experiment was performed with 33 classes having a sufficient number of pixels. Among the 

chosen classes, there are 9 classes of corn and 12 classes of soya.  
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Classification method As is known from the pattern recognition theory, object 

preprocessing is an extremely important stage of the classification procedure. Here we consider a 

spectral-spatial object; hence, preprocessing is performed in the spectral-spatial domain. As it was 

already mentioned, each pixel is characterized by 200 spectral features. The analysis shows that 

they are mutually correlated to a large extent; therefore, it is logical to pass to non-correlated 

features. This can be done by several methods, but the most effective option is to perform 

transformation to the principal components (PCs). An important issue is the number of components 

to be left in order to lose the minimum possible amount of information. Kaiser and scree tests are 

applied for this purpose. After the transformation to the principal components is performed, a 

spatial transformation is applied. It was shown in many publications [5, 6, 7] that the use of these 

tests ensures significant enhancement of the overall accuracy, which is the percentage of the ratio of 

the number of correctly classified pixels to the total number of pixels in the sample. In these 

publications, similar to many others, however, the spatial transformation is reduced to changing the 

pixel value depending on its neighborhood. The structure of the classified fragment regions is 

absolutely ignored, and large errors of classification are observed in the case of difficult-to-

distinguish regions. Because of that, in particular, in [6, 7, 8] all soya regions with different 

methods of soil treatment were united into one class. The same refers to corn. Our method is based 

on another procedure. Each principal component is expanded into the so-called empirical functions 

(or intrinsic mode functions, IMFs). In contrast to the Fourier transform or wavelet transform, IMFs 

are not defined analytically and are determined exclusively by the analyzed sequence itself. The 

basis functions of the transform are formed adaptively, directly from the input data.  

The algorithm of expansion into IMFs is based on constructing smooth envelopes on the 

basis of the extreme (maximum and minimum) points of the sequence and subsequent subtraction of 

the mean value of the envelopes from the initial sequence. For this purpose, the maximum and 

minimum points are found and approximated by splines. These splines are the upper and lower 

envelopes. The process of envelope construction is illustrated in Fig. 2. 

The analyzed sequence is presented in Fig. 2 by the thin blue curve. The maximum and 

minimum points of this sequence are marked by the red and blue colors, respectively. The 
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                               Fig.1 HSI fragment (a) and its division into classes (b)  



envelopes are shown by the green curve. The mean value is calculated on the basis of two envelopes 

(shown by the dashed curve in Fig. 2). The thus-found mean value is further subtracted from the 

initial sequence.  

 

 

 

 

 

 

 

 

 

 

These steps are  performed to find the first approximation of the sought IMF. For definite 

identification of the IMF, it is necessary to find the maximum and minimum points of this IMF 

estimate and repeat these steps again. This process (called sieving) is continued until a threshold 

condition is satisfied. If the sieving process is successfully finalized, we obtain the first IMF. To 

find the next IMF, it is necessary to subtract the found IMF from the initial signal and repeat the 

procedure again. The procedure is repeated until all IMFs are found. The algorithm of expansion of 

the two-dimensional signal into IMFs formally does not differ from expansion of the one-

dimensional signal, thought there are certainly some specific features associated with the search for 

extreme points and interpolation [9,10]. After m intrinsic mode functions of n principal components 

are found, each HIS pixel is described by an mxn-dimensional vector of features. All HSI vectors 

together with  information about the classes are fed to the neural network. Pixels of each class are 

randomly divided into three samples: learning sample (LS), control sample (CS), and test sample 

(TS). The process of learning is terminated on the basis of results of the CS. The classification 

accuracy is checked for all samples, but special care is applied for the TS because it is the TS that 

determines the neural network capability to generalization. 

 

 

Experimental results The HSI shown in Fig. 1a was expanded into the principal 

components from which four components were chosen on the basis of the scree test (which include 

99.42% of data dispersion). Then each of the PCs was expanded into five IMFs. The first PC and its 

five IMFs are shown in Fig.3. 

 

 

 

 

 

 

 

 

                    Fig.3 First PC and its five IMFs 

   Fig.2 Construction of the intrinsic mode function of a one-dimensional function  



Thus,   after all  these transformations, the HSI is described by a 580х580х20 array divided 

into 33 classes. The number of pixels in each class is divided in the ratio LS:CS:TS= 

50%:25%:25%. Learning is performed in the RBF neural network. The learning time is several 

hours. Let us consider the results of classification after the learning process. Let us first give the list 

of all classes with numeration that will  be used in the tables.  

                                                                                                                 

 

1 Background 31 Oats 

2 Bare soil 33 Orchard 

3 Buildings 35 Pond 

4 Concrete/asphalt 36 Soybeans 

7 Corn-EW 38 Soybeans-NS 

8 Corn-NS 41 Soybeans Clean Till-WE 

9  Corn 42 Soybeans Clean Till-NS 

12 Corn Clean Till-NS irrigated 43 Soybeans Clean Till Drifted 

14 Corn Min Till 44 Soybeans Clean Till Weedy 

15 Corn Min Till- WE 45 Soybeans Driller 

16 Corn Min Till-NS 46 Soybeans Min Till 

17  Corn No Till 47 Soybeans Min Till- WE 

18  Corn No Till-WE 51 Soybeans No Till EW 

25 Grass Runway 52 Soybeans No Till NS 

27 Hay? 53 Soybeans No Till Drilled 

29 Lake 57 Wheat 

  58 Woods 

    

 

 

 

The classification results are summarized in Table 2. The network architecture in the left 

box of the table means 20 input features (number of neurons in the first layer), 851 neurons (RBF 

functions) in the hidden layer, and 33 neurons in the output layer (number of classes). The 

classification accuracy (CA) is not that high as in experiments performed with smaller fragments 

and a smaller number of classes [2, 3], but it should be again recalled that the present study involves 

difficult-to-distinguish classes of corn and soya, which are not united into two classes.  

 

 

 

 File “All regions of class 33”   

Network architecture Classification accuracy 

Learning sample 

Classification accuracy 

Control sample 

Classification accuracy 

Test sample 

RBF 20-851-33 89.35 87.36 87.31 

 

 Table 2 Total classification accuracy of the fragment 

Table 1 List of classes with numeration 



Let us consider the results of TS classification in more detail with indication of CA percentage 

(Table 3).  

 

 

 

 

 

 

It is seen that the CA percentage varies from 42% (class 3 “Buildings”) to 99.3% (class 58 

“Forest”). It should be noted that higher CA values are normally provided by classes with a large 

number of pixels: the mean percentage of correct classification is 83.63% based on classes and 

87.31% based on pixels.  

Let us consider Table 4, which is the error matrix showing the classes to which erroneously 

classified data are referred to. Each row of the matrix is normalized to the number of correctly 

classified pixels in the corresponding classes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gray regions are the classes of one plant type: all classes of corn (left) and all classes of 

soya (right). It can be concluded from the comparison of these regions with others that the total 

cross error in the soya region is several times smaller than that in other regions. It fact testifies that 

soya regions with different types of soil processing and other characteristics are indeed hard to 

distinguish. This phenomenon for the corn regions is observed to a smaller extent. Probably, this 

difference is caused by specific aspects of processing of corn and soya regions.  

Conclusions Thus, the experiments aimed at classification of a large-format hyperspectral 

image confirmed the high efficiency of the method including preprocessing in the form of the 

transformation to the principal components of the spectral components, spatial transformation in the 

form of expansion of the principal components into intrinsic mode functions, and classification in 

the neural network. The method ensures a high probability of correct classification of hyperspectral 

 Table 3 Results of fragment classification into classes 

Table 4 Classification error matrix for the fragment 
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images having similar spectral compositions and effectively operates in situations with terrain areas 

that can be hardly distinguished by conventional methods.  
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