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Abstract. This paper is a use case report for the population architec-
ture of a commercial Knowledge Graph. We introduce our pilots and
their focus within the MindLab Project, which aims to build Knowledge
Graphs with a lifecycle-based approach to enable conversational agents.
We describe and evaluate our pipeline for the first step of the lifecycle,
namely Knowledge Creation. Our approach satisfies all defined require-
ments in terms of provenance tracking, scalability, and usability.
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1 Introduction

Knowledge Graphs are an important means to provide large-scale integrated
data to intelligent applications like conversational agents. Making a Knowledge
Graph a useful resource requires to complete a set of tasks that comprise the
Knowledge Graph lifecycle [4]:

Knowledge Creation Semantic lifting and integration of heterogeneous data
sources.

Knowledge Hosting Storage of the knowledge in a suitable way respecting
its nature and applications (e.g.,, a graph database,
triple store).

Knowledge Curation A lifecycle-based approach makes sure that the correct-
ness and completeness of the Knowledge Graph satisfy
the needs.

Knowledge Deployment Consumption of the Knowledge Graph by various ap-
plications.
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For each of these tasks, there are various approaches, mainly developed and
applied in an ad hoc way. Even for the - seemingly straightforward - Knowl-
edge Creation task, there are bureaucratic and technical challenges due to the
variety and heterogeneity of data sources. In this paper, we address this very
task by providing a holistic approach and architecture to populate a commercial
Knowledge Graph based on heterogeneous data sources. The Knowledge Graph
is built in the scope of the MindLab project3, which aims to build industrial
Knowledge Graphs to enable conversational agents in domains like e-tourism
and beyond. In the remainder of the paper, first, we describe the use cases and
their requirements that our Knowledge Graph must fulfill (Section 2). We de-
scribe our technical approach that provides a workflow for creating knowledge
from heterogeneous sources and populating a Knowledge Graph (Section 3). We
give a brief overview of the related work in Section 5. Last but not least, we
evaluate our technical approach in terms of satisfying the requirements (Section
4) and conclude with final remarks and future directions in Section 6.

2 Use Case Description

Our general use case is to import and integrate various heterogeneous data
sources into one coherent data model using a schema that is highly aligned
to the schema.org, a de facto standard for annotations on the web [6]. The data
sources itself can be of various sizes and contain dynamic or rather static data.
Our use cases must track the provenance of the sources, such as the importing
time, origin, and mapping specification.

2.1 Pilots and Data Sources

In total, we selected three pilots from the tourism domain in our project. The
three pilots are 1) Seefeld, 2) Serfaus-Fiss-Ladis, and 3) Mayrhofen.

All pilots have in common that users will interact with a bot in natural
language (either via text or voice) and inquire about information related to the
tourism domain. The data itself is modeled and stored in the form of a Knowledge
Graph, which should be exploited to get i) a better language understanding,
ii) more precise answers (result presentation), and iii) data-driven and guided
dialogs.

Additionally, all pilots will operate over a set of data sources that contain
information about various accommodation providers and local businesses, events,
sports activities (e.g., hiking, trails, skiing), and sports areas (e.g., ski resorts)
or webcams. The core tourism data is provided by five different data providers.
Feratel provides accommodation and event data, General Solutions geospatial
data, Intermaps ski resorts and slopes, Outdooractive outdoor activity data (e.g.,
hiking tours), and Verkehrsauskunft Österreich transportation data. The data
comes in various formats (e.g., JSON and XML) and is either supplied in the
form of data dumps or via RESTful API requests.

3 https://mindlab.ai
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Some pilots will further connect the tourism data to public and open data
sources, which contain additional common knowledge about some entities of
the tourism data. For instance, DBpedia4 and Wikidata5 provide additional
information about cities used in the pilots or descriptions about certain sports
activities. Also, publicly available geodata will be used for more advanced geo-
location related conversations (e.g., OpenStreetMap6). A prominent open-source
geodata provider is OpenStreetMap7.

The data sources can provide static information (e.g., geolocations, names,
categories) but also dynamic information (e.g.,, the current weather, snow level,
open ski lifts, hotel rates, or transport information). Our solution needs to handle
and represent such dynamic information, either in the form of updates in the
Knowledge Graph or by specifying services to derive the current and most up-
to-date information.

2.2 Requirements

Data importers The requirements for the data importers are that they have to
scale with the input data, be usable and easy expandable, and that they track
the provenance for generating statistics and easier debugging of the importer
pipeline.

R-DI-prov the importers should track vital provenance and performance
metrics that are used to filter subgraphs, generate KPIs, perfor-
mance analysis, and assist debugging8.

R-DI-scale data importers have to scale w.r.t. the number and size of input
sources. As such, the developed solutions should be executable
in parallel setup.

R-DI-usability data importers should be designed in a way that they are easy
to extend and adapt to new data sources. Ideally, the importing
pipeline can be configured and used without specific technical
knowledge (e.g., programming language agnostic)

3 Technical Approach

In this section, we describe our technical approach to tackling the knowledge
creation task while addressing the requirements described in Section 2.2. The
major features of the architecture are:

– Storing data as named graphs by utilizing quads

4 https://wiki.dbpedia.org/
5 https://www.wikidata.org/wiki/Wikidata:Main Page
6 https://www.openstreetmap.org/
7 https://www.openstreetmap.org/
8 Also aligned with the Data on the Web Best Practices

https://www.w3.org/TR/dwbp/
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– Attaching provenance information based on the modeled provenance meta-
data (Section 3.1)

– Scalable mapper for RDF generation from heterogeneous sources
– Flexible, declaratively configurable workflow for managing new data sources

to populate the Knowledge Graph

The following explains how these features are conceptualized and imple-
mented. We first explain our provenance tracking approach, including our meta-
data. Afterward, we describe our implementation, MindLab Importer, for the
overall knowledge graph construction process.

3.1 Provenance Tracking

The MindLab Knowledge Graph must be consumable by applications from dif-
ferent perspectives such as data from certain providers or a given set of geospa-
tial areas (R-DI-prov). The MindLab Knowledge Graph will be constructed by
integrating data from heterogeneous sources. In order to satisfy the R-DI-prov
requirement, we use the named graph [1] approach9. For each quad in the Knowl-
edge Graph, the fourth element is the context URI. The provenance information
is attached to this context URI. Based on the requirements mentioned above,
we identify named graphs per organization per IT solution provider. An exam-
ple URL for DMO Mayrhofen organization and feratel IT solution provider is
https://graph.mindlab.ai/tvb-mayrhofen/feratel.

Provenance Metadata The metadata used for describing the provenance is
mainly based on two vocabularies, namely PROV-O [11] and schema.org [6].
PROV-O is an ontology that provides types and properties to create metadata
about the provenance of anything, including information about entities, their
creation or modification process, and parties involved. Schema.org also provides
types and properties for describing datasets, which we adopt for the named
graphs in the MindLab Knowledge Graph. The provenance metadata relates to
PROV-O and schema.org, as described in Table 1.

Listing 1.1 is an excerpt of the provenance information for a named graph.
The named graph is connected to the organization (i.e., DMO Seefeld) and the IT
solution provider (i.e., feratel) through schema:provider and prov:wasAttributedTo
properties.

3.2 MindLab Importer

In this section, we introduce the architecture of the MindLab Importer and its
core components. Figure 1 provides an overview of the architecture. The central
component of the MindLab Importer is the Import Manager that coordinates

9 A comparison of different reification approaches can be found in [7]. We adopt the
named graph approach since it has the least space complexity and is natively sup-
ported by triple store implementations (e.g., GraphDB) and SPARQL
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MindLab KG Provenance Model Description

Graph prov:Entity,
schema:Dataset

A named graph in MindLab
KG is an entity in PROV-O
and a dataset in schema.org

Import prov:Activity An import represents and
individual import process
that creates a named graph
for a given organization and
IT solution provider

Wrapper prov:SoftwareAgent A wrapper is a software
agent that generates RDF
from raw data.

Organization prov:Organization,
schema:Organization

The organization who pro-
vides the data.

Table 1. The mapping between MindLab Knowledge Graph concepts and PROV-O

<https://graph.mindlab.ai/tvb-seefeld/feratel> schema:creator
mindlab-organization:mindlab ;↪→
schema:provider mindlab-organization:tvb-seefeld ;
schema:publisher mindlab-organization:mindlab ;
prov:wasAttributedTo mindlab-agent:feratel-wrapper ;
prov:wasGeneratedBy mindlab-import:e87c7fb0-3c34-11e9-8de2-5520c2d355b7 .

mindlab-import:e87c7fb0-3c34-11e9-8de2-5520c2d355b7 a prov:Activity ;
prov:endedAtTime
"2019-03-01T15:15:54.794Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> ;↪→
prov:startedAtTime
"2019-03-01T15:05:00.202Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> ;↪→
prov:wasAssociatedWith mindlab-agent:feratel-wrapper .

Listing 1.1: An example provenance information attached TVB Seefeld and fer-
atel named graph

the import process. The data sources from which the Knowledge Graph is popu-
lated are registered via a web interface to the Import Manager. When an import
starts, the Import Manager uses the source-specific information (e.g., configura-
tion required to access an external source) to retrieve the raw data and passes
it to the mapping service. The service offers a scalable RML [3] mapper im-
plementation 10 [13] to the Import Manager11. The RDF data generated based
on schema.org is then returned to the Import Manager. The mapper service
caches mapping files when needed, in order to improve the overall performance.
The Import Manager pushes mapped data to its designated named graph in
the Knowledge Graph. After the import is complete for a source, the Import
Manager attaches the provenance information.

10 https://github.com/semantifyit/RocketRML
11 Depending on the IT solution provider, the mapping service may be replaced with

other means of generating RDF



6 U. Simsek et al.
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Fig. 1. MindLab Importer Architecture

The import manager is implemented with the Apache NiFi12 data flow man-
agement tool. NiFi offers a UI for defining data flows in a drag-and-drop manner,
alongside an API to create and manage such flows programmatically. It has many
features like load balancing, buffering, guaranteed delivery and scheduling out of
the box. It offers built-in processors for many tasks (e.g., connectors for different
database solutions) and generic HTTP processors for accessing external services
(e.g., our mapper service).

A NiFi workflow consists of connected units called processor. A processor
typically receives a flow file, uses or manipulates it in some way and passes
a new flow file to another processor. A subset of connected processors can be
placed in containers called process groups. The Import Manager contains one
process group for each distinct IT Solution provider and a single NiFi processor
per organization per IT solution provider that acts as an initiator. This provides
flexibility and scalability for the creation of new import tasks to some extent.
Once a flow for an IT solution provider is created, a new organization using
existing IT solution providers can create their own import task by just entering
the necessary configuration (e.g., organizations API key) through the registry.
The registry interface takes care of the generation of the initiator processor, and
its connection to the right workflow.

4 Evaluation

The data importing pipeline is implemented with Apache NiFi and a set of RML
Mappers. We ran an evaluation for 29 days between 23.06.2019 and 20.07.2019.
We imported total nine named graphs: [11] mayrhofen, feratel; [21] seefeld, fer-
atel; [31] serfaus-fiss-ladis, feratel; [12] mayrhofen, intermaps; [22] seefeld, in-
termaps; [32] serfaus-fiss-ladis, intermaps; [13] mayrhofen, outdooractive; [23]
seefeld, outdooractive; [33] serfaus-fiss-ladis, outdooractive.

We calculated the average, median and standard deviation of both size and
time elapsed for each import13. The entire graph ( 1.37M statements) is im-
ported in approximately 26 minutes. This number is well within the daily fre-
quency requirement. The largest graphs are provided from feratel, and they take

12 https://nifi.apache.org/
13 see the full statistics at : https://docs.google.com/spreadsheets/d/1C4aoBsN9p16LjPOLy33M9d8Mz0tFeUErrJDvRnX4qlg/edit?usp=sharing
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approximately 1ms per Triple (Table 2). The overall overhead of API access and
authorization has a bigger impact than the actual generation of the data; there-
fore, the time needed for generating RDF triples is actually significantly below
1ms per triple14. Moreover, Apache NiFi allows parallelization and distribution,
which we can adopt if necessary. We satisfy the requirement R-DI-scale.

Graph Time/Tripple
[11] 1.28
[21] 1.15
[31] 1.05
[12] 6.40
[22] 21.73
[32] 4.11
[13] 5.81
[23] 7.30
[33] 10.99

Table 2. Data importer
evaluation with 29 runs:
Time/Triple (ms)

The Apache NiFi instance provides a user inter-
face for advanced settings and monitoring. Addi-
tionally, we provide a web interface for the creation
of new imports. For mappings, we utilize a declar-
ative mapping language. The whole pipeline can
be managed without any programming knowledge.
Therefore, R-DI-usability is satisfied. We attach
provenance information to each imported state-
ment. Additionally, Apache NiFi shows the prove-
nance information at each processor and we provide
a monitoring mechanism over the MindLab registra-
tion interface. This way, we satisfy the R-DI-prov.

5 Related Work

Knowledge Graphs are being adopted for commer-
cial usage internally to improve certain processes in
a company and as a service to enable external applications (see [12] for some ex-
amples from big tech companies). We can classify the population process in four
categories namely: (1) manual population in a closed system, (2) manual pop-
ulation by users/community, (3) automated population from (semi-)structured
data sources, (4) automated population from unstructured data sources [5] 15.
Depending on the domain, one or a combination of some of the four approaches
is used more dominantly. For example, in the health domain, it is common to
extract knowledge from unstructured health records, whereas in the cultural
heritage domain, several methods need to be combined due to the heterogene-
ity of the sources [10]. Many other examples of building Knowledge Graphs in
enterprises can be found in works like [10, 14, 8].

A particularly related work to our Knowledge Graph construction pipeline
comes from the automation industry [9]. Festo builds a Knowledge Graph to
manage the technical configuration of their products in an efficient way. They
utilize R2RML for transforming data from their RDBMS to RDF and apply
OWL reasoning together with SWRL rules on the created data. Additionally,
they control the dataflow with an Apache AirFlow based implementation. In our
scenario, we map heterogeneous hierarchical sources to schema.org; therefore, we

14 0.04ms per triple with 500K triples. see the performance statistics of RocketRML
in https://sumutcan.github.io/kgb-workshop-presentation/#/8/1

15 We refer readers to Section 4 of Deliverable 2.1 of the MindLab project [2] for
an overview of the population process of various open and proprietary Knowledge
Graphs
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use RML instead of R2RML. Moreover, we have an additional provenance model,
since it is important to compartmentalize the data for different customers and
applications.

6 Conclusion and Future Work

In this paper, we described our use case, namely the population of MindLab
Knowledge Graph, that is generated based on heterogeneous semi-structured
data (e.g., in JSON and XML). Our main focus is the knowledge generation
pipeline that populates the MindLab Knowledge Graph. Currently, a big ma-
jority of our data comes from external APIs that provide data in JSON and
XML format. We implemented a flexible and scalable architecture based on a
high-performance RML mapper implementation and an open-source data flow
management tool, Apache NiFi. We demonstrated that the developed tool sat-
isfies the requirements of the MindLab project regarding provenance tracking,
scalability, and usability.

The next steps will focus on assessing and improving the quality and on fur-
ther enriching the knowledge of the MindLab Knowledge Graph. The quality
improvement step typically contains cleaning tasks such as handling the detec-
tion and correction of errors, which may also be introduced by fusing duplicate
instances (e.g., different set of opening hours for the same hotel). We want to
enrich the knowledge graph by creating new relations between entities. This
involves to add new relations between entities (e.g.,, equality statements, miss-
ing links, or pre-computed relations such as ”inWalkingDistance”), but also new
information not available in the data sources. The Knowledge Graph should con-
tain not only facts but also the description of actions and services. For instance,
given the hotel domain, we do not only want to represent and search for hotel
information but also describe the actions related to hotels, such as booking a
hotel room or some services offered by the hotel.
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