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Abstract. MINECORE is a recently proposed algorithm for minimizing the
expected costs of review for topical relevance (a.k.a. “responsiveness”) and
sensitivity (a.k.a. “privilege”) in e-discovery. Given a set of documents that
must be classified by both responsiveness and privilege, for each such doc-
ument and for both classification criteria MINECORE determines whether
the class assigned by an automated classifier should be manually reviewed or
not. This determination is heavily dependent on the (“posterior”) probabil-
ities of class membership returned by the automated classifiers, on the costs
of manually reviewing a document (for responsiveness, for privilege, or for
both), and on the costs that different types of misclassification would bring
about. We attempt to improve on MINECORE by leveraging the trans-
ductive nature of e-discovery, i.e., the fact that the set of documents that
must be classified is finite and available at training time. This allows us to
use EMQ, a well-known algorithm that attempts to improve the quality of
the posterior probabilities of unlabelled documents in transductive settings,
with the goal of improving the quality (a) of the posterior probabilities that
are input to MINECORE, and thus (b) of MINECORE’s output. We re-
port experimental results obtained on a large (≈ 800K) dataset of textual
documents.

1 What is e-discovery?

When a civil lawsuit is filed in the United States of America, the judge may re-
quest an involved party to produce to the other party any evidence relevant to the
lawsuit. Upon receiving such a request, the producing party must search in their
electronically stored information for any document which might be relevant to the
case, in order to disclose it to the other party; this task usually goes under the
name of e-discovery. In order to do so, it is typically the case that the producing
party asks junior lawyers to review (i.e., annotate) for “responsiveness” (i.e., top-
ical relevance to the case) the candidate documents, and then asks senior lawyers
to review for “privilege” (i.e., presence of sensitive content, which would allow the
party to rightfully withhold the document) the documents that have been deemed
responsive.

As a consequence of this two-phase review, each document is classified into one
of the three following classes:

– cP (which stands for “Produce”): The document has been deemed responsive
and not privileged; as such, it should be produced to the receiving party;
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– cL (which stands for “Log”): The document has been deemed responsive and
privileged; as such, it should be entered into a “privilege log” (i.e., a repository
open to inspection by the judge) and should not be disclosed to the receiving
party;

– cW (which stands for “Withhold”): The document has been deemed not respon-
sive, which means that the producing party should not produce it.

In such a scenario, the producing party may incur two types of costs, i.e., annotation
costs (since lawyers need to be paid for their reviewing work), and misclassification
costs (that might derive when an inappropriate class – e.g., “Produce” instead of
“Log” – is chosen for a document).

Given the enormous amount of digital documents that should undergo review
in many practical cases, a need for automation of the review process has arisen.
Several techniques for technology-assisted review (TAR), that combine techniques
from information retrieval and machine learning, have thus been proposed in the last
ten years [5]. The aim of TAR algorithms is that of supporting the review process,
minimizing the overall costs deriving from annotation efforts and misclassifications.

2 An overview of MINECORE

MINECORE [4] is a recently proposed decision-theoretic algorithm for minimizing
the expected costs of review for responsiveness and privilege in e-discovery. Given a
set D of documents that must each be assigned a class in C = {cP , cL, cW } based on
whether they belong or not to the class cr of responsive documents and/or to the
class cp of privileged documents, the goal of MINECORE is to determine, for each
document in D, whether manually reviewing d by responsiveness and/or privilege
is expected to be cost-effective or not. This determination is based

1. on the (“posterior”) probabilities of class membership (written as Pr(cr|d) and
Pr(cp|d), hereafter called the posteriors) returned by automated classifiers hr
(that classifies documents by responsiveness) and hp (that classifies documents
by privilege);

2. on the unit costs of manually checking a document for responsiveness (λar) or
for privilege (λap), where superscript a stands for “annotation”;

3. on the costs λmij incurred when mistakenly assigning class ci to a document
which should be assigned class cj , where ci, cj ∈ C and superscript m stands for
“misclassification”.

Bullet 3 is due to the fact that in e-discovery not all misclassifications are equally
serious; for instance, inadvertently disclosing a privileged document is typically a
very serious mistake, while inadvertently disclosing a nonresponsive nonprivileged
document is usually a less serious one.

MINECORE consists of three phases, which we summarize below. In Phase 1
we train the two automated classifiers hr and hp, and use them to generate, for each
document d ∈ D, the two posteriors Pr(cr|d) and Pr(cp|d) mentioned in Bullet 1. We
can reasonably assume cr and cp to be stochastically independent, which implies
that we may assume Pr(cP |d) = Pr(cr|d) Pr(cp|d), Pr(cL|d) = Pr(cr|d) Pr(cp|d),
and Pr(cW |d) = Pr(cr|d). MINECORE takes a risk minimization approach, i.e., it
classifies each document d in the class

h(d) = arg min
ci

R(d, ci)

= arg min
ci

∑
j∈{P,L,W}

λmij Pr(cj |d)
(1)



Leveraging the Transductive Nature of e-Discovery

where R(d, ci) is the risk associated with assigning d to class ci. In other words,
MINECORE assigns to each document d the class that brings about the minimum
misclassification risk, i.e., the minimum expected misclassification cost, thus avoid-
ing courses of actions for which a combination of probability of class membership
and misclassification cost is high. The function for measuring the global misclassi-
fication cost is thus

Km(D) =
∑

i,j∈{P,L,W}

λmijDij (2)

where Dij is the number of documents d ∈ D whose predicted class h(d) is ci and
whose true class (which we denote by y(d)) is cj .

Phase 2 and Phase 3 are essentially identical to each other. The only difference
is that, while Phase 2 determines the subset of documents which are expected to
be cost-effective to manually review by responsiveness, Phase 3 determines (once
these documents have been indeed manually reviewed by responsiveness) the same
for privilege. We will thus only describe Phase 2, leaving it to the reader to work
out the details of Phase 3.

Note that, if τr documents are reviewed by responsiveness and τp documents are
reviewed by privilege, the overall cost of the entire process may be described as

Ko(D) = Km(D) +Ka(D)

= Km(D) + λarτr + λapτp
(3)

If document d is reviewed by responsiveness, this has the effect of removing (assum-
ing infallible reviewers) any uncertainty about whether d ∈ cr or not. In other words,
if by subscript n ∈ {1, 2, 3} we indicate the value of a given quantity after Phase
n has been carried out, reviewing d by responsiveness means that Pr2(cr|d) will be
either 0 or 1. As a result, if d is reviewed by responsiveness it will in general hold
that Pr1(cr|d) 6= Pr2(cr|d), h1(d) 6= h2(d), and Km

1 (D) 6= Km
2 (D). Since reviewing d

by responsiveness brings about an additional λar cost, it is worthwhile to annotate d
only if, as a result of the annotation, Ko

2 (D) ≤ Ko
1 (D), i.e., Km

2 (D) +λar ≤ Km
1 (D);

in other words, the additional annotation cost must be offset by a reduction in
overall misclassification cost of greater or equal magnitude. Of course, computing
precisely whether there is going to be such a reduction at all is not possible, because
at the time of deciding whether d should be annotated or not we do not know the
value of yr(d) (a binary variable that indicates whether the reviewer will annotate
d as responsive or not), and we do not know the true label y(d) of d. However,
it is possible to compute an expectation of this reduction over the yr(d) and y(d)
variables; when this expected value exceeds λar , MINECORE decrees that d should
be annotated by responsiveness. We refer the reader to [4, §3] for details on how
the above expected value is computed, and for a full mathematical specification.

3 Improving our posteriors via EMQ

The goal of MINECORE is to identify the τr (resp., τp) documents that, when
reviewed for responsiveness (resp., privilege), will each bring about a reduction in
the expected overall cost of the review process. In order to do this, MINECORE
uses as input the data listed in the three bullets at the beginning of §2.

In this work we attempt to improve this process not by modifying MINECORE,
but by improving the quality of the input that MINECORE receives, with the goal
of having MINECORE bring about a higher reduction in expected costs. Since the
input data mentioned in Bullets 2 and 3 are user-defined parameters, and are hence
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not under our control, we focus on the input data mentioned in Bullet 1, i.e., the
posteriors Pr(cr|d) and Pr(cp|d).

Our contribution is based on the observation that e-discovery has, from the
standpoint of machine learning, a transductive nature, i.e., the unlabelled set D is
finite and available at training time. This fact can be exploited in order to improve
the quality of our posteriors.1 In fact, Saerens and colleagues [6] have presented
an instance of the well-known EM (“expectation maximization”) algorithm (an
instance which, following [2], we will call EMQ) that iteratively improves the quality
of such probabilities in transductive contexts. EMQ is based on a mutually recursive
algorithm that alternates between (a) recomputing the prior probabilities Pr(c)
(hereafter: the priors) as the average of the posteriors over the entire set, and (b)
recomputing the posteriors by multiplying the old posteriors by the ratio between
the new priors and the old priors. The iteration is carried out until convergence,
and has been shown to deliver both improved posteriors [6] and improved priors [2].

Therefore, (a) we obtain calibrated posteriors Pr(cr|d) and Pr(cp|d), for each
document d ∈ D, from our classifiers hr and hp (which, in the experiments of §4,
we obtain via a linear SVM), (b) we update them via EMQ, and (c) we feed them
to MINECORE.

4 Experiments

We run experiments in which we compare two versions of MINECORE, one that
uses the original posteriors (here dubbed MINECOREMLE, since the probabilities
are obtained from a Maximum Likelihood Estimator) and one that uses the EMQ-
enhanced posteriors (here dubbed MINECOREEMQ). We use the same dataset as
[4], which consists of ≈ 20,000 training documents, ≈ 780,000 test documents,
and 120 instantiations of the (cr, cp) pair of classes; the values of λar , λap, λmij ,
are from “CostStructure1” in [4, §4.3]. We refer to [4, §4] for other details about
the experimental setup. The evaluation function we use is Ko(D) from Equation

3. We measure the ratio ∆Ko(D) =
Ko

MLE(D)
Ko

EMQ(D) between Ko(D) as deriving from

MINECOREMLE and Ko(D) as deriving from MINECOREEMQ; if this ratio is > 1,
this means that EMQ delivers an improvement, and that our attempt has been
successful.

We show the outcome of our experiment in Figure 1, where we display the
class pairs on the X axis (sorted by their ∆Ko(D) value in order to improve the
readability of the plot) and ∆Ko(D) on the Y axis; the red line indicates the value
∆Ko(D) = 1. A dot above the red line indicates, for the corresponding class pair, an
improvement in overall cost with respect to the MINECOREMLE baseline, whereas
a dot below the red line indicates a deterioration. Figure 1 shows that for 60% of
the pairs, using EMQ brings about a deterioration. The average value of ∆Ko(D)
across the 120 class pairs is 0.99, which indicates a 1% average deterioration.

This is surprising, given the positive results that have been reported in past
literature for EMQ. As a result, we have further tried to compare the quality of
the PrMLE(c|d) and PrEMQ(c|d) sets of posteriors via an application-independent
measure of quality. For this, we have chosen “soft accuracy” (a variant of what
has been called the Brier score), which corresponds to the standard accuracy mea-
sure A = TP+TN

TP+FN+FP+TN as evaluated on a “soft” contingency table where cells

are (instead of counts) sums of probabilities of class membership.2 Essentially no

1 At a first approximation, we may say that the quality of a posterior Pr(c|d) is high when
|hc(d)− Pr(c|d)| is low; see §4 for more details.

2 For example, for a document d that actually belongs to c: (1) if c is actually assigned,
for a standard contingency table this contributes a value of 1 to the TP cell; (2) if a
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Fig. 1. Values of ∆Ko(D) for the 120 class pairs; values above (resp., below) the red line
indicate that the use of EMQ has generated an improvement (resp., a deterioration).

difference in soft accuracy was detected, with MLE posteriors obtaining A = 0.9743
and EMQ posteriors obtaining A = 0.9742. Note that, in our case, ∆Ko is a more
appropriate evaluation measure than A, since it is application-dependent. In fact,
while A measures the quality of our posteriors in a somehow abstract way, ∆Ko

directly measures the impact that these posteriors have on MINECORE; this adds
to the disappointment that the results returned by EMQ have brought about.

We have also checked if the application of EMQ has improved the class priors.
In order to do so we have measured, for each estimation method M ∈ {MLE,EMQ}
and for each class c that shows up in at least one of the 120 class pairs, the absolute
estimation error (AE), i.e., the absolute value AEM (c) = |Pr(c) − P̂r(c)M | of the
difference between the true class prior Pr(c) and the estimated class prior P̂r(c)M ;
for each M ∈ {MLE,EMQ} we have then averaged these values across all such
classes. The results show that AEMLE = 0.191 and AEEMQ = 0.082, i.e., the use
of EMQ brings about a reduction of approximately 57% in the absolute estimation
error of the class priors.

Overall, this result is surprising: the use of EMQ improved (as expected, and
by a very large margin) the quality of the priors, but did not bring about any
improvement (actually: brought about a small deterioration) in the quality of the
posteriors. The reason this is surprising is that the quality of the posteriors and the
quality of the priors should go hand in hand; indeed, the very reason why EMQ is
expected to improve the priors is that it computes it as the sum of the supposedly
better-quality posteriors that it also computes.

One of the reasons we are witnessing such an unexpected behaviour might lie
beneath the fact that the “distribution drift” in our data is very low (the average
difference between the prevalence of a class in the training and in the test sets is
≤ 0.6%). Indeed, the results of [1] indicate that EMQ tends to work better in high-
drift conditions that in low-drift ones. In order to check whether, in a dataset charac-
terized by higher drift, EMQ would deliver a better performance, we have generated
artificial drift in the dataset by removing increasingly high quantities of negative ex-
amples from the training set. This should allow EMQ to improve the quality of both
priors and posteriors, thus improving the performance of MINECORE. Since exam-
ple removal is completely random, we have repeated the experiment several times,
first removing up to 60% (and eventually up to 80%) of the negatives. MINECORE

posterior Pr(c|d) is returned, for a “soft” contingency table this contributes a value of
Pr(c|d) to the TP cell and a value (1− Pr(c|d)) to the FN cell.
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Fig. 2. Values of ∆Ko(D) for the 120 class pairs after a random 80% of the negative
training examples have been removed.

was then run first with MLE-generated posteriors and then with EMQ-generated
posteriors. However, once again the results did not support our conjecture: even
after removing 80% of the negatives from the training set (see Figure 2), ∆Ko(D)
does not get higher than 1, and gets slightly smaller than 1 in most cases.

5 Conclusion

Although our idea of improving the posteriors input to MINECORE by leveraging
the transductive nature of our dataset seemed (and still seems to us) reasonable
and promising, the experiments we have ran so far indicate the opposite: EMQ has
not improved our posteriors, while it has improved the priors. This is still work in
progress, and one hypothesis that we are going to test is that the EMQ algorithm
might be well-suited to datasets that exhibit some type of drift but not others [3].

We still believe that exploiting the transductive nature of e-discovery could prove
a key intuition for improving the results of MINECORE. Indeed, our future work
on this will focus on new ways to leverage this aspect.
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