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Abstract. Biomedical Devices improve the quality of life in patients by
making the treatments they follow completely, or partially, automated.
However, when the effects of a biomedical device are relevant on health,
the consequences due to a possible malfunction might be critical. As a
consequence, design of biomedical devices is often a long and expensive
process and requires a verification of the device in each of the possible
relevant scenarios. When performing an in vivo clinical trial, the set
of involved patients is often small and the devices can be tested only
in the scenarios that actually occur. As a consequence, performing the
verification of a biomedical device by means of an in vivo clinical trial is
not feasible.

In this paper we show a technology for performing In Silico Clinical Trials
(ISCTs) of biomedical devices. As a case study, we describe the results
concerning the preliminary phase of an ISCT of the Medtronic MiniMed
ePID System [29], an artificial pancreas for Type 1 Diabetes Mellitus
(T1DM) patients.

Keywords: In Silico Clinical Trials - Simulation-based Verification -
Cyber-Physical Systems - VPH models - Model Checking - Simulation.

1 Introduction

The design of new biomedical devices is registering a positive trend due to the
advance of biomedical engineering. Such devices are meant to improve the qual-
ity of life in different kinds of patients by making the treatments they follow
completely, or partially, automated.

As one would expect, the more the effects of a biomedical device are relevant
on health, the more the consequences due to a possible malfunction are critical.
For instance, the artificial pancreas (see, e.g., [31]) is a safety-critical device for
blood glucose levels monitoring and regulation in patients with Type 1 Diabetes
Mellitus (T1DM). If not correctly designed, the artificial pancreas has the capa-
bility to lead a patient to coma or worst, to death. As a consequence, design of
biomedical devices is often a long and expensive process.
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1.1 Motivation

Biomedical devices are often composed of one or more physical components con-
trolled by software. This class of systems is known as Cyber Physical Systems
(CPSs). For instance, an artificial pancreas includes glucose sensors and insulin
and/or glucagon pumps (the actuators), both interacting with a control algo-
rithm. In order to verify that the behaviour of a CPS meets the specification,
we would need to verify it in each of the possible relevant scenarios. A scenario
can be defined as a finite sequence of either ordinary or anomalous events. For
instance, in the field of artificial pancreases validation, an ordinary event could
be the occurrence of a meal, while an anomalous event could be a sudden ob-
struction of the insulin pump.

Despite the improvements in sensor and pump design and realisation, the
artificial pancreas must counter delays and inaccuracies in both glucose mea-
surement and insulin delivery [4]. For instance, Continuous Glucose Monitoring
(CGM) devices measure glucose levels in the interstitial fluid, but there is a
physiological (and sensor-indipendent) delay representing the transport of glu-
cose from blood to interstitial fluid that must be taken into account [13].

Even more important than delays are the potential deviation between the
sensed and the actual glucose levels and the possible difference between the
amount of administered insulin and the computed dose. The occurrence of these
events can be modelled by variations in the parameter values of the model defin-
ing the System Under Verification (SUV).

In the case of a biomedical device, the verification activity should be repeated
for each patient taken from a possibly complete population. When performing
an in vivo clinical trial, the set of involved patients is often small and the devices
can be tested only in the scenarios that actually occur. This means that, if no
obstructions occurs during the in vivo clinical trial, nothing can be argued about
what the behaviour of the artificial pancreas would be in the case of such realistic
anomalies. As a consequence, performing the verification of a biomedical device
by means of an in vivo clinical trial is a very time consuming and expensive
process which requires the recruitment of many volunteers for a long period of
time.

These objections do not apply in the case of in In Silico Clinical Trials
(ISCTs). An ISCT is a clinical trial performed by means of computer simu-
lations over a population of Virtual Patients (VPs) (see, e.g., http://paeon.di.
uniromal.it), and can greatly help in the early phases of the design of a new
biomedical device in order to spot design errors or fragile design choices.

Being entirely model-based, performing an ISCT is much cheaper and faster
than an in vivo trial, requiring only a mathematical model of both the physical
and the cyber components of the device to be used, in synergy with a model
of the patient (Virtual Physiological Human, VPH, model) and a model of the
Pharmaco-Kinetics/-Dynamics (PKPD) of the relevant medicinal drugs (see,
e.g., [7]). Such heterogeneous models need to be integrated in order to be simu-
lated as a closed loop.
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1.2 Contribution

In this work we show a technology to perform ISCTs of biomedical devices, by
focussing, as a case study, on the preliminary phase of an ISCT of an artificial
pancreas for patients affected by T1DM.

Our technology is based on Modelica, one of the major open-standard general-
purpose languages for modelling dynamical systems, widely used in application
domains as diverse as mechanical, electrical, electronic, hydraulic, thermal, con-
trol, electric engineering, but also physiology and pharmacology (see, e.g., [26]).
Translators are also available to integrate biochemical models in Systems Biol-
ogy Markup Language (SBML) into Modelica (see, e.g., [17]). Several efficient
and highly-configurable Modelica-based simulators are currently available, both
open-source (e.g., OpenModelica and JModelica) and proprietary (e.g., Dymola).

In our case study, we defined in Modelica the Medtronic MiniMed ePID
System described in [29]. The ePID system uses a Proportional-Integral-Deriv-
ative (PID) controller, and hence is purely reactive and respond to alterations
in blood glucose levels only after they have occurred. Because of this, PID algo-
rithms must cope with the time lags in both glucose sensing and insulin action
and delivery [4].

Therefore, defining an adversarial model of the uncontrollable events that
may occur and impact the correct functioning of the ePID system (disturbance
model) is of fundamental importance in order to perform a reliable System Level
Formal Verification (SLFV) of the biomedical device.

We defined such a disturbance model (again in Modelica) in terms of possi-
ble temporary faults in the sensors and actuators of the device (a time series of
such events defines an operational scenario), and we used the System Level For-
mal Verifier (SyLVer) tool [18,22] developed by the Model Checking Laboratory
(MCLab) (http://mclab.di.uniromal.it/site) to generate an optimized simula-
tion campaign that verifies the closed-loop artificial pancreas—virtual patient
system on all such scenarios.

In this work we show an extension of the SyLVer approach where the monitor
functionalities are no more limited to a PASS/FAIL decision. In our extension,
the monitor is used to compute the values of application-dependent Key Perfor-
mance Indicators (KPIs), allowing statistical analysis of results and thus giving
back to the designers both counter-examples (i.e., scenarios where the device
performance are unsatisfactory and might pose the patient safety at risk) as
well as aggregate/statistical information on the overall device performance and
robustness.

1.3 Paper Outline

The paper is organised as follows. Section 2 describes the TIDM VP population
involved in the ISCT, while Section 3 is dedicated to the description of the
model of the biomedical device. The disturbance model and the generation of
the simulation campaigns are shown in Section 4. Finally, the results of the
preliminary phase of our ISCT are discussed in Section 6, while conclusions are
drawn in Section 7.
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2 TI1DM YVirtual Patient Population

The starting point to carry out an ISCT for the verification of a biomedical device
is the availability of a suitable population of VPs. Such a population must be
complete, i.e., large enough to represent all relevant human patient phenotypes,
whose spectrum can be quite large in hormonal regulatory systems, since they
typically occur within a complex network of endocrinological, neurological, and
psychological factors (see, e.g., [10,16,15]).

To compute such a population of virtual patients, we need a VPH model,
i.e., a mathematical model of the (patho-)physiology of interest and the kinetics-
dynamics of relevant drugs. Often, VPH models are in the form of parametric
systems of Ordinary Differential Equations (ODESs), where parameters are used
to model inter-subject variability, meaning that different assignments determine
the behaviour of different patients.

Unfortunately, as argued in, e.g., [30,25,19], many of the possible assign-
ments to the parameters of a VPH model lead to time evolutions that are not
biologically admissible (i.e., coherent with the laws of biology).

As a consequence, a representative population of virtual patients cannot be
built by arbitrarily picking assignments to the parameters of a VPH model, but
an intelligent search in the parameter space is needed.

The work in [3] describes the computation of a representative population of
T1DM VPs, obtained by exploiting the Medtronic VPH model of the human
glucose regulation system [14]. This model is simpler (hence, faster to simulate)
than other models, e.g., those in [8,5], but is similarly effective in predicting the
evolution of blood glucose and plasma insulin concentrations.

The population of VPs has been generated by using the VP generator orig-
inally presented in [30,25], which performs an Al-guided randomised search in
the space of the model parameters. It is important to note that, in most cases,
the size of the parameter space is such that, even after proper discretisation, an
exhaustive search would be infeasible. To counteract this issue, our VP generator
exploits statistical hypothesis rejection methods (see, e.g., [9,24,23]).

3 The Medtronic MiniMed ePID System

An artificial pancreas is a CPS consisting of sensors, a control algorithm, and ac-
tuators. Typically, a CGM sensor gains information about current glucose blood
level. The collected information feeds the control algorithm which computes the
amount of drug to be injected into the patient. The actuators of artificial pan-
creases are hormonal pumps. The most common devices include only an insulin
pump, but recent research is working forward bi-hormonal controllers for blood
glucose regulation [8,11] having an additional pump for glucagon administration.

In our case study we verified the Medtronic MiniMed external physiological
insulin delivery (ePID) system [29]. This closed-loop controller for glucose regu-
lation is composed of a CGM sensor, a PID controller and an insulin pump. The



control algorithm is described by the following equations:

P(t) = K,[SG(t) — target] (1)

K
It)=1I(t—1)+ ff[SG(t) — target] (2)
D(t) = K, - Tp - SG(t) (3)

where SG(t) is the measured blood glucose concentration at time ¢, and target
is the target glucose level. The insulin dose that the pump has to administrate
at time ¢ is given by the equation:

PID(t) = P(t) + I(t) + D(t) (4)
This model includes the following 3 parameters:

— K, (1U/min?) is a factor depending on the subject’s daily dose of insulin,

— Tt (min) is a parameter used to allow small changes in the integral compart-
ment during the day and rapid changes during the night,

— Tp (min) is a factor used to regulate the insulin dose according to glucose
rising and falling.

The first parameter is patient-specific, but its value is uniquely determined by
the daily insulin dose. The remaining two parameters are set to the same value
for all patients. Since CGM devices measure glucose levels in the interstitial fluid,
the model of the sensor “reads” the blood glucose concentration value from the
VPH model and adds the time lag as in the following equation:

1 1

-Grsr(t) +
TSEN TSEN

Grsr(t) = —

- (G(t) + error(t)) (5)

where G is the blood glucose concentration and 7sgy is the interstitial fluid delay
(min).

4 Adversarial Operational Scenarios

While falsification approaches (see, e.g., [1,6,2,28]) are incomplete approaches
aiming at finding errors in the SUV, SLFV aims at certifying the absence of
errors by verifying the SUV on all the simulation scenarios that are considered
relevant.

Indeed, in our SLFV activity of the artificial pancreas described in Section 3,
we need to generate an ezhaustive simulation campaign i.e., a simulation cam-
paign that includes all simulation scenarios deemed relevant. Usually it requires
weeks or even months of simulation activity to perform an exhaustive campaign,
and the prospect is even worse if considering that when the SUV is a biomedical
device, the simulation campaign should be repeated for more than one patient
(the complete population of patients, if possible).



SyLVer [18,22] is a tool for the generation of optimized simulation campaigns
starting from a model of the operational environment of the SUV (namely, a dis-
turbance model). Such simulation campaigns are ezhaustive, in that they exercise
the SUV on all scenarios entailed by the operational environment model. How-
ever, by suitable randomising the verification order of the operational scenarios
to be simulated [20], the simulation campaign computed by SyLVer is also any-
time, in that during the verification process the system outputs an upper bound
to the Omission Probability [21], i.e., the probability that an error will be found
during the simulation of a yet-to-be-simulated scenario. This feature allows the
verification engineer to stop the (otherwise exhaustive) verification process when
the omission probability goes below a given threshold. The simulation campaign
computed by SyLVer is also parallel, in that it is designed to be executed on
possibly large high-performance computing infrastructures [22].

Our Modelica definition of the PID controller allows the injection of tempo-
rary faults into the glucose-sensing mechanism and the insulin-delivery mecha-
nism. What we need to do is to formally describe how often an event able to
affect at least one of these two errors can happen, and in which measure it can
contribute to the errors. By doing this we defined all the operational scenarios
that are relevant to the SLFV of the artificial pancreas. The goal is to describe
all the admissible sequences of events (i.e., a scenario) by means of a Finite State
Automaton (FSA), in order to give it as input to the SyLVer tool. To this end, we
modelled the disturbance sequences characterizing the operational environment
of the artificial pancreas, again using Modelica. The FSA is then automatically
generated starting from this high-level description.

We equipped our Modelica model of the biomedical device with a general
module for the application of disturbances on a signal. This module can be seen
as a function that takes as input the original signal and returns the disturbed
signal according to the following equation:

f(8@#) =a-St-—7)+p (6)

where S(t) is the signal and «, 8 and 7 are three parameters. In this way, we
can instantiate the equation above by assigning different parameter values for,
respectively, glucose-sensing error and insulin-delivery error. Since a calibration
error in glucose-sensing can be modelled as an additive error, we fixed a to 1
and 7 to 0. In order to define only realistic scenarios, the calibration error in
glucose-sensing should be constant through the time and restricted to a small
domain centered in 0. We discretised this range and defined the domain of 5 as
the set {—5,0,5}. The values in the set are expressed in mg/dl. The value of 3,
initialized at 0, is chosen one hour after the start of the simulation and never
changed through the scenario. We chose to not inject disturbances during the
first hour of the in-silico clinical trial (i.e., the SLEV of the artificial pancreas
on the virtual TIDM patients) in order to let the system reach stability. We
modelled the possible errors in the insulin delivery mechanism by defining the
domain of « as the set {0.8,1,1.2}. In order to simulate the occurrence of sudden
failures, e.g., a partial obstruction of the pump, the value of «, initialized at 1,



can be modified every 6 hours starting from the end of the first hour of the
trial. Since it is more natural to model the effect of an obstruction event as a
proportional error, we fixed both £ and 7 to 0.

5 Monitor

The last ingredient to perform the SLFV activity is a criterion to evaluate the
behaviour of the artificial pancreas. In order to best fit the requirements of in-
silico clinical trials, we extended the SyLVer approach by defining a monitor for
the SUV that returns the values of the KPIs of interest instead of the boolean
PASS/FAIL. This is done in order to allow statistical analysis of results. To this
purpose, we defined the following KPIs:

— the average of function GRADE during time. GRADE is a function intro-
duced in [12] in order to provide a method to evaluate the degree of dangerous-
ness of blood glucose levels. The GRADE function assigns to glucose concentra-
tions (expressed in mg/dl) a score from the interval [0, 50] (see Figure 1) and it
is defined as:

50 otherwise

GRADE(g) = {

Accordingly to its definition, the GRADE function assigns a score < 5 if and
only if the corresponding blood glucose level is within the euglycemic range (i.e.,
70-140 mg/dl), while high scores are assigned in case of both hypoglycemia and
hyperglycemia. This KPI can thus be calculated as:

h
GRADE(t)dt
GRADE = f”% (7)

where h is the horizon of the simulation.

— the mean deviation from target (see (1) and (2)). In [29] the target glucose
concentration was 120 mg/dl for safety reasons, but the authors themselves
argued that better results could be probably achieved by setting the target to
a lower value. In the case of in-silico clinical trials the limitations due to safety
reasons do not apply, so we fixed the target at 105 mg/dl (i.e., the center of the
euglycemic range). This KPI is calculated as:

th |G(t)—target| dt

target
8
2 (®)

— the highest glucose level registered during the trial

targetDev =

maxg = org%XhG(t) 9)

— the lowest glucose level registered during the trial

c 1
ming OglghG(t) (10)



— the fraction of time that the patient spent in the euglycemin range, calcu-

lated as:
1 if GRADE(t) <5

isEuglycemic(t) = {0 otherwise

foh isEuglycemic(t)dt
h
We defined the PASS/FAIL test as in the following:

(11)

safeTime =

(GRADE < 20 A maxg < 300 A ming > 50 A safeTime > 55.00%) <= PASS

60 T T T T

T

T
GRADE(x)

GRADE
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Fig. 1: The GRADE function (the highlighted area shows the eug-
lycemic range).

6 Preliminary Experimental Results

In this section we discuss the preliminary experimental results obtained from
the ISCT on 40 representative VPs (i.e., 4 times the number of patients in-
cluded in the corresponding in vivo clinical trial [29]). In order to let the SyLVer
tool generate the optimised simulation campaigns we need to fix the horizon
of the simulation scenarios. We decided to extend the verification period cho-
sen in the in vivo clinical trial concerning the PID controller [29] (32 h) to 48
h, thus considering all the simulation scenarios having 48 h as horizon defined
by our disturbance model (see Section 4). The optimized simulation campaign
generated by SyLVer counts 65 769 different scenarios. For each scenario, we ver-
ified the device under three different inputs (i.e., normal, hyperglycemic and



hypoglycemic condition). More specifically, we adopted the portfolio of inputs
described in [3], hence altering the amount of ingested carbohydrates and the
daily dose of injected insulin by the specified multiplication factors. As a result,
the PID controller was validated in 197 307 different scenarios for each of the 40
patients.

Despite the number of involved patients in our preliminary experiments is
too small to compute meaningful statistics on the robustness of the Medtronic
MiniMed external physiological insulin delivery (ePID) system, it was enough
to detect faulty behaviours of the system. Figure 2 shows the percentage of
successful scenarios registered by each VP. As shown in the diagram, almost
half of the VPs registered a PASS in more than 90% of the scenarios. However,
it is not negligible that the artificial pancreas failed in almost all the scenarios
for 10% of the VPs.

In the following analysis we will focus on the VPs with, respectively, the
lowest (p;) and the highest (py) percentages of successful scenarios (besides VPs
with a success rate of 100%). As shown in Figure 3a, p; registered a FAIL in
all the scenarios because of a too low minimum blood glucose concentration.
This faulty behaviour is probably due to the high insulin sensitivity of this VP
(i.e., 0.002 ml/pU), showing that ISCTs can be of fundamental importance in
determining personalised settings of the device. p; has a failure rate of 2.70%,
and the main cause is the constraint on the minimum blood glucose concentration
(see Figure 3b). The failure of the system is due to scenarios involving an error
in the insulin delivery component, showing that the artificial pancreas cannot
cope with all the relevant adversarial scenarios.
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Fig. 2: Percentages of successful scenarios for each VP.
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7 Conclusions

In this work, we defined an in silico clinical trial for the system-level verifica-
tion of the Medtronic MiniMed external physiological insulin delivery (ePID)
system [29] on a representative population of VPs and on adversarial scenarios
encompassing temporary faults in the glucose sensor and the insulin delivery
mechanism of the biomedical device.

The entire workflow of our ISCT has been performed in Modelica. The popu-
lation of VPs on which we carried out our verification activity has been computed
in [3], while the generation of the adversarial operational scenarios has been per-
formed starting from a high-level model given as input to SyLVer [18,22].

In order to provide the user with statistical information about the robustness
of the biomedical device under verification, we extended the SyLVer approach by
defining a monitor for the SUV computing the values of suitable KPIs. Our pre-
liminary experiments highlighted a few scenarios resulting in faulty behaviours
of the artificial pancreas. These failures were caused by the lack of personalised
settings of the device and by errors in the insulin delivery mechanism.

In future work we plan to extend our verification activity by including in our
adversarial operational scenario model unexpected patient behaviours in terms
of carbohydrates intake and meal profiles, along the lines of, e.g., [27].
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