
Conceptualization of a GAN for future frame prediction 

Nirvana Pillay[0000-0003-4999-1215] and Edgar Jembere[0000-0003-1776-1925] 

 University of KwaZulu-Natal, Durban, RSA 
nirvanap02@gmail.com, jemberee@ukzn.ac.za 

Abstract. The generation of future frames of a video involves the analysis of the 
previous t-i frames and the subsequent prediction of the following t+j frames. 
The majority of state of the art models are able to accurately predict a single 
future frame that exhibits a high degree of photorealism. The effectiveness of 
these models at generating quality results decreases as the number of frames gen-
erated increases due to the divergence of the solution space. The solution space 
is now multimodal and optimization of traditional loss functions, such as MSE 
loss, does not adequately model the multimodality and the resultant frames are 
blurred. The conceptualization of a GAN that generates several plausible future 
frames with adequate motion representation and a high degree of photorealism is 
presented.  
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1 Introduction 

The prediction of future frames has several applications in autonomous decision-mak-
ing areas that include; self-driving cars, social robots and video completion [10]. For 
example, a SocialGAN [4] determines plausible and socially acceptable walking trajec-
tories of people, thus, aiding in the navigation of human-centric environments. GANs 
([1], [4], [5], [6], [9]) have been a popular approach to training spatio-temporal models 
for future frame prediction. The constituent components of a GAN is a generator and a 
discriminator, engaged in a minimax game [3]. GANs, however, are difficult to train; 
and are susceptible to mode collapse. In transformation space, the generator extracts 
transformations between adjacent input frames. It subsequently predicts a future trans-
formation and applies it to the last frame of the input to generate the next frame and so 
forth. The source of variability is modelled and, thus, the need to store low level details 
of the input is eliminated. The resultant model requires fewer parameters which simpli-
fies learning. Furthermore, the spatial data of the input is conserved. 

2 Related Work 

To model spatio-temporal relationships in video data, networks include either CNNs, 
RNNs or both. The standard for sequential modelling tasks is RNNs, such as LSTMs, 
due to its ability to represent long term temporal dependencies. A CNN that exhibits a 
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similar efficacy is the Temporal Convolutional Network (TCN). A TCN in conjunction 
with a dilated CNN to model temporal and spatial dependencies respectively was im-
plemented by [9]. A similar approach was undertaken by [1], with a PGGAN modelling 
spatial dependencies instead. Another attempt at sequential modelling utilizing CNNs 
[8] was an architecture in which a network was replicated through time. The resultant 
model was a ‘peculiar RNN’ as parameters were now shared across time whilst still 
convolving spatial data. A CNN-LSTM architecture was implemented by [6] to predict 
future frames of synthetic video data. These aspects were later united by [7] into a single 
network, a convolutional LSTM (ConvLSTM). A stacked ConvLSTM, coupled with a 
Spatial Transformer Network (STN) [2], addressed the problem of future frame predic-
tion and determined the state of motion of a robot arm. The representation of motion is 
improved by models that operate in transformation space ([2], [8], [9]). Such a model, 
a CGAN [9] was evaluated using a Two-Alternative Forced Choice (2AFC) test. The 
generated video was preferred only 30.6% of the time over its ground-truth counterpart. 

3 Proposed Model 

In a bid to address the issues of motion representation, photorealism and plausibility of 
generated frames, this research proposes the implementation of a CGAN. The discrim-
inator of the CGAN receives the context frames coupled with alternatively ground truth 
future frames or generated future frames and is only deceived by sequences of frames 
that exhibit plausibility. A mini-batch standard deviation layer is added to one of the 
last layers of the Progressively Growing Network (PGN) discriminator; aiding in the 
prevention of mode collapse. The generator comprises of 7 stacked ConvLSTMs, sim-
ilar to [2], and preserves spatial data whilst modelling the complex dynamics of the 
data. Hidden Layer5 parameterizes a modified STN and the output of ConvLSTM5 is 
a predicted affine transformation matrix for each separate ‘good feature’ in the frame. 
The STN is modified to determined points by the Shi-Tomasi Corner Detection algo-
rithm for which transformations are then predicted. The model also predicts a compo-
siting mask over each transformation. The generated frame is reconstructed by applying 
predicted affine transformations, merged by masking, to the last input frame.  

 

Fig. 1. Schematic of CGAN Generator 
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