CEUR-WS.org/Vol-2541/paper8.pdf

A Utility Model for Designing Environmentally
Sustainable Software

Sedef Akinli Kocak
Vector Institute for Artificial Intelligence
Toronto, Canada
sedef.kocak @vectorinstitute.ai

Abstract—Software systems play an increasingly central role
in sustainability, since many aspects of our lives and society
as a whole are mediated through software systems. Hence, the
design of these systems requires attention from sustainability
perspective. Recent interest in sustainability as a requirement has
given rise to broader definitions in terms of technical, economic,
environmental and individual perspectives. In this sense, there is a
need for additional quality requirements to include sustainability
concerns, as well as to examine the market equilibrium where
stakeholders and customers meet. In Most cases, software de-
velopment companies do not consider the explicit representation
of sustainability requirements such as resource utilization, or
customers concerns on sustainability. In this work, we focus on
the relationship between customers, who require energy efficient
software products, and software development companies, who
offer these software products. The proposed introductory model
aims to determine the demand and payoff functions by satisfying
both sides with the quality level of the product and its price.

Index Terms—Environmental Sustainability, Utility Model,
Software Quality, Market Equilibrium, Green Software.

I. INTRODUCTION

Sustainability, the “capacity to endure” [1] is a key issue
facing society on multiple levels, from individuals and social
groups to large socio-technical systems and the planet earth.
As a concept, it concerns a specific system and has to be
considered along multiple dimensions such as environmental,
economic, social, technological and individual [29]]. Humanity
faces many complex challenges that present risks to soci-
eties, including the rise of C'O5 emission, biodiversity loss,
cybersecurity, inequality and unfairness. Environmental risks
have grown in prominence in recent years. It is fundamentally
a systemic property, and any effort to address sustainability
involves integrating concepts, principles, and methods from a
range of disciplines.

In the context of software engineering, sustainability is often
defined as to “preserve the function of a system over an
extended period of time” [25]. As many aspects of our lives
and society as a whole are mediated through software systems,
sustainability is becoming a challenge for requirements and
software professionals [5]]. Although requirements engineering
(e.g., 23] [34]) and software architecture researchers (e.g.,
[4] [36]) have been devoting effort to define the basis of the
notion of sustainability-aware software, there are still a lack of

Gulfem Isiklar Alptekin
Computer Engineering Department
Galatasaray University
Istanbul, Turkey
gisiklar@gsu.edu.tr

suitable approaches to design software-intensive systems that
enable sustainability goals.

In software engineering, sustainability is mostly related to
technical impact (e.g., [3]), economic interests (e.g., [30],
and recently environmental concerns (e.g. [27], [23]]). Recent
interest in sustainability as a requirement has given rise to
broader definitions in terms of technical, economic and envi-
ronmental perspectives [35]]. In this sense, sustainability may
lead to have additional quality requirements. New instruments
(e.g., 191, [24], [22], [2]) have designed framing the design
concerns around the four sustainability dimensions- technical,
economic, social and environmental sustainability. We believe
that decision-oriented models are one of the significant ways
of examining the sustainability concerns of stakeholders.

In this paper, we present an introductory model which is part
of a continuous work on designing decision-oriented model
focusing on relevant quality requirements and contributing to
the sustainability dimensions of software-intensive systems.
In the proposed model, we assume that the software product
customers have two main decision variables, when buying
a software product: Price and quality. It is obvious that
the buyers may have various other concerns when making
the decision of buying, but for the sake of constructing a
manageable demand function, we only select the most two im-
portant ones. The quality variable comprises all non-functional
requirements of the offered software. As the price of the
product increases, the customer ‘s willingness to buy decreases,
while the quality of the product increases, the customer‘s
willingness to buy increases. Accordingly, we introduce a
linear demand function for software development companies.
Moreover, we introduce an acceptance probability variable for
customers, that is maximized when the price of the product
decreases, while it‘s quality increases. We propose that this
approach may be suitable in the context of software quality
requirements, since they are always subject to negotiation
between customers/users and development company. In our
model, the quality requirements involve sustainability con-
cerns. The proposed introductory model is based on interactive
multi-criteria decision making theory [11f], [37]] which focuses
on the structure of multi-criteria or multi-attribute alternatives,
usually in the presence of conflicting criteria. Therefore, the
strategic interaction of customer and development company

Copyright ©2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



as well as the interdependencies of quality attributes and
sustainability requirements are essential. The rest of this paper
is structured as follows: Section 2 gives a more detailed
description of what motivates this study and introduces the cor-
responding background. Section 3 describes the basic elements
of the introductory model. We present a green software product
scheme in Section 4, and we conclude the paper in Section 5
with a summary of the study and continuing directions of the
research.

II. RELATED WORK AND MOTIVATION

In this section, we have categorized the works related to
our research topic under two categories: quality models in
software engineering and software engineering and sustainabil-
ity. Researchers have been studying sustainability in software
engineering from different perspectives such as hardware
energy efficiency in terms of power consumption; optimization
of algorithms and / or software architecture; effective and
efficient design and usage of software intensive system, and
models to support decision making including sustainability.

There are rising attention and increasing research works in
the field of software engineering and sustainability focusing on
specific software sustainability aspects. For example, Hindle
[15] related the direct impact of software change on energy
consumption; Procaccianti et al. [31]] related software code
metrics and software architecture for assessing the impact of
best practices for achieving software energy efficiency; Cai et
al. [7] investigated the notion of design rules to detect flows
at the software architecture level over extended periods; Lago
et al. [24], [23] introduced a decision map can be used to
frame the concerns of each of the sustainability dimensions to
support decision making.

The recent quality model/standards are introduced by ISO
(ISO/9126 and ISO/IEC 25010) [16]. In these standards, the
sustainability issues are not considered as a separate criteria.
Several sustainability related issues may be the consumption
of energy, memory requirements, efforts (in terms of energy)
required during its development, etc. In the software engineer-
ing literature, the first quality model for green and sustainable
software was developed by Kern et al. [[17]. The model con-
siders the product quality factors, however, the quality aspects
standardized in ISO /IEC 25000 are also related to the quality
of software in use. Calero and Bertoa [8]] considered sustain-
ability as a new factor that affects software product and process
quality. They presented a new quality model (ISO 2510+S)
based on ISO/25010. In their model, they differentiated the
quality factors concerning the sustainability impact and they
described related and unrelated sub-characteristics. A cross-
disciplinary initiative to create a common ground and develop
a focal point of reference in software and sustainability is
proposed by Becker et al. [5]. They discuss different inter-
pretations of sustainability. Akinli Kocak et al. [19]] analyzed
the correlation between the standardized quality attributes and
environmental sustainability attributes to identify their effects
on environmental sustainability. Recently, Condori-Fernandez
and Lago [10] developed a Software Sustainability-Quality

Model to characterize the contribution of quality requirements
to software sustainability. All these studies point out that the
product, as well as the quality in use needs to be considered
when assessing the sustainability of the software. However,
knowledge about designing and configuring software in an
environmental manner is not sufficient today [[14]. Moreover,
assessment based on the notion of sustainability as a software
quality property is still emerging and poorly understood [9].

Companies are increasingly aware of many potential bene-
fits provided by customer-oriented business strategies. Besides,
environmental requirements are becoming indispensable re-
garding environmentally friendly product development. In our
literature review, we examined that there is still a gap on ex-
plicit representation of sustainability requirements (e.g energy
efficiency and resource efficiency) and stakeholders‘ concerns
on the environmental sustainability of software products. In
most cases, software development companies do not consider
the explicit representation of sustainability requirements such
as resource utilization, or customer‘s concerns on sustainabil-
ity.

In this work, we focus on the relationship between cus-
tomers, who require energy efficient software products, and
software development companies, who offer these software
products. The proposed introductory model aims to determine
the demand and payoff functions by satisfying both sides with
the quality level of the product and its price.

III. THE PROPOSED INTRODUCTORY MODEL

The goal of this introductory model is to find the equilibrium
to meet the stakeholders needs and required quality attributes,
while taking into account the environmental sustainability of
the software product. This model is based on the theory
of interactive decision-making model. It provides general
mathematical techniques for analyzing situations in which
two or more individuals make decisions that will influence
one another‘s welfare [6]. These situations are referred to
interactive decision processes. It consists of a collection of
models. A model is an abstraction that we use to understand
our observations and experiences [28]]. In this section, the
concepts and the elements of the proposed model are briefly
presented.

The decision-making entities are considered as the individ-
uals of the interactive decision process. In this model, we
assume that the individuals are software development company
and a customer and they are rational and intelligent [|6]. The
strategy of the one individual is a complete contingent plan
of action for whatever situation might arise. The payoffs for
an individual should capture everything in the outcomes that
the individual cares. In many cases, the payoff function is
represented by a utility function, which assigns a quantifiable
value to each possible outcome, with higher utilities represent-
ing the more desirable outcomes. In an interactive decision-
making model, it is assumed that each individual knows which
strategy s/he prefers or which strategies are equally desirable
for her/him.



TABLE I
NOTATIONS FOR THE MODEL

Symbol | Description
4 Demand
by, bo Price and quality sensitivities of the demand, respectively
a Fixed demand
d Software product price, when Q=0, i.e. min product price when Q=0
P Software product price
Q Software product quality
U Customers utility function
II Software development companys utility function from product sells
DC Software product development cost
FC Software product development, fixed cost
e Software product quality sensitivity of price
w; Level of importance weight of each software quality attribute
A; Quality attributes (¢ = 1,...,n)
" Utility sensitivity of the user
c Constant

A. The Basic Model and its Components

We consider a differentiated market in which customers
differ in their willingness to pay for the environmental quality
of the software product. Each customer has a reservation price
and preferences over the product‘s quality attributes. In such
a market, the software development company‘s objective is
both to determine the optimal price for its product and the
optimal environmental quality attributes level with respect to
customers‘ requirements. The software development industry
is generally concentrated. The up-front cost of developing
software products is prohibitively high. Presumably, product
design is mainly achieved via R&D-related expenditures (fixed
costs) with little to no increase in marginal cost. In our model,
the interacting individuals are software development compa-
nies. They build a strategic interaction with their customers.
In the model, it is assumed that there are interdependencies
among quality attributes and environmental attributes. All the
necessary notations are given in

The Software Development Company

Similar to the model presented at [12], the software de-
velopment company wants to maximize its own profit. The
decision variables of the companys utility function are product
price (P) and quality Q(A;). Q(4;,i=1,...,n) is assumed
to be uniformly distributed on [0, 1]. We assume the existence
of a normalized upper bound for quality, 1. The demand that
the company faces is represented with ¥ (P, Q). We follow a
common assumption and define a linear demand function:

1= ¥(P,Q)P - DC, (1)

where the development cost is defined as DC = FC +
e.Q(A;). The parameter FC is the fixed cost tied to research

and development and the design of the product. This fixed cost
is assumed to be independent from the quality attributes* level.
Total product quality is represented by the quality attributes
(A;) and related importance weights (w;). The product quality
is calculated by multiplying the quality attributes level with
corresponding importance weight:

Q=Y wiA;, )

Then, the companys demand function is:

U(P,Q)=a—b P+ bQ(A), 3)

with

where d>0 and e>0.
When we substitute the price with quality attributes, then
the demand is:

U (P, Q) = (a—bid) + (b2 — b1e)Q(A;), (5

and accordingly

(P, Q) = [(a—bid) + (b2 —b1€)Q(A;)| P — FC +eQ(A;) P,
(6)
The Customer
Let us now describe the customers utility. A customers
utility depends on the price and quality attributes levels of the
software product s/he is using. In this model, the customer is
assumed to require maximizing the environmental quality of
the software product at minimum expense. A customer accepts
an offer, if the price asked is reasonable and the quality level is
satisfying. Hence, we can introduce an acceptance probability
A (U, P), where U is the utility of the customer and P is the
associated price of the software. The acceptance probability
should be an increasing function of U for a fixed P, while
decreasing function in P for fixed U:
A(U,P) = 1 — ¢~ 1€U"Qb2Pb1) (7)
The acceptance probability function can be differentiated
among customers through the above parameters. The objective
is to maximize the acceptance probability of each customer.
In our software product, the energy efficiency and resource
efficiency are the quality attributes in which the companys
sustainability effort can be observed. Constant, C, which can
be used to control the rate of feature perturbation, is set to 1
by default.

IV. A GREEN SOFTWARE PRODUCT SCHEME

In this section, we introduce a green software scheme
based on the characteristics of the environmental sustainability
requirements of the customers. A desired level of quality
for software may be achieved by defining appropriate quality
characteristics, taking into account the purpose of usage of
the software product. Developing green software necessitates
identification of the traditional quality attributes as well as



and environmental attributes. The software development com-
panies can show their effort to support sustainability by using
these attributes and metrics.

A. Selection of the Quality Attributes

Software product quality attributes were selected from the
ISO/IEC 25000 (SQuaRE) [16] series. ISO/IEC 25010 is a
part of Square series that is composed of a quality in use
and a product quality model. The criteria defined by model
are relevant to all software product and computer systems.
Considering the scope of our study, we adopted ISO/IEC
25010 product quality model that categorizes product quality
properties into eight characteristics: functional suitability, reli-
ability, performance efficiency, usability, security, compatibil-
ity, maintainability and portability. While functional suitabil-
ity, reliability, performance efficiency, usability, security and
compatibility are defined as internal quality characteristics;
maintainability and portability are external characteristics. In
their survey study Akinli Kocak et al. [[19]] showed that security
and compatibility has negligible impact of the environmen-
tally sustainable software product quality. Therefore, in this
work, we only adopted functional suitability, performance
efficiency, reliability and usability as quality attributes. As
for the environmental attributes, we adopted energy efficiency
and resource efficiency from Akinli Kocak et al. [19]], [18].
Environmental sustainability aims at improving human welfare
while protecting natural resources. If the software product is
considered, this dimension aims at addressing environmental
requirements. When designing software intensive systems,
immediate features and effects, longer-running, aggregate and
cumulative impact of these systems have to be considered
[4]]. However, for simplicity we considered only energy and
resource efficiency as environmental attributes which have
direct effects (first order effects [[14]]) on the environmental
sustainability. Computing resources (memory, processing, net-
work bandwidth, and storage) are the principal sources of
consumption within the software system. Given a monitoring
of energy consumption over certain period, energy efficient
resource usage possibilities may be spotted and subsequently
applied. For this reason, energy efficiency and resource effi-
ciency are chosen as characteristic of environmental quality of
the product. Table [lI] summarizes all the selected attributes of
software quality.

B. Determining the Importance Weights (wi)

The quality attributes of software products may impact
costumer‘s perceived value with various levels of intensity.
We classified software products by characterizing them as
high-intensity (a high), medium-intensity (a medium) and low-
intensity (a low). High-intensity software products contain
attributes that have biggest contribution on sustainability and
are critical to achieve the purpose of the software. For the level
of intensity, we use 1 to 5 scale [26]. In that scale, the high
product intensity (scale: 1-2) means that this product will be
accepted (as accept). Similarly, the medium product intensity
(scale: 3-4) means that it will be reviewed (review) and the

low product (scale: 5) means that it will be rejected. These
levels of quality attributes (A4;) are used when calculating the
total quality of the product that is given in the Equation

General constraints of the attributes is 0 < A; < 1.0 (i =
1,...,n). Table [lII| shows the adopted attributes, their related
metrics and level of intensity. In order to obtain the levels of
quality, we widely use the Pareto principle often referred to
as the 20-80 rule [33]. In the literature, this rule is widely
used (e.g., [13]). For the energy efficiency, we adopted Intels
holistic approach for energy star ratings across the broader
range of products [21]]. The energy efficiency of a computer
with 100% workload has given as 82-85%. In order to use
the same scale, we normalized them into [0-1] interval. We
also used the power consumption measurements of a database
software obtained by Akinli Kocak et al. [[18]], [20].

The importance weights of the quality attributes are also
fundamental to set the priority, both for the customer and the
company. Prioritizing is a process of managing the relative
importance and determination of different requirements within
the limited resources. Quality attributes weights and environ-
mental attributes weights of software product can be obtained
from evaluation of the criteria using multi-criteria decision
making methodologies. In one of our works [18], we have
used a well-known multi- criteria decision-making approach:
Analytical Network Process (ANP) [32] to calculated the
relative weights (wi) of the quality attributes.

V. CONCLUSION AND FUTURE WORK

Many disciplines have been facing challenges in how to
sustain economic, social and ecological systems. The design of
environmentally sustainable software product is a challenging
task, when it is compared to develop traditional software
product, since an environmentally sustainable software has
different quality attributes (especially in terms of quality
requirements). In this work, we introduce a software classi-
fication scheme using standard software quality requirements
and introducing environmental attributes. Accordingly, we
propose a way of determining demand in terms of price and
quality, and utility of a software development company. We
derive customer‘s and development company‘s payoffs. As
a continuation of this work, the proposed simple demand
functions need to be elaborated by quantifying the sensitivity
coefficients. These demand functions may be integrated into
the given green software scheme to build a green decision
support tool. Our contribution will serve as a normative guide
to software development companies for the design of green
product with handling environmental sustainability as a quality
objective. As next step, we plan to examine the theoretical
introductory model with simulation and find the equilibrium
to meet the both development company and customer needs
within the necessary quality attributes.

ACKNOWLEDGMENT

This research has been financially supported by the
Galatasaray University Research Fund, project number:
19.401.005.



TABLE 11
SOFTWARE QUALITY AND ENVIRONMENTAL SUSTAINABILITY ATTRIBUTES

Q Software Quality

Q1: Functional Suitability

The product fits the functional requirements of the user and customer.

Q2: Performance Efficiency

How well the product responds to user requests and how efficient it is at execution time.

Q3: Reliability

The product produces failures and hence may not be available.

Q4: Usability How easily the system can be used.

()

Environmental Sustainability

ES: Energy Efficiency

The level of energy performance of the software and the amount of energy resources used, under stated conditions.

E6: Resource Efficiency

How efficiently the resources used by the product when performing its functions and/or serving useful workload.

TABLE III
QUALITY ATTRIBUTES, METRICS AND LEVEL OF INTENSITY

Attribute

Related Metric Levels of Intensity

Functional

suitability (A1)

Low, if A; < 0.20
Medium, if 0.21<A; <0.80
High, if A;>0.80

Functional completeness

Performance

efficiency (As)

Low, if A»<0.30
Medium, if 0.30< A5 <0.70
High, if A5>0.70

Response time

Low, if A3 > 0.80

Reliability
As) Fault tolerance Medium, if 0.20< A3 <0.80
3 High, if A3 < 0.20
Low, if A4 < 0.20
Usability -
Ao Accessibility Medium, if 0.20< A4 <0.70
4 High, if A4 > 0.70
Low, if A5 > 0.80
Energy

efficiency (As)

Power consumption Medium, if 0.20< A5 <0.80

High, if A5 < 0.20

Low, if Ag > 0.80

Resource
Sum of CPU, I/O and memory Medium, if 0.20<Ag <0.80
efficiency (Ag) ~ons i
y (Ae consumption High, if Ag < 0.20
REFERENCES

[1]
[2]
[3]

[5]

[6]
[7]

[8]

Oxford English Dictionary Online, 2nd edition. http://www.oed.com/,
July 2003.

M. Al Hinai and R. Chitchyan. Engineering requirements for social
sustainability. 2016.

P. Avgeriou, M. Stal, and R. Hilliard. Architecture sustainability [guest
editors’ introduction]. IEEE Software, 30(6):40-44, 2013.

C. Becker, S. Betz, R. Chitchyan, L. Duboc, S Easterbrook, B. Pen-
zenstadler, N. Seyff, and C. C. Venters. Requirements: The key to
sustainability. JEEE Software, 33(1):56-65, 2015.

C. Becker, R. Chitchyan, L. Duboc, S Easterbrook, M. Mahaux, B. Pen-
zenstadler, G. R. Navas, C. Salinesi, N. Seyff, C. C. Venters, C. Calero,
S. A. Kogak, and S. Betz. The Karlskrona manifesto for sustainability
design. CoRR, abs/1410.6968, 2014.

R. B.Myerson. Game Theory: Analysis of Conflict. Harward University
Press, 1997.

Y. Cai, Lu. Xiao, R. Kazman, R. Mo, and Q. Feng. Design rule spaces:
A new model for representing and analyzing software architecture. [EEE
Transactions on Software Engineering, 2018.

C. Calero, M. F. Bertoa, and M. A.Moraga. Sustainability and quality:

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Icing on the cake. In Second Int. Workshop on RE for Sustainable
Systems (RE4SuSy), 2013.

N. Condori-Fernandez and P. Lago. Characterizing the contribution of
quality requirements to software sustainability. Journal of Systems and
Software, 137:289-305, 2018.

N. Condori Fernandez and P. Lago. A Sustainability-quality Model. VU
Technical Report, 11 2018. Version 1.0.

L. Fang, K. W. Hipel, and D. M. Kilgour. Interactive decision making:
the graph model for conflict resolution, volume 11. John Wiley & Sons,
1993.

C. Faugere and G. K. Tayi. Designing free software samples: a game
theoretic approach. Information Technology and Management, 8(4):263—
278, 2007.

N. E. Fenton and N. Ohlsson. Quantitative analysis of faults and
failures in a complex software system. [EEE Transactions on Software
engineering, 26(8):797-814, 2000.

L. Hilty and B. Aebischer. Ict for sustainability: An emerging research
field. In ICT Innovations for Sustainability, pages 3-36. Springer, 2015.
A. Hindle. Green mining: a methodology of relating software change and
configuration to power consumption. Empirical Software Engineering,
20(2):374-409, 2015.

ISO/IEC25010:2011. Systems and software engineering — systems and
software quality requirements and evaluation (square) — system and
software quality models, 2011.

E. Kern, M. Dick, S. Naumann, A. Guldner, and T. Johann. Green
software and green software engineering—definitions, measurements, and
quality aspects. Hilty et al.(2013), pages 87-94, 2013.

S. A. Kogak, G. I. Alptekin, and A. Basar Bener Bagar. Evaluation of
software product quality attributes and environmental attributes using
anp decision framework. In Proceedings of the Third International
Workshop on Requirement Engineering for Sustainable Systems (pp. pp.
37-44). Karlskrona: Central Europe Workshop Proceedings, 2014.

S. A. Kocak, G. I. Alptekin, and A. Basar Bener Bagar. Integrating
environmental sustainability in software product quality. In RE4SuSy@
RE, pages 17-24, 2015.

S. A. Kogak, G. I. Alptekin, A. Miranskyy, A. Basar Bener Basar, and
E. Cialini. An empirical evaluation of database software features on
energy consumption. In /CT4S, pages 1-19, 2018.

R. Kolappan, H. Wong, M. Duggiralam, K. Kaplan, E. Haines, and
T. Bolioli. Energy star version 5.0 system implementation, technical re-
port, intel, (2009). http://www.energystar.gov/ia/partners/product_specs/
program_reqs/Computers_Intel_Whitepaper_Spec5.pdf.

P. Lago. A software sustainability assessment method. Technical report,
Technical Report, figshare, 2014. http: //goo.gl/HuY6tf, 2016.

P. Lago. Architecture design decision maps for software sustainability.
In Proceedings of the 41st International Conference on Software En-
gineering: Software Engineering in Society, pages 61-64. IEEE Press,
2019.

P. Lago, S. A. Kocak, I. Crnkovic, and B. Penzenstadler. Framing
sustainability as a property of software quality. Commun. ACM,
58(10):70-78, 2015.

P. Lago and B. Penzenstadler. Reality check for software engineering


http://www.oed.com/
http://www.energystar.gov/ia/partners/product_specs/program_reqs/Computers_Intel_Whitepaper_Spec5.pdf
http://www.energystar.gov/ia/partners/product_specs/program_reqs/Computers_Intel_Whitepaper_Spec5.pdf

[26]

[27]

[28]

[29]

[31]

[32]

[33]

[34]

[35]

[36]

for sustainabilitypragmatism required. Journal of Software: Evolution
and process, 29(2):e1856, 2017.

R. Likert. A method of constructing an attitude scale. Scaling: A
sourcebook for behavioural scientists, pages 233-243, 1974.

F. A. Moghaddam, G. Procaccianti, G. A. Lewis, and P. Lago. Empirical
validation of cyber-foraging architectural tactics for surrogate provision-
ing. Journal of Systems and Software, 138:37-51, 2018.

M. J. Osborne et al. An introduction to game theory. Oxford university
press New York, 2004.

B. Penzenstadler et al. Safety, Security, Now Sustainability: The
Nonfunctional Requirement for the 21Ist Century. [EEE Software,
31(3):40-47, May 2014.

E. R. Poort and H. van Vliet. Architecting as a risk-and cost management
discipline. In 2011 Ninth Working IEEE/IFIP Conference on Software
Architecture, pages 2—11. IEEE, 2011.

G. Procaccianti, H. Ferndndez, and P. Lago. Empirical evaluation of
two best practices for energy-efficient software development. Journal of
Systems and Software, 117:185-198, 2016.

T. L. Saaty. Decision making with dependence and feedback: The
analytic network process, volume 4922. RWS publications Pittsburgh,
1996.

G. G. Schulmeyer and J. I. McManus. Handbook of software quality
assurance. Van Nostrand Reinhold Co., 1992.

C. C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick, S. Crouch,
E. Y. Nakagawa, C. Becker, and C. Carrillo. Software sustainability:
Research and practice from a software architecture viewpoint. Journal
of Systems and Software, 138:174-188, 2018.

C. C. Venters, L. Lau, M. Griffithsa, V. Holmes, R. Ward, C. Jay,
C. Dibsdale, and J. Xu. The Blind Men and the Elephant: Towards an
Empirical Evaluation Framework for Software Sustainability. Journal
of Open Research Software, 2(1), 2014.

C. C. Venters, N. Seyff, C. Becker, S. Betz, R. Chitchyan, L. Duboc,
D. MclIntyre, and B. Penzenstadler. Characterising sustainability re-
quirements: A new species red herring or just an odd fish? In 2017
IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Society Track (ICSE-SEIS), pages 3—12. IEEE,
2017.

J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, and
K. Deb. Multiple criteria decision making, multiattribute utility theory:
Recent accomplishments and what lies ahead. Management science,
54(7):1336-1349, 2008.



	Introduction
	Related Work and Motivation
	The Proposed Introductory Model
	The Basic Model and its Components

	A Green Software Product Scheme
	Selection of the Quality Attributes
	Determining the Importance Weights (wi)

	Conclusion and Future Work
	References

