
Joint Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo Papers
Modellierung 2020: Tools & Demo Papers 213

Direwolf Model Academy: An Extensible Collaborative
Modeling Framework on the Web

István Koren, Ralf Klamma, Matthias Jarke1

Abstract: Conceptual modeling in Industry 4.0 scenarios enables orchestrating production processes
and planning data flows. Since diverse stakeholder groups are involved, collaboration features are
particularly important. Common web-based tools are available; however, they focus on either modeling
or collaboration. Based on our experiences with these two aspects, we present Direwolf Model
Academy, a metamodel framework for creating feature-rich modeling environments on the web. It is
based on modern standards like SVG and Web Components; it uses object-oriented programming
principles enabled by the latest generation of JavaScript. We already employ tool instances in the areas
of user interface generation from service description languages as well as conceptual modeling with
iStar 2.0. In this article, we discuss the latter implementation and present the underlying technological
foundation. Our framework is available open source on https://github.com/direwolf where we
welcome contributions.

Keywords: Collaborative Modeling; Metamodeling; Web Engineering

1 Introduction

Conceptual modeling is a highly social activity, involving several expert opinions [JJM09].
This is particularly valid in the realm of Industry 4.0, where interdisciplinary teams work
together to create abstractions of production processes and work plans. Digitized industrial
artifacts can integrate new functionalities and collect data at any time, even after physical
production. Thus, emerging alliance-driven data platforms require business modeling as
flexible co-creational activity. To this end, domain-specific modeling languages contribute
to transforming complex resource architectures into policies, and ultimately real-world
systems through code generation. Thereby, agile principles need to be respected to enable
fast prototyping and cater for changing requirements. Co-location of modelers is time-
consuming and expensive; to support them, collaborative, light-weight and accessible tools
are necessary. There are several existing tools like MetaEdit+, and ADOxx that partially
address the requirements above [De15]. Comparing the available tools, one can observe
that most tools lack the web collaboration functionality and put more emphasis on the
implementation of application-specific features like code generation in software engineering
or simulation of business process models. However, these tools require local installation
and maintenance support. Browser-based solutions provide an ideal environment due to
1 RWTH Aachen University, Lehrstuhl Informatik 5, Ahornstrasse 55, 52074 Aachen, Germany, {koren,klamma,

jarke}@dbis.rwth-aachen.de

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://github.com/direwolf
mailto:{koren, klamma, jarke}@dbis.rwth-aachen.de
mailto:{koren, klamma, jarke}@dbis.rwth-aachen.de


214 István Koren, Ralf Klamma, Matthias Jarke

DirewolfElement

+add(element: HTMLElement)
+remove(element: HTMLElement)
+elementDragOver(elementType: String)

+children

0..*HTMLElement

+type: String

YMap
+sharedState

DirewolfSpace

+name: String
+elements: YMap

Y

+room: String
Connector

WebRTCConnector WebSocketsConnector XMPPConnector

User

+username: String
+awarenessColor: String 1..* 0..*

+space
+globalState

1

+state

0..*

«mixin»
DirewolfNode

+uuid: UUID
+globalState
-localState: Object

1

0..*

DirewolfModeler

+nodes: YMap
+edges: YMap

Palette 0..*0..*ModelElement 0..*

Edge Node

0..*
0..*

ModelTransformer

Fig. 1: Direwolf Model Academy Architecture as UML Class Diagram

the universal availability across devices. On the web, near real-time collaborative features
are ubiquitous in end user software like Google Docs and Microsoft Office. However,
approaches connecting agile modeling with near real-time collaboration are missing. To
this end, in this article we present Direwolf Model Academy, a JavaScript framework for
creating synchronous collaborative web applications for visual modeling. Our metamodel
creation approach is rooted in web and software engineering research on involving end users
through infrastructuring [PS06]. In the next section, we present our software architecture
that has a synchronized data structure in its core, on which model transformers can work to
generate model views on-the-fly. The framework provides ready-made UI views for palettes
and property browsers. In Section 3 we then demonstrate a concrete instance, the Direwolf
iStar 2.0 editor for modeling strategic dependency diagrams in the iStar 2.0 notation. We
conclude the paper in Section 4 with an outlook on future work and an invitation to submit
issues on our GitHub repository.

2 Object-Oriented Metamodel Design

Our main requirement was to create a highly modular library for creating universal modeling
applications on the web. It uses web standards like HTML5, CSS3 and SVG. The framework
needs to be versatile enough to support various edge- and node-based metamodels and
their view-based transformations for diverse application cases. The challenge is to create a
software architecture that is collaborative in near real-time, i.e., below a human-perceivable
reaction time. The resulting Direwolf Model Academy is flexible enough for graph-based
representations of modeled artifacts and their connections. It comes with extension points to
create bidirectional model-to-model transformations. Figure 1 shows a simplified UML class
diagram of our application. On the left, all classes responsible for collaboration are shown.
The central DirewolfSpace has access to a synchronized global data store; it is synchronized
across application instances running on distinct browsers. Conceptually, it is an HTML



Direwolf Model Academy 215

Fig. 2: Screenshot of Direwolf iStar 2.0 Modeler

element, as are all child nodes. The abstract DirewolfNode provides all elements with shared
data structures. For instance, DirewolfModeler, the graphical engine that enables drawing
nodes and edges, holds its data in the synchronized maps nodes and edges. Simultaneous
users can each have different views on the underlying data. ModelTransformer instances
similarly have access to the shared data store, however they may transform the data to
different representations through code generation; an example is the generation of data
access policies based on a data access model.

For the visual display, we leverage that the class of graph-based visual modeling languages
of nodes and edges are relatively simple in their graphic expression and can be composed of
vector-based graphical primitives. They are translated to an inheritance-based object model
of Node and Edge instances. On every level, properties are synchronized. Thus, To resize a
node, the visual model editor needs to change the width property of the top-most element.
Then our framework sends an event to both the base class and the derived elements. The
change is propagated down the hierarchy through the Direwolf shared data store.

3 Proof of Concept

The Direwolf Model Academy framework and its modeling application instances are
implemented using JavaScript. The graphical components of a model are implemented as
Scalable Vector Graphics (SVG) elements. Thus, the resulting file can be directly exported
to vector-based graphics program like Microsoft Visio and draw.io. Synchronization is done
via the Yjs open source library (https://yjs.dev). The peer-to-peer nature of Yjs ensures
that no centralized entity is responsible for merging conflicts, leading to better scalability
characteristics. Models can be worked on while the system is not connected to the Internet;
the data structures are synchronized with peers when reconnecting.

https://yjs.dev


216 István Koren, Ralf Klamma, Matthias Jarke

The components visible in the user interface of Figure 2 are explained in the following.
A Modeler is a graphical editor that displays the graph- and edge-based composition
of a model. All modelers create a tree-based data structure. It is synchronized using a
publish-subscribe pattern; upon changes, an event is sent to the modeler which then updates
the graphical representation. Palette elements (on the left) provide a list of nodes and
edges. They may be specified at design-time, or dynamically generated at run-time. From
here, model elements can be moved to the modeler via drag-and-drop. Property Browsers
(on the right) are form-based representations of a selected model element’s properties.
Technically, the browser gets access to the shared data store of the model’s class. Once
changed, the publish-subscribe system notifies the model element’s visual instance in the
modeler view, to change properties, e.g. the size. Transformers use the same event API as
modelers, however they transform the model either to a different metamodel instance, or to
an application-specific representation.

4 Conclusion and Future Work

In this article we presented Direwolf Model Academy, a standards-based metamodel
framework whose instances are synchronized across browsers in near-realtime. Besides
modeling data access goals with iStar 2.0, we already employed it for modeling UIs for
REST-based services; here, the palette elements are automatically generated from a service
description. Due to the extension points of its software architecture, there are manifold
opportunities for extending the framework. Currently, we are working on user authentication
and awareness features. Beyond, we plan to model Industry 4.0 data streams in near
real-time with code generation for edge-oriented interfaces. On our GitHub repository
(https://github.com/direwolf), we are open for inquiries concerning further conceptual
models and other collaborations. A demo is deployed on https://direwolf.rocks/spaces.

Acknowledgment. Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet of
Production – 390621612.

Bibliography
[De15] Derntl, Michael; Nicolaescu, Petru; Erdtmann, Stephan; Klamma, Ralf; Jarke, Matthias:

Near Real-Time Collaborative Conceptual Modeling on the Web. In (Johannesson, Paul
et al., ed.): 34th International Conference on Conceptual Modeling (ER 2015). volume
9381 of Lecture Notes in Computer Science, Springer International Publishing, Cham,
Switzerland, pp. 344–357, 2015.

[JJM09] Jeusfeld, Manfred A.; Jarke, Matthias; Mylopoulos, John, eds. Metamodeling for Method
Engineering. MIT Press, 2009.

[PS06] Pipek, Volkmar; Syrjänen, Anna-Liisa: Infrastructuring as Capturing In-Situ Design. In:
7th Mediterranean Conference on Information Systems. 2006.

https://github.com/direwolf
https://direwolf.rocks/spaces

