

Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

On Deterministic Parallel Implementation of

the Branch-and-Bound Method with Monotonic Objects

Alexei Adamovich1[0000-0003-1392-8871] and Andrei Klimov2[0000-0003-0418-7311]

1 Ailamazyan Program Systems Institute of RAS, Peter I str., 4a, selo Veskovo,

Pereslavl-Zalessky, Yaroslavl region, 152021, Russia
2 Keldysh Institute of Applied Mathematics of RAS, Miusskaya sq., 4, Moscow, 125047, Russia

klimov@keldysh.ru

Abstract. This paper continues the authors’ research into the development of a

system of deterministic parallel programming and the creation of libraries of so-

called monotonic classes. The system is two-level and uses two input lan-

guages: a universal object-oriented language like Java for the implementation of

monotonic classes, which makes up the lower-level subsystem, and a higher-

level functional language with the ability to create and use immutable and mon-

otonic objects. The libraries of monotonic classes ensure that all programs in

the higher-level language that use only monotonic classes are deterministic and

idempotent when they are parallelized by asynchronous calls of all functions.

An important part of the development of such a system is the creation of mono-

tonic class libraries for various fields of application and the demonstration of

solutions to several applied problems using them. This paper is devoted specifi-

cally to implementing the search for the minimum weight of paths in a graph by

the branch-and-bound method. We provide a solution referred to as conditional-

ly monotonic, where the monotonicity holds only for nonnegative edge weights.

The problem of the exact implementation of the branch-and-bound method with

monotonic objects is stated.

Keywords: Models of Parallel Computation, Deterministic Programs, Mono-

tonic Objects, Branch-and-Bound Method.

1 Introduction

1.1 The General Problem

The problem discussed in this article belongs to the following general direction:

building a system and class library for deterministic parallel and concurrent pro-

gramming based on object-oriented languages.

The system developed by the authors is intended for programming only those tasks

that give a deterministic result, and for that part of them that allow parallel and con-

current implementation in the form of a deterministic program by means of this sys-

tem. We explore object-oriented programming in languages such as Java using

threads, including light-weight threads, fibers, and coroutines. Currently, the princi-

2

ples of constructing a system are inapplicable to numerical problems with specific

programming tools based on MPI, OpenMP, etc., and do not overlap with the domain

and methods of, e.g., the Norma language [7] for declarative and deterministic pro-

gramming of such problems.

The goal is to provide the application programmer with object-oriented language

tools and libraries, so that, when programming with their use, any program is guaran-

teed to be deterministic and well scalable on parallel hardware. However, there is no

finite and complete set of tools that can be fixed once and for all and provided in the

top-level language so that all programs in it are deterministic and use all the variety of

parallel programming tools. Therefore, the system should be open for the convenience

of creating new domain-specific libraries.

The literature on the development of various deterministic parallel programming

tools demonstrates (see our review [5]) that they are generally implemented in low-

level languages (such as C or VHDL), providing high-level tools for the application

programmer1. It turns out that in order to implement new means, it is necessary to use

the lower level with high labor costs.

The task is to raise the system library development tools to a fairly high level of an

object-oriented language such as Java, providing the application developer with a

subset of tools, which guarantee the determinacy of her programs. To advance in this

direction, a project of a two-level programming system was proposed in articles [5, 6]

and explained in Section 2.

This paper continues the series of works of the authors [2-6,11] on deterministic

parallel programming and is based on our earlier work on the T-system [1] and mono-

tonic objects [8,12]. The notion of monotonic classes and objects implies two proper-

ties: determinacy and idempotency of user programs. The idempotency is of great

practical importance for ensuring fault tolerance of parallel and distributed systems.

We share the goals of the authors of the article with the self-explanatory title “Par-

allel Programming Must Be Deterministic by Default” [14], but we offer other means

for solving it. Our approach resembles the work [17, 18] on the determinacy of paral-

lel computing with shared data belonging to some semilattices2 but we generalize it in

the framework of object-oriented languages.

Our work contributes to solving one more fundamental problem: building a model

of computation between functional and object-oriented languages. It allows for ex-

plicit references to objects which can mutate (albeit in a disciplined way). At the same

time the basic properties of functional languages are preserved: determinacy, idempo-

tency, the existence of a kind of denotational semantics, and some adequate replace-

ment of referential transparency, which is broken by side effects and the operators of

object creation, which generate new references.

1 A case in point: The libraries of parallel and concurrent programming of the purely functional

language Haskell [19] are implemented using low-level means that are inexpressible in

Haskell itself.
2 https://en.wikipedia.org/wiki/Semilattice

https://en.wikipedia.org/wiki/Semilattice

3

1.2 The Specific Problem

A significant part of the system we are developing is libraries of monotonic classes

for various problem domains, the use of which guarantees determinacy and idempo-

tency. This library is accumulated in the process of solving samples of applied prob-

lems.

The first set of notions required in many tasks is a way to efficiently represent

graphs. This is natural in usual object-oriented programming but is nontrivial when

implemented with monotonic objects. In [11], the problem of constructing cyclic data

structures with monotonic objects is explained by examples, and the solutions are

demonstrated. Here explicit references are used to represent the relationships between

vertices and edges of graphs, as in object-oriented programming. Notice that this is

not available in purely functional languages (where the main data structure is trees3).

These constructs are needed for many programs.

In this paper, we consider a specific task — to find the minimum weight of simple4

paths in a graph from a given vertex. The edges of the graph are labeled with non-

negative weights, and the weight of a path is defined as the sum of the weights of its

constituent edges. This problem has many variations. A wide-spread version: the

paths that end in the second given vertex are examined. In our experimental study, for

the convenience of measuring the scalability of the program executed on a multicore

system, we took another version, in which all simple paths of a fixed length from a

given vertex, without fixing their end, are explored.

This kind of algorithms is well parallelized and is deterministic by nature. The pro-

cesses that enumerate various paths communicate via a shared variable that stores the

minimum weight found to date. A process that has found a shorter path assigns a new

weight to the variable. As the minimum on a finite set of numbers is unequivocal, in

order to prove the correctness and determinacy of the algorithm implementation, one

only has to ensure that all paths (or enough of them) are visited.

The classic way to solve this problem is the branch-and-bound method5. Its core

idea is the pruning operation, which cancels the current partial path when its weight

exceeds or equates to the minimum reached so far. Here, the main subtlety is that the

comparison operation with the current minimum is nonmonotonic, and hence cannot

be directly used in the higher-level language. Therefore, it must be “hidden” inside a

monotonic object.

3 The work [13] proposes an “efficient” graph representation in the functional language

Haskell, but we consider it a “non-solution”. A representation of graphs in the form of lists

of vertices and edges (that is, in the form of trees) is given, and then it is suggested that an

efficient representation with the same operations is implemented by low-level means.
4 In graph theory, a path without self-intersection is called simple.
5 https://en.wikipedia.org/wiki/Branch_and_bound

https://en.wikipedia.org/wiki/Branch_and_bound

4

1.3 Contribution

We describe an implementation of the branch-and-bound method satisfying the fol-

lowing requirements:

 the top-level part of the algorithm is written in a functional language and is paral-

lelized by asynchronous calls of all (or part of) the functions;

 monotonic objects are used for the communication between processes;

 the determinacy of a user program in the higher-level language is guaranteed by

the implementation of monotonic classes;

 the difference between the versions of the program, first, with the complete enu-

meration of paths and, second, with pruning by the branch-and-bound method, is

implemented in one place inside a monotonic object. This simplifies proving the

equivalence of the versions and the correctness of the program with pruning.

The presented solution demonstrates the use of a higher-order monotonic object,

that is, with an operation that takes a lambda expression as an argument. We assume

that without a higher-order operation, it is impossible to implement the branch-and-

bound method with monotonic objects.

1.4 Outline

In Section 2 we explain the goals and principles of constructing a two-level system of

deterministic parallel programming. Section 3 gives the definition of monotonic ob-

jects and classes. Section 4 is the main one: it presents a program for finding the min-

imum weight of paths from a given vertex of a graph, implemented according to our

approach. In Section 5, we find out that this solution does not exactly meet the mono-

tonicity conditions and is just conditionally monotonic, depending on the non-

negativity of the edge weights, and we explain why an exact solution should be

sought. Related work is discussed in Section 6. In Section 7 we conclude.

2 A Two-Level System of Deterministic Parallel Programming

The principles of constructing the system for deterministic parallel programming are

applicable for any mature object-oriented language that satisfies the following re-

quirements:

 The object-oriented language must have a functional subset. The presence of suita-

ble syntactic sugar (e.g., lambda expressions) is desirable, but not necessary. It

should be possible to implement the verifier that checks that a program belongs to

the functional subset (without this, guarantees of determinacy would be lost), or to

implement a domain-specific language translated to the functional subset.

 Automatic memory management and garbage collection should be present in the

implementation of the object-oriented language. Without these, it is impossible to

5

program in the functional style. For example, languages on the JVM and MS.NET

platforms are suitable.

 Parallel and concurrent programming tools should be present, that allow the im-

plementation of asynchronous function calls and their synchronization on access to

shared data.

We are prototyping the system using the JVM platform, the Java and Kotlin6 lan-

guages, the Ajl language developed by ourselves [3], the Quasar7 library that imple-

ments light-weight threads, fibers, on the JVM. We also follow the development of

the Loom project8, which will be more tightly integrated with Java than Quasar and

will eventually be included in the standard JVM. We develop our language tools in

the Eclipse9 IDE.

Since the goal of the project is twofold — to provide both guaranteed deterministic

programming to the application developer, and the open lower level to parallel pro-

gramming experts who can use all the means of the object-oriented language, — the

input language must be distinctly subdivided into two parts, guaranteed deterministic

and indeterministic:

 The upper level is the deterministic part, where application programmers write

program code in a functional subset. Here, the determinacy of any program that us-

es the libraries specially prepared at the lower level, is guaranteed.

 The lower level is the potentially indeterministic part, where qualified program-

mers create class libraries for specific application domains in a universal object-

oriented language using all indeterministic parallel programming tools. The library

authors are responsible to the users of the higher level for the determinacy of paral-

lel programs.

3 The Notion of a Monotonic Class and Object

We refer to objects and classes defined in the lower-level language and used in the

upper-level functional language as monotonic, since their state changes monotonically

in some semilattice, which, as a rule, can be constructed using the class code. Howev-

er, the formal definition, which is convenient to use in reasoning about programs and

proving their properties, is given operationally below [6,8,12].

Monotonic objects and classes are such that, when they are created and used in any

program in a functional language, all expressions satisfy the following two properties:

 Determinacy: the results obtained by parallel computation (in any possible order)

of an expression several times from the same initial state, are equivalent, and their

side effects are indistinguishable programmatically in the functional language.

6 http://kotlin.jetbrains.org/
7 https://github.com/puniverse/quasar
8 https://wiki.openjdk.java.net/display/loom/Main
9 https://www.eclipse.org/

http://kotlin.jetbrains.org/
https://github.com/puniverse/quasar
https://wiki.openjdk.java.net/display/loom/Main
https://www.eclipse.org/

6

 Idempotency: simultaneous parallel computation of two copies of an expression

instead of one, produces the equivalent results and the side effect is indistinguisha-

ble programmatically in the functional language from the side effect of one compu-

tation.

These properties must be satisfied simultaneously for all monotonic classes when

they are used together in any functional program.

At present, we are constructing monotonic classes, using these properties informal-

ly and naively. In the future, we expect that computer-assisted verification tools for

proving monotonicity will be developed. Although fully automatic tools for all cases

cannot be built, as in the general case of program verification, we hope that this is

achievable for most practical definitions of monotonic classes.

4 Deterministic Parallel Implementation of the Branch-and-

Bound Method with a Monotonic Object

In this section, a deterministic parallel implementation of the algorithm that finds the

minimum weight of a path in a graph from a given vertex, is presented. The pseudo-

code in Fig. 1 is written in a Java/Kotlin-like syntax10.

The code in Fig. 1 uses the following classes (only those operations11 are listed that

are used in the code):

 Immutable class Graph represents a graph. The single Graph instance is stored in a

global variable graph. The objects of classes Vertex and Edge access it to perform

their operations.

 Immutable class Vertex represents vertices with the following operation:

─ function vertex.outgoingEdges returns an Iterator over the list of edges outgoing

from the vertex.

 Immutable class Edge represents edges with the following operation:

─ function edge.endVertex returns the end vertex of the edge (that is, the vertex,

for which this edge is incoming).

 Immutable class Path represents paths in the graph with the following operations:

─ predicate path.isComplete checks whether the path is completed, e.g., has a giv-

en length or has reached a given vertex, depending on the problem statement;

─ predicate path.contains(vertex) checks whether the path contains the vertex;

─ function path.weight returns the path weight, that is, the sum of the weights of

its edges;

10 As compared to Java, we omit empty parameters at the end of invocation as in Kotlin, braces

and semicolons.
11 We avoid using the object-oriented term “method” for operations of classes and call them

functions (with a value), procedures (without a value) and operations in classes and objects,

in order not to be confused with the general meaning of the term “method”, as in: “the

branches-and-bound method.” For the invocations of functions and procedures, we use the

object-oriented syntax: x.f instead of f (x) and x.f (y) instead of f (x, y).

7

─ function path.lastVertex returns the last vertex visited in the path;

─ function path.extendedWith(edge) returns a path object obtained by adding the

edge to the end of the path.

 Monotonic class Minimizer has the single instance stored in the global variable

minimizer, with the following operations:

─ function minimizer.minimum returns the minimum among the numbers sent to

the minimizer, after the findMinimumPathWeight procedure completes (see dis-

cussion below);

─ procedure minimizer.addValue(value) adds the number value to the set from

which the minimum is taken;

─ procedure minimizer.branch(pathWeight, step) executes the continuation step,

which is a lambda expression without arguments and value. In the version with

pruning (corresponding to the branch-and-bound method proper), step is not

computed of pathWeight is greater than the current minimum.

Input and initial state

 Graph graph — the global variable that references to the graph

representation, used in the classes Vertex and Edge

 Vertex root — an initial vertex from which the examined paths start

 Minimizer minimizer — a global variable with the monotonic object that

computes the minimum of a finite set of numbers, in the initial state

“negative infinity”

Initial invocation of the recursive procedure findMinimumPathWeight

 findMinimumPathWeight(root)

Recursive procedure findMinimumPathWeight

findMinimumPathWeight(Path path)

 if (path.isComplete)

 minimizer.addValue(path.weight)

 else

 minimizer.branch(path.weight, () ->

 for (Edge edge : path.lastVertex.outgoingEdges)

 if (!path.contains(edge.endVertex))

 findMinimumPathWeight(path.extendedWith(edge))

)

Returning result after the completion of the findMinimumPathWeight procedure

 minimizer.minimum returns the minimum weight

Fig. 1. The program to find the minimum weight of paths from the initial edge root,

with the monotonic object minimizer

8

In Fig. 1, the findMinimumPathWeight procedure recursively searches for the min-

imum path weight among the completed paths from a given vertex root. The proce-

dure findMinimumPathWeight has no result and accumulates the result by side effects

— by writing path.weight to the monotonic object minimizer by calling minimizer

.addValue(path.weight). This algorithm may be executed sequentially, but it can be

easily parallelized by running all calls to the findMinimumPathWeight procedure

asynchronously and waiting for all findMinimumPathWeight processes to complete

before the minimizer.minimum function returns the result.

For experts on the branch and bound method, the algorithm in Fig. 1 looks natural

and does not seem to contain anything tricky. Indeed, it is close to the Wikipedia

article12 except for the order of some code pieces. A notable difference is the higher

order minimizer.branch procedure with the lambda expression in the second argument

step. It has no explicit arguments, taking the path and minimizer values from the sur-

rounding context. Note the syntax “() ->” in bold.

The code of the findMinimumPathWeight procedure is suitable for exhaustive

search of all paths, as well as for pruning by the branch-and-bound method. The vari-

ants are selected by varying the code of minimizer.branch operation inside the mono-

tonic class Minimizer: in the former case, step is always executed; in the latter case

with pruning, step is not executed when the current path.weight is greater than or

equal to the current minimum weight of the paths passed.

The code in Fig. 1 is imperfect in some respects. First, it does not yet satisfy all the

requirements of monotonicity. This is discussed in Section 5.

Second, the minimizer object has the following semantic subtlety: the result of min-

imizer.minimum must be returned only after all findMinimumPathWeight processes

have completed. In the real-world implementations of the branch-and-bound method,

a synchronization barrier is puts here that fits poorly into the theory of monotonic

objects (although local deviations from the “high theory” are natural in practice).

Each of the following two solutions is better suited to the world of monotonic objects.

A pragmatic solution. An asynchronous procedure invocation returns a handler ob-

ject, the waitAll operation on which ensures that all processes created by this invoca-

tion have completed. After the operation returns, the minimizer.minimum function can

be invoked.

This solution is not consistent with the principles stated in Section 2, because re-

quires certain programming style.

A theoretically consistent solution. Two kinds of references to monotonic objects

are to be distinguished:

1. A reference of the general “write” kind allows the operations to mutate (monoton-

ically) the state of the referenced object and that of the objects recursively accessi-

ble through it.

12 https://en.wikipedia.org/wiki/Branch_and_bound

https://en.wikipedia.org/wiki/Branch_and_bound

9

2. A reference of the “read-only” kind allows only retrieving information from the

objects without programmatically visible mutations.

With this solution, the findMinimumPathWeight procedure would use a “write”

reference in the minimizer object, and the minimizer.minimum function would use a

“read-only” reference. An operation on a “read-only” reference completes only when

all the “write” references to this object disappear (or for some semantic reasons it

becomes clear that the result of this operation can no longer be changed). This can be

implemented either by reference counters, or by means of “weak references” and

garbage collection. The first alternative with reference counters is only suitable under

the assumption that cyclic structures are not formed. The second alternative with gar-

bage collection is generally correct by less efficient. Both alternatives do not violate

monotonicity.

5 Non-monotonicity of This Version of the Algorithm

Now we have to make the main statement that the Minimizer class with the given

semantics is monotonic, that is, any functional program that uses it is deterministic

and idempotent. However, we can state this only for the first variant of the minimizer

.branch operation considered above, where step is always executed and hence the

exhaustive search is performed. But this is not the branch-and-bound method, which

we are interested in.

In the version with pruning by to the branch-and-bound method, it must be ensured

that the recursive calls to findMinimumPathWeight in the lambda expression for step

wittingly increase the weight of the current path. Now this can be ensured either by

the precondition that the weights of all edges are non-negative, or by the

path.extendedWith(edge) function, which would check that the weight of the edge is

non-negative and hence the weight of the path does not decrease. In both cases, the

guarantees are given outside of the Minimizer class, while our definition of mono-

tonicity implies the determinacy and idempotency of any higher-level program.

Therefore, this solution is just conditionally monotonic, that is, monotonic with the

requirement that an external condition is satisfied.

In this paper, we leave open the question of constructing a truly monotonous im-

plementation of the branch-and-bound method. This is our future work.

6 Related Works

A survey of the works on deterministic parallel programming that we are aware of, is

given in [5]. Here we review only two of the most closely related approaches.

The goal of the first approach is like ours: deterministic parallel programming in an

object-oriented language. But it fundamentally differs in the methods for achieving it.

In a series of works, of which we single out one with the self-explanatory title [14],

their authors develop a static analysis of programs in Java with certain extensions,

called Deterministic Parallel Java, DPJ. The analysis determines the cases where side

10

effects do not lead to indeterminacy. The language extensions enable the programmer

to provide additional information to the analysis. These methods are further develop-

ment of the typing systems that take side effects into account (effect systems13). We do

not explore this further here, since in our approach no static analysis is used.

The second approach is close to ours in both goals and methods. It is based on

monotonic changes of shared variables. This idea is quite old and has been already

implemented in various specific cases. Their common idea is that, to communicate

parallel processes, special data structures are used such that determinacy is not violat-

ed. Below are the most well-known of them:

 I-structures [10];

 Kahn networks [15];

 TStreams, Concurrent Collections [16];

 lattice-based data structures [17,18].

These (and our) approaches have a common feature: variables via which parallel

processes communicate, change their state monotonically, only upwards on some

semilattice from the undefined state (⊥) to more and more defined ones. The upper

element of the lattice (⊤) means “over-defined” value; this corresponds to an error, an

exception in program code. For example, the set of values of an I-structure with inte-

ger values is described by the lattice that consists of the lower element “undefined”

(⊥), incomparable integers and the upper element “over-defined” (⊤). When the value

y is assigned to a variable with a value x, the smallest upper bound of the values x and

y is stored in it. If the result is the upper element ⊤, an exception is thrown.

This idea was elaborated in the PhD thesis by Lindsey Kuper [17] and in publica-

tions together with her colleagues [18]. They proved the determinacy of parallel exe-

cution of processes communicating via variables that take values from an arbitrary

semilattice. In our work, we use these ideas and generalize them to objects with mon-

otonically changing states, having given them the operational definition rather then

through lattices.

In our future work, we should compare the verification technique of the implemen-

tation of the branch-and-bound method according to our approach and the existing

proofs of its correctness, e.g., described in [9].

7 Conclusion

The task of developing libraries of so-called monotonic classes within a two-level

object-oriented deterministic parallel programming system was discussed. In this

system, the higher-level language is close to a functional language that allows for

parallelization of all functions by asynchronous calls. Processes communicate via

monotonic objects, whose classes are defined in the lower-level language, which is a

mature object-oriented language with parallel and concurrent programming means.

13 https://en.wikipedia.org/wiki/Effect_system

https://en.wikipedia.org/wiki/Effect_system

11

The implementation of monotonic classes guarantees the determinacy and idempoten-

cy of all programs in the higher-level language.

In the framework of such a general approach, this article is devoted to solving a

particular problem — the implementation of the search for the minimum path weight

in a graph among the paths from a given vertex, using the monotonic object that com-

putes the minimum of the numbers sent to it. The presented solution is just condition-

ally monotonic, as it requires that the input graph is checked preliminarily, to ensure

that the weights of the edges are non-negative. The open problem of completely im-

plementing the branch-and-bound method using monotonic objects has been posed.

The solution should guarantee the determinacy of any higher-level program, in such

way that all necessary checks are done in the code of monotonic classes.

Acknowledgements. We express our gratitude to our English teacher, Philippa Jeph-

son, who helped us edit this paper, fix a lot of errors and turn it into a much more

readable form. The remaining glitches are ours.

This work was carried out with the financial support of the Ministry of Education

and Science of Russia (grant No. RFMEFI61319X0092).

References

1. Abramov, S.M., Adamovich, A.I., Kovalenko, M.R.: T-System — An Environment Sup-

porting Automatic Dynamic Parallelization of Programs: An Example of the Implementa-

tion of an Image Rendering Algorithm Based on the Ray Tracing Method. Programmiro-

vanie 25(2), 100–107 (1999). (In Russian).

2. Adamovich, A.I.: Fibers as the Basis for the Implementation of the Notion of the T-

Process for the JVM Platform. Program Systems: Theory and Applications 6(4), 177–195

(2015). doi:10.25209/2079-3316-2017-8-4-221-244. (In Russian).

3. Adamovich, A.I.: The Ajl Programming Language: The Automatic Dynamic Paralleliza-

tion for the JVM Platform // Program Systems: Theory and Applications 7(4), 83–117

(2016). doi:10.25209/2079-3316-2016-7-4-83-117. (In Russian).

4. Adamovich, A.I., Klimov, And.V.: On Experience of Using the Metaprogramming Devel-

opment Environment Eclipse/TMF for Construction of Domain-Specific Languages. In:

Nauchny`j servis v seti Internet : Trudy` XVIII Vserossijskoj nauchnoj konferencii, pp. 3–

8. Keldysh Institute of Appl. Math. of RAS, Moscow, Russia (2016). doi:10.20948/abrau-

2016-45. (In Russian).

5. Adamovich, A.I., Klimov, And.V.: How to Create Deterministic by Construction Parallel

Programs? Problem Statement and Survey of Related Works. Program Systems: Theory

and Applications 8(4), 221–244 (2017). doi:10.25209/2079-3316-2017-8-4-221-244. (In

Russian).

6. Adamovich, A.I., Klimov, And.V.: An Approach to Deterministic Parallel Programming

System Construction Based on Monotonic Objects. Vestnik SibGUTI 2019(3), 14–26

(2019). URL: http://vestnik.sibsutis.ru/showpapper.php?act=showpapper&id=870. (In

Russian).

7. Andrianov, A.N., Baranova, T.P., Bugerya, A.B., Yefimkin, K.N.: Nonprocedural

NORMA language translation for GPUs. Keldysh Institute Preprints 2016(73), 1–24

(2016) doi:10.20948/prepr-2016-73.

http://doi.org/10.25209/2079-3316-2017-8-4-221-244
http://doi.org/10.25209/2079-3316-2016-7-4-83-117
http://doi.org/10.20948/abrau-2016-45
http://doi.org/10.20948/abrau-2016-45
http://doi.org/10.25209/2079-3316-2017-8-4-221-244
http://vestnik.sibsutis.ru/showpapper.php?act=showpapper&id=870
http://doi.org/10.20948/prepr-2016-73

12

8. Klimov, And.V.: Deterministic Parallel Computation with Monotonic Objects. In: Nauch-

ny`j servis v seti Internet: mnogoyaderny`j komp`yuterny`j mir : Trudy` Vserossijskoj

nauchnoj konferencii, pp. 212–217. Izd-vo Moskovskogo universiteta, Moscow, Russia

(2007).

9. Shilov N.V.: Verification of Backtracking and Branch and Bound Design Templates.

Modeling and Analysis of Information Systems 18(4), 168–180 (2011). URL:

https://www.mais-journal.ru/jour/article/view/1107/820.

10. Arvind, Nikhil, R.S., Pingali, K.K.: I-structures: Data Structures for Parallel Computing.

ACM Trans. Program. Lang. Syst. 11(4), 598–632 (1989). doi:10.1145/69558.69562.

11. Adamovich, A.I., Klimov, And.V.: Building Cyclic Data in a Functional-Like Language

Extended with Monotonic Objects. In: X Workshop PSSV: Program Semantics, Specifica-

tion and Verification: Theory and Applications (Novosibirsk, Akademgorodok, Russia, Ju-

ly 1–2, 2019) : Abstracts, pp. 11-19. A.P. Ershov Institute of Informatics Systems, Novo-

sibirsk, Russia (2019). ISBN 978-5-4437-0918-5.

12. Klimov, And.V.: Dynamic Specialization in Extended Functional Language with Mono-

tone Objects. SIGPLAN Not. 26(9), 199–210 (1991). doi:10.1145/115865.376287.

13. Erwig, M.: Inductive graphs and functional graph algorithms. J. Funct. Program. 11 (5),

467–492 (2001). doi:10.1017/S0956796801004075.

14. Bocchino, R.L. (Jr.), Adve, V.S., Adve, S.V., Snir, M.: Parallel Programming Must Be De-

terministic by Default. In: Fifth USENIX Conference on Hot Topics in Parallelism, Hot-

Par’09, pp. 4–4 (6 pages). USENIX Association (2009).

15. Kahn, G.: The Semantics of Simple Language for Parallel Programming. In: IFIP Con-

gress, pp. 471–475 (1974).

16. Burke, M.G., Knobe, K., Newton, R., Sarkar, V.: Concurrent Collections Programming

Model. In: Encyclopedia of Parallel Computing, pp. 364–371. Springer US (2011).

doi:10.1007/978-0-387-09766-4_238.

17. Kuper, L.: Lattice-based Data Structures for Deterministic Parallel and Distributed Pro-

gramming. Ph.D. Thesis. 253 pages. Indiana University, IN, USA (2015).

18. Kuper, L., Todd, A., Tobin-Hochstadt, S., Newton, R.R.: Taming the Parallel Effect Zoo:

Extensible Deterministic Parallelism with LVish. ACM SIGPLAN Not. 49(6), 2–14

(2014). doi:10.1145/2666356.2594312.

19. Marlow, S.: Parallel and Concurrent Programming in Haskell. 322 pages. O'Reilly Media,

CA, USA (2013).

https://www.mais-journal.ru/jour/article/view/1107/820
http://doi.org/10.1145/69558.69562
http://doi.org/10.1145/115865.376287
http://doi.org/10.1017/S0956796801004075
http://doi.org/10.1007/978-0-387-09766-4_238
http://doi.org/10.1145/2666356.2594312

