

Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

New Features of DVM system

Valery Aleksakhin 1 [0000-0001-8385-8894], Vladimir Bakhtin 1,2 [0000-0003-0343-3859],

Olga Zhukova 1 [0000-0002-1033-6371], Dmitry Zakharov 1 [0000-0002-6319-5090],

Victor Krukov 1,2 [0000-0001-6630-964X], Nataliya Podderyugina 1[0000-0002-9730-1381]

and Olga Savitskaya1[0000-0002-2174-3212]

1 Keldysh Institute of Applied Mathematics, Miusskaya sq., 4, 125047, Moscow, Russia
2 Lomonosov Moscow State University, GSP-1, Leninskie Gory, 11999, Moscow, Russia

dvm@keldysh.ru

Abstract. DVM-system is designed for the development of parallel programs of

scientific and technical computations in C-DVMH and Fortran-DVMH lan-

guages. These languages use a single parallel programming model (DVMH

model) and are extensions of the standard C and Fortran languages with paral-

lelism specifications, written in the form of directives to the compiler. The

DVMH model makes it possible to create efficient parallel programs for hetero-

geneous computing clusters, in the nodes of which accelerators (graphic proces-

sors or Intel Xeon Phi coprocessors) can be used as computing devices along

with universal multi-core processors. The article presents new features of

DVM-system that have been developed recently.

Keywords: automation of development of parallel programs, DVM system, ac-

celerator, GPU, Fortran, С, irregular grid, unstructured grid.

1 Introduction

To achieve high accuracy of computations the researchers are forced to considerably

refine a computation grid. It leads to proportional growth of computer memory con-

sumption and increase of computation time. Use of unstructured grids instead of

structured ones allows to solve this problem partially. In this case there is an oppor-

tunity to vary a grid detailing on computation area, thereby to reduce both a time for

excessively exact computations on some areas, and random access memory used to

store not needed detailed values. Also it allows to abstract numerical methods from

calculation area geometry and to remove most calculation area limitations. However,

such programs have much more complicated structure. When operating with regular

grids, it wasn't necessary to store the neighbourhood relations, as well as the space

coordinates, explicitly, as these properties and quantities were directly bound with

multidimensional index spaces of the arrays of quantities.

DVMH [1, 2] model is based on data parallelism. This model is based on the con-

cept of a distributed multi-dimensional array. Each processor has not only a local part

of distributed array, but also so-called shadow edges - the copies of elements from

local parts of neighboring processors. Main interconnection of the processors is per-

14

formed via these shadow edges. A distribution of computations is performed by their

mapping on the distributed arrays. Due to index offsets of used arrays are pre-known,

the accesses are performed either to own local part, or to shadow edges of known

width, which are defined as a continuation of local part along certain dimension of a

distributed array. For example, for "cross" template with 4 neighbors, an element with

(i, j) indexes is calculated using the elements with indexes (i-1, j), (i, j-1), (i+1, j), (i,

j+1) and shadow edges of width 1 for both dimensions are needed.

DVMH compilers transform references to distributed multidimensional arrays to a

form independent from sizes and location of local part on each processor, but initial

index expressions aren't changed. As a result each access to distributed data is per-

formed in global (initial) indexes, but the coefficients and shifts calculated during

execution are used for access to memory for each dimension. Such approach (unlike

modifying of index expressions) allows to abstract from the contents of parallelizable

loops, but it introduces serious restriction on a form of a distributed array part ad-

dressed by each processor. This part is called extended local part and is a union of the

local part and shadow edges. Only block distributions with shadow edges are used in

DVMH model. Thus the extended local part is subarray of source array of the form

(A1:B1, A2:B2, A3:B3, ..., An:Bn).

The new capabilities of DVM system [3] to solve the problem of these restrictions

are presented in the article. The second section describes the expansion of DVM lan-

guages in order to introduce new types of distributed arrays, parallel loops, and other

auxiliary constructions that significantly simplify parallelization of applications with

irregular grids on a cluster. The third section introduces tools that allow a programmer

to manually distribute data using MPI or other parallel programming technologies,

while leaving the ability to use DVM languages within a cluster node to map compu-

tations on CPU or graphics accelerator cores.

2 New Capabilities of Operation with Irregular Grids

For operation with irregular grids the new type of an array and template distribution –

by-element distribution – is introduced. This type of distribution doesn't superimpose

any restrictions on which array elements should be located on the same processor or

which array elements should be located on adjacent processors. On the contrary, it

allows to specify arbitrary belonging of each array element independently.

Two new rules of by-element distribution have been added: indirect and derived.

The indirect distribution is specified by an array of integers, and its size is equal to the

size of the indirectly distributed dimension, and the values specify the domain num-

ber. The number of domains can be both higher and lower than the number of proces-

sors. The DVM system ensures that all elements of the same domain belong to the

same processor.

The derived distribution is specified by the rule, form of which is similar to the

form of DVMH model's alignment rule (ALIGN). However, it has considerably more

flexibility. The syntax can be described as it is shown in Fig. 1.

15

indirect-rule ::= indirect (var-name)

derived-rule ::= derived (derived-elem-list with derived-templ)

derived-elem ::= int-range-expr

int-range-expr ::= arbitrary integer expression + ranges are al-

lowed in index expressions, use of align-dummy variables.

derived-templ ::= var-name [derived-templ-axis-spec]...

derived-templ-axis-spec ::= [] | [@ align-dummy [+ shadow-

name]...] | [int-expr]

Fig. 1. BNF formula for new distribution rules.

All references to distributed arrays in int-range-expr must be available (the ele-

ment belongs to extended local part) for the corresponding element of the template

(search of template elements is performed in its local part and specified shadow edg-

es). If according to derived rule the same element should be distributed on several

processors at once, then DVM system selects one of them where element will actually

be distributed, and adds it in shadow edge on remaining processors with "overlay"

name. There shouldn't be elements not distributed on any processor. Such cases are

runtime errors and cause the program abnormal termination. Calculated non-existent

indexes of distributed array are ignored without error.

An overlay is introduced for possibility of consistent distribution of grid elements.

For example, there are cells, edges, vertexes. In such a case there is an opportunity to

build one distribution on the basis of another, and in any sequence.

As a result of such distribution an array has two types of element indexing: global

(it is also the source in serial program) and local. Local indexing is continuous within

one processor, i.e. there is such an order of local elements that their local indexes will

completely fill some integer segment [Li, Hi].

By-element shadow edges are also introduced. The shadow edge is a set of ele-

ments, not belonging to the current process (the requirement to belong to adjacent

process is removed), for which, first, an access from any point of the program is pos-

sible without special specifications, and, second, special tools of operation with them

are introduced: updating by shadow_renew specification, expansion of parallel loop

by shadow_compute specification, etc.

Unlike traditional ones, by-element shadow edges are added to templates during

the program execution and have names to refer to them. They are specified in almost

the same way as derived distribution, see Fig. 2.
shadow-add ::= shadow_add (templ-name [shadow-axis]... =

shadow-name) [include_to (var-name-list)]

shadow-axis ::= [] | [derived-elem-list with derived-templ]

Fig. 2. BNF formula for specification of by-element shadow edges.

Exactly one of shadow-axis should be non-empty brackets. All arrays from the list

specified in include_to should be aligned with a template to which dimension the

shadow edge is added. As a result of such directive execution the shadow edge is

added to the template and included in specified distributed arrays. After this operation

shadow elements of the arrays are available for reading from the program, and also

can be renewed by shadow_renew directive.

16

To implement by-element shadow edges and derived distribution the compiler gen-

erates a special function according to specified expressions. The parameters to bypass

local part of the template are passed to the function by runtime system. This function,

bypassing the template, fills the buffer of element indexes according to expressions in

left part of mapping rule, and then returns it back to runtime system. Then the buffer

is analyzed by runtime system.

For experimental use of these possibilities an auxiliary directive of localization of

index array values was introduced. It modifies the values of integer array, replacing

global indexes of specified target array by local ones (Fig. 3).

localize-spec ::= localize (ref-var-name => target-var-name [

axis-specifier].)

axis-specifier ::= [] | [:]

Fig. 3. BNF formula for directive of localization of index array values.

After such operation it is possible to use available method of compilation of paral-

lel loops: they will be executed wholly in local indexes.

Together with modification of the directive of shadow exchanges and implementation

of exchanges for by-element shadow edges (that now are performed not only between

adjacent processors, but with arbitrary subset of processors) this set of extensions

allows to parallelize and launch the applications on irregular grids on a cluster with

accelerators.

To illustrate the possibilities of the DVM system for work with unstructured grids,

consider a small example of Fortran program that implements a three-dimensional

Jacobi algorithm (Fig. 4). In this program one-dimensional arrays are used instead of

three-dimensional arrays. Because of this, indirect addressing appears, the tools for

working with it were not previously available in DVM.

 program JAC_INDIRECT

 parameter (L=100, itmax=5000)

 real*8:: tmp,eps, maxeps=0.005

 integer x_t,y_t,z_t,cur

 real*8, allocatable :: A(:),B(:)

 integer, allocatable :: ibstart(:), ibend(:), ib(:)

 integer, allocatable :: indir_x(:), indir_y(:),indir_z(:)

 allocate(A(L*L*L),B(L*L*L), ibstart(L*L*L), ibend(L*L*L))

 allocate(indir_x(L*L*L), indir_y(L*L*L), indir_z(L*L*L))

! Here a one-dimensional array that "emulates" a three-dimensional array

! in the usual three-dimensional Jacobi algorithm is created

 cur = 1

 do i = 1,L*L*L

 x_t = (i-1) / (L*L)

 y_t = mod((i-1) / L, L)

 z_t = mod(i-1, L)

 indir_x(i) = x_t

 indir_y(i) = y_t

 indir_z(i) = z_t

 ibstart(i) = cur

 if (x_t.gt.0) cur = cur + 1

 if (x_t.lt.L-1 cur = cur + 1

 if (y_t.gt.0) cur = cur + 1

 if (y_t.lt.L-1) cur = cur + 1

17

 if (z_t.gt.0) cur = cur + 1

 if (z_t.lt.L-1) cur = cur + 1

 ibend(i) = cur - 1

 enddo

 allocate(ib(cur-1))

 cur = 1

 do i = 1,L*L*L

 x_t = (i-1) / (L*L)

 y_t = mod((i-1) / L, L)

 z_t = mod(i-1, L)

 if (x_t.gt.0) then

 ib(cur) = i - (L*L)

 cur = cur + 1

 endif

 if (x_t.lt.L-1) then

 ib(cur) = i+(L*L)

 cur = cur + 1

 endif

 if (y_t.gt.0) then

 ib(cur) = i-L

 cur = cur + 1

 endif

 if (y_t.lt.L-1) then

 ib(cur) = i+L

 cur = cur + 1

 endif

 if (z_t.gt.0) then

 ib(cur) = i-1

 cur = cur + 1

 endif

 if (z_t.lt.L-1) then

 ib(cur) = i+1

 cur = cur + 1

 endif

 enddo

! A similar CSR (Compressed Sparse Row) format is used to pack the

! array. Each element can have up to 6 adjacent elements on the left

! and on the right for each of the three dimensions. For i-th element

! of array A the list of its neighbors are contained in the array ib,

! beginning from index ibstart(i)and ending by index ibend(i).

! Above this CSR-like structure is created.

! Also the arrays indir_x/y/z which contains indexes that an element had

! in three-dimensional array are filled.

! The arrays are filled before iterative loop. Since all elements now

! are stacked in the one-dimensional array it is required to check the

! three-dimensional indexes to exclude processing of boundary elements.

 do i = 1, L*L*L

 A(i) = 0

 if (indir_x(i) == 0 .or. indir_x(i) == L-1 .or.

 & indir_y(i) == 0 .or. indir_y(i) == L-1 .or.

 & indir_z(i) == 0 .or. indir_z(i) == L-1) then

 B(i) = 0

 else

 B(i) = 4 + indir_x(i) + indir_y(i) + indir_z(i)

 endif

 enddo

! After filling the modified Jacobi algorithm is applied

 do it = 1, itmax

 eps = 0

 do i = 1,L*L*L

18

 if (indir_x(i) /= 0 .and. indir_x(i) /= L-1 .and.

 & indir_y(i) /= 0 .and. indir_y(i) /= L-1 .and.

 & indir_z(i) /= 0 .and. indir_z(i) /= L-1) then

 tmp = ABS(B(i) - A(i))

 eps = MAX(tmp, eps)

 A(i) = B(i)

 endif

 enddo

 do i = 1, L*L*L

 if (indir_x(i) /= 0 .and. indir_x(i) /= L-1 .and.

 & indir_y(i) /= 0 .and. indir_y(i) /= L-1 .and.

 & indir_z(i) /= 0 .and. indir_z(i) /= L-1) then

! Indirect addressing

 B(i) = (A(ib(ibstart(i))) + A(ib(ibstart(i)+1))

 & + A(ib(ibstart(i)+2)) + A(ib(ibstart(i)+3))

 & + A(ib(ibstart(i)+4)) + A(ib(ibstart(i)+5)))

 & / 6.0

 endif

 enddo

 print 200, it, eps

200 format(' it = ', i4, ' eps = ', e14.7)

 if (eps .lt. maxeps) exit

 enddo

 deallocate(ibstart,ibend)

 deallocate(ib)

 deallocate(A,B,indir_x,indir_y,indir_z)

 end program

Fig. 4. Serial version of the program that implements the Jacobi algorithm.

Let 's start to consider a parallel version of the program:

 program JAC_INDIRECT

 parameter (L=100, itmax=5000)

 real*8:: tmp,eps, maxeps=0.005

 integer x_t,y_t,z_t,cur

 real*8, allocatable :: A(:),B(:)

 integer, allocatable :: ibstart(:), ibend(:), ib(:)

 integer, allocatable :: indir_x(:), indir_y(:),indir_z(:)

 integer MAP(L*L*L)

!DVM$ TEMPLATE E(L*L*L)

!DVM$ TEMPLATE :: E2(:)

!DVM$ DISTRIBUTE :: E

!DVM$ DISTRIBUTE :: E2

!DVM$ ALIGN :: A,B

!DVM$ ALIGN :: indir_x, indir_y,indir_z, ibstart, ibend

!DVM$ ALIGN :: ib

 call fillMap(MAP,L,1)

 allocate(A(L*L*L),B(L*L*L), ibstart(L*L*L), ibend(L*L*L))

 allocate(indir_x(L*L*L), indir_y(L*L*L), indir_z(L*L*L))

!DVM$ REDISTRIBUTE E(INDIRECT(MAP))

!DVM$ REALIGN (I) WITH E(I) :: A,B,indir_x, indir_y,indir_z

!DVM$ REALIGN (I) WITH E(I) :: ibstart, ibend

19

The first update is to add the array MAP. This array will serve as the "distribution

map" on the basis of which we will distribute the data. Two templates are also de-

clared: the static template E, which will be distributed by-element, and the dynamic

template E2, which will be discussed later. The distribute directive without parame-

ters is specified for these templates. It means that the templates will be distributed

later. Also an align directive without parameters is specified for all arrays. It means

that these arrays will be aligned further with some template or already distributed

array. The map filling function, fillMap, is then added. One of the possible implemen-

tations of this function looks as follows:

 subroutine fillMap(MAP,L,axis)

 integer numproc

 integer i,L,axis

 integer MAP(L*L*L)

!This line is needed for program compatibility with usual compilers

 PROCESSORS_SIZE(axis) = 1

 numproc = PROCESSORS_SIZE(axis)

 do i = 1,L*L*L

 MAP(i) = ((i-1) * numproc) / (L*L*L)

 enddo

 end subroutine

PROCESSORS_SIZE (axis) is a utility function that returns the number of proces-

sors in specified axis of the processor grid on which the program was launched. Since

this program is one-dimensional, axis is equal to 1, and below everything will be de-

scribed taking into account that the launch grid is one-dimensional. The concrete im-

plementation simulates block distribution - the map is divided into equal blocks, and

all elements from the first block are located on the processor with index 0, all ele-

ments from the second block are located on the processor with index 1, and so on.

After filling the distribution map, it is immediately used in the redistribute di-

rective. Here indirect - by-element distribution is specified as distribution type. In the

case of by-element distribution, i-th element of the template appears on the processor

whose index is specified in the map in the i-th position. It allows to distribute the data

in any format: the block distribution can be used, as here, the elements can be allocat-

ed alternately when each next element is distributed on another processor, or they can

be distributed randomly. The programmer has the ability to specify any mapping.

After that, all the needed arrays are aligned to the newly created template by the

realign directive. After execution of this directive the elements with index i for all

specified in it arrays will be distributed on the same processor as the i-th element of

template E. Using templates to specify the initial by-element distribution is necessary

in this case, the array cannot be directly distributed by-element.

The next update in the program appears after memory allocation for the array ib:

 allocate(ib(cur-1))

!DVM$ TEMPLATE_CREATE(E2(cur-1))

!DVM$ REDISTRIBUTE E2(DERIVED((ibstart(i):ibend(i)) with E(@i)))

!DVM$ REALIGN (I) WITH E2(I) :: ib

20

Here another new type of data distribution appears - derived distribution. The de-

rived distribution is a variant of by-element distribution whose idea is that it is just

"derived" from any other distribution. It is worth remembering how indirect address-

ing looked in serial program:

 B(i) = (A(ib(ibstart(i))) + A(ib(ibstart(i)+1)) +

 A(ib(ibstart(i)+2)) + A(ib(ibstart(i)+3)) +

 A(ib(ibstart(i)+4)) + A(ib(ibstart(i)+5))) / 6.0

We can notice that on the same processor together with B(i) which is already dis-

tributed by-element, we should have the elements of the array ib with indexes from

ibstart(i) to ibstart(i)+5, that is, all elements-neighbors. Taking into consideration the

data storage format, the end index will actually be ibend(i), which for all non-

boundary elements is just equal to ibstart(i)+5. We can to ensure the presence of all

necessary elements via derived distribution. For the distribution of the array ib, the E2

template will be used. It is created dynamically, since at the start of the program we

do not know the size of the array ib, and therefore the size of the template. Immedi-

ately thereafter, a redistribute directive with derived type of distribution is applied to

the template. This directive means that in the new template E2 the elements with in-

dexes beginning with ibstart (i) and ending with ibend(i) must be on the same proces-

sor as the i-th element of the template E. Instead of specifying the ibstart(i):ibend(i)

range, a comma-separated list of indexes (or even a single index) can be specified in

the directive. The array ib is then aligned to the newly created template, thereby en-

suring that the element B(i) and all its neighbors will be located on the same proces-

sor. For all non-boundary elements of the array B this means that all elements from

ib(ibstart(i)) to ib(ibstart(i)+5) will be located on the same processor together with

element B(i). It should be noted that if several processors want to get the same ele-

ment, when creating a derived template, this element will be placed on one of the

processors, and for all other processors it is placed in automatically created shadow

edges.

The next update appears after the array ib was filled:

 if (z_t.lt.L-1) then

 ib(cur) = i+1

 cur = cur + 1

 endif

 enddo

!DVM$ LOCALIZE(ibstart => ib(:))

!DVM$ LOCALIZE(ibend => ib(:))

!DVM$ SHADOW_ADD(E((ib(ibstart(i):ibend(i))) with E(@i)) = "nei1") in-

clude_to A

!DVM$ LOCALIZE(ib => A(:))

The localize directive is a utility directive that transforms global indexes to local

ones, that is necessary for correct addressing of the arrays. The directive must be ap-

plied to all arrays that are used to index by-element distributed arrays. The array to be

localized is specified on the left side of the directive and the array to be indexed by

the localized array is specified on the right side. For arrays with 2 or more dimen-

sions, it is necessary also to specify the dimension to be localized. The directive must

21

be used after the localized array has been fully filled and will not be more modified,

but before its usage to index a distributed array in a parallel loop or in a shadow_add

directive. In this case the ibstart and ibend arrays have already been filled, and will be

used for indexing immediately in the shadow_add directive.

Let's remember again how indirect indexing looked in the main loop:

 B(i) = (A(ib(ibstart(i))) + A(ib(ibstart(i)+1)) +

 A(ib(ibstart(i)+2)) + A(ib(ibstart(i)+3)) +

 A(ib(ibstart(i)+4)) + A(ib(ibstart(i)+5))) / 6.0

We took care of the array ib, but we still have the array A, which is indexed by the

array ib. In order to ensure that the needed elements of array A are placed on the pro-

cessor where element B(i) is located, it is necessary to add a shadow edge to array A,

using the shadow_add directive. This instance of the directive specifies, that on the

one processor, together with the i-th element of template E (part "with E (@ i)"), we

must add to the shadow edge all elements of template E (the first occurrence of E in

the directive) whose indexes are in the array ib from ibstart (i) to ibend (i). Then this

shadow edge is called "nei1", and it is specified that this shadow edge should be add-

ed for the array A. Thus, we have created a shadow edge, that for each element A(i)

contains all its neighbors. The shadow_add directive ensures that there are no dupli-

cate elements in the shadow edge. If an element already presents on the processor, it

will not be added to the shadow edge. It should be noted that the array ib is localized

after the shadow_add directive. Since it is used to index the array A - it is localized on

it.

After that it remains only to specify the parallel directives and regions:

!DVM$ REGION

!DVM$ PARALLEL (i) ON B(i)

 do i = 1, L*L*L

 A(i) = 0

 if (indir_x(i) == 0 .or. indir_x(i) == L-1 .or.

 & indir_y(i) == 0 .or. indir_y(i) == L-1 .or.

 & indir_z(i) == 0 .or. indir_z(i) == L-1) then

 B(i) = 0

 else

 B(i) = 4 + indir_x(i) + indir_y(i) + indir_z(i)

 endif

 enddo

!DVM$ END REGION

 do it = 1, itmax

!DVM$ REGION

 eps = 0

!DVM$ PARALLEL (i) ON B(i), REDUCTION(MAX(eps)), PRIVATE(tmp)

 do i = 1,L*L*L

 if (indir_x(i) /= 0 .and. indir_x(i) /= L-1 .and.

 & indir_y(i) /= 0 .and. indir_y(i) /= L-1 .and.

 & indir_z(i) /= 0 .and. indir_z(i) /= L-1) then

22

 tmp = ABS(B(i) - A(i))

 eps = MAX(tmp, eps)

 A(i) = B(i)

 endif

 enddo

!DVM$ PARALLEL (i) ON B(i), SHADOW_RENEW(A)

 do i = 1, L*L*L

 if (indir_x(i) /= 0 .and. indir_x(i) /= L-1 .and.

 & indir_y(i) /= 0 .and. indir_y(i) /= L-1 .and.

 & indir_z(i) /= 0 .and. indir_z(i) /= L-1) then

 B(i) = (A(ib(ibstart(i))) + A(ib(ibstart(i)+1))

 & + A(ib(ibstart(i)+2)) + A(ib(ibstart(i)+3))

 & + A(ib(ibstart(i)+4)) + A(ib(ibstart(i)+5)))

 & / 6.0

 endif

 enddo

!DVM$ END REGION

!DVM$ GET_ACTUAL(eps)

 print 200, it, eps

200 format(' it = ', i4, ' eps = ', e14.7)

 if (eps .lt. maxeps) exit

 enddo

In this case the parallel directive distributes the loop iterations by-element based on

the array B distribution. The i-th loop iteration is executed on the processor where B(i)

element is located, and therefore on the processor whose index was written to MAP(i)

at the time when the distribution directive for the template E was executed.

In this case a shadow_renew clause for A will update all shadow edges that are

bound to the array A. In this example there is only one such shadow edge - nei1, that

was declared by shadow_add. Other directives/clauses do not differ from standard

DVM without extension. The clause reduction(max(eps)) ensures that on each proces-

sor we will have the maximum value of eps as the result of execution of all loop itera-

tions, not just the iterations, executed of this processor. The clause private (tmp) de-

claired that the variable tmp is private, so its value on one iteration does not affect

other iterations. The region and end region directives show code areas to be executed

on the graphics accelerator if such one is assigned to the program, and the get_actual

(eps) directive specifies that the actual value of the eps variable is on the graphics

accelerator and it must be copied to CPU memory.

The resulting program can be executed on a heterogeneous computational cluster

with accelerators.

23

3 New Possibilities for Additional Parallelization of Existing

Programs

Now, when parallel computers are exploited for more than one decade for calculation

performing, there are many programs which have already been parallelized on a clus-

ter, but don't have parallel versions for CPU cores and also don't use GPU.

Traditionally in DVM approach programming process (or parallelization of availa-

ble serial programs) begins with distribution of arrays, and then parallel computations

are mapped on them. It means that to use DVM system tools, it is necessary to con-

vert the programs, parallelized, for example, using MPI, back in serial ones and to

replace manually distributed data and computations by distributed arrays and parallel

loops described in DVM language.

However, firstly, an author doesn't always want to discard his parallel program,

and secondly, it isn't always possible to realize the source data and computation dis-

tribution schemes in DVM language. In particular, the transformation of the tasks on

irregular grids to DVMH model may require non-trivial decisions and tricks and is not

always possible.

One of the ways to solve both problems is a new operating mode of DVM system:

DVM system doesn't participate in inter-processor interaction, but works locally on

each process.

This mode is turned on by specifying a specially created MPI library when DVM

system is built. The library doesn't perform any communications and doesn't conflict

with real MPI implementations. As a result an illusion of a program running on 1

processor is created for DVMH runtime system.

In addition to such mode, a notion of non-distributed parallel loop is introduced in

Fortran-DVMH and C-DVMH languages. For such loop it isn't needed to specify

mapping on a distributed array. For example, the three-dimensional parallel loop may

look like this (Fig. 5):

!DVM$ PARALLEL(I,J,K) REDUCTION (MAX(EPS))

!For Fortran-DVMH

DO I = L1,H1

 DO J = L2, H2

 DO K = L3, H3

...

#pragma dvm parallel(3) reduction (max(eps))

//For C-DVMH

for (int i = L1; i <= H1; i++)

 for (int j = L2; j <= H2; j++)

 for (int k = L3; k <= H3; k++)

...

Fig. 5. Non-distributed parallel loop.

By definition such loop is executed by all processors of current multiprocessor sys-

tem, but since in described new mode DVM system thinks that the multiprocessor

system consist of only one process, such construction doesn't lead to replication of

computations but only allows to use parallelism within one process – to use cores of

24

CPU or GPU. As a result, it is possible to avoid specifying any distributed array in

terms of DVMH model and at the same time to use following DVM system capabili-

ties:

 use parallelism on shared memory (use CPU cores): with OpenMP use or

without, a possibility to bind threads;

 use GPU: not only "naive" porting of a parallel loop on the accelerator, but

also execution of automatic reorganization of data, simplified management

of data movements;

 select optimization parameters;

 use convenient tools of performance debugging.

This mode can be used in particular to obtain the intermediate results in a process

of full parallelization of a program in DVMH model. It allows to create programs for

multi-core CPU and GPU faster and noticeably easier (there is a set of restrictions for

work with distributed arrays, but it is optional to create them in such approach),

It allows quickly and noticeably easier (there is a set of restrictions for work with

distributed arrays, but it is optional to create them in such approach) to obtain the

program for multi-core CPU and GPU, and also to evaluate the perspectives of target

program speedup on a cluster with multi-core CPUs and accelerators.

Conclusions and Outlook

DVM system automates a process of parallel program development.

Obtained DVMH programs without any change can be efficiently executed on

clusters of different architectures that use multi-core universal processors, graphics

accelerators, and Intel Xeon Phi coprocessors. This is achieved through various opti-

mizations that are performed both statically, when compiling DVMH programs, and

dynamically.

The article introduced new possibilities of the DVM system, which allow to ex-

pand the scope of its applicability and allow to parallelize not only tasks on structured

grids, for which the DVM system was designed initially [4], but also the tasks on

unstructured grids.

Recently, adaptive grids have been actively used for numerical solution of mathe-

matical physics problems. It is a method that allows to locally rebuild the grid. The

adaptation is required to refine the grid elements in the areas where they are most

needed, and to leave the grid less detailed elsewhere. Such grids with maximum pre-

cision allow to represent shock waves, phase transitions and other areas of large gra-

dients of functions. The authors of the project are working to expand the capabilities

of the DVM system to support adaptive grids.

This work was partially supported by Presidium RAS, program I.26 "Fundamentals

of creating algorithms and software for advanced ultra-high performance computing".

25

References

1. C-DVMH language, C-DVMH compiler, compilation, execution and debugging of DVMH

programs, http://dvm-system.org/static_data/docs/CDVMH-reference-en.pdf, last accessed

2019/11/21..

2. Fortran DVMH language, Fortran DVMH compiler, compilation, execution and debugging

of DVMH programs, http://dvm-system.org/static_data/docs/FDVMH-user-guide-en.pdf,

last accessed 2019/11/21.

3. System for automating the development of parallel programs (DVM-system), http://dvm-

system.org, last accessed 2019/11/21.

4. Bakhtin, V.A., Zaharov, D.A., Kolganov, A.S., Krukov, V.A., Podderyugina, N.V., Pritula,

M.N.: Development of Parallel Applications Using DVM-system. Bulletin of the South

Ural State University. Series: Computational Mathematics and Software Engineering, vol.

8, no. 1, pp. 89-106. (2019), https://doi.org/10.14529/cmse190106.

http://dvm-system.org/static_data/docs/CDVMH-reference-en.pdf

