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Abstract. DVM-system is designed for the development of parallel programs of 

scientific and technical computations in C-DVMH and Fortran-DVMH lan-

guages. These languages use a single parallel programming model (DVMH 

model) and are extensions of the standard C and Fortran languages with paral-

lelism specifications, written in the form of directives to the compiler. The 

DVMH model makes it possible to create efficient parallel programs for hetero-

geneous computing clusters, in the nodes of which accelerators (graphic proces-

sors or Intel Xeon Phi coprocessors) can be used as computing devices along 

with universal multi-core processors. The article presents new features of 

DVM-system that have been developed recently. 

Keywords: automation of development of parallel programs, DVM system, ac-
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1 Introduction 

To achieve high accuracy of computations the researchers are forced to considerably 

refine a computation grid. It leads to proportional growth of computer memory con-

sumption and increase of computation time. Use of unstructured grids instead of 

structured ones allows to solve this problem partially. In this case there is an oppor-

tunity to vary a grid detailing on computation area, thereby to reduce both a time for 

excessively exact computations on some areas, and random access memory used to 

store not needed detailed values. Also it allows to abstract numerical methods from 

calculation area geometry and to remove most calculation area limitations. However, 

such programs have much more complicated structure. When operating with regular 

grids, it wasn't necessary to store the neighbourhood relations, as well as the space 

coordinates, explicitly, as these properties and quantities were directly bound with 

multidimensional index spaces of the arrays of quantities. 

DVMH [1, 2] model is based on data parallelism. This model is based on the con-

cept of a distributed multi-dimensional array. Each processor has not only a local part 

of distributed array, but also so-called shadow edges - the copies of elements from 

local parts of neighboring processors. Main interconnection of the processors is per-
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formed via these shadow edges. A distribution of computations is performed by their 

mapping on the distributed arrays. Due to index offsets of used arrays are pre-known, 

the accesses are performed either to own local part, or to shadow edges of known 

width, which are defined as a continuation of local part along certain dimension of a 

distributed array. For example, for "cross" template with 4 neighbors, an element with 

(i, j) indexes is calculated using the elements with indexes (i-1, j), (i, j-1), (i+1, j), (i, 

j+1) and shadow edges of width 1 for both dimensions are needed. 

DVMH compilers transform references to distributed multidimensional arrays to a 

form independent from sizes and location of local part on each processor, but initial 

index expressions aren't changed. As a result each access to distributed data is per-

formed in global (initial) indexes, but the coefficients and shifts calculated during 

execution are used for access to memory for each dimension. Such approach (unlike 

modifying of index expressions) allows to abstract from the contents of parallelizable 

loops, but it introduces serious restriction on a form of a distributed array part ad-

dressed by each processor. This part is called extended local part and is a union of the 

local part and shadow edges. Only block distributions with shadow edges are used in 

DVMH model. Thus the extended local part is subarray of source array of the form 

(A1:B1, A2:B2, A3:B3, ..., An:Bn). 

The new capabilities of DVM system [3] to solve the problem of these restrictions 

are presented in the article. The second section describes the expansion of DVM lan-

guages in order to introduce new types of distributed arrays, parallel loops, and other 

auxiliary constructions that significantly simplify parallelization of applications with 

irregular grids on a cluster. The third section introduces tools that allow a programmer 

to manually distribute data using MPI or other parallel programming technologies, 

while leaving the ability to use DVM languages within a cluster node to map compu-

tations on CPU or graphics accelerator cores. 

2 New Capabilities of Operation with Irregular Grids 

For operation with irregular grids the new type of an array and template distribution – 

by-element distribution – is introduced. This type of distribution doesn't superimpose 

any restrictions on which array elements should be located on the same processor or 

which array elements should be located on adjacent processors. On the contrary, it 

allows to specify arbitrary belonging of each array element independently. 

Two new rules of by-element distribution have been added: indirect and derived. 

The indirect distribution is specified by an array of integers, and its size is equal to the 

size of the indirectly distributed dimension, and the values specify the domain num-

ber. The number of domains can be both higher and lower than the number of proces-

sors. The DVM system ensures that all elements of the same domain belong to the 

same processor. 

The derived distribution is specified by the rule, form of which is similar to the 

form of DVMH model's alignment rule (ALIGN). However, it has considerably more 

flexibility. The syntax can be described as it is shown in Fig. 1. 
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indirect-rule ::= indirect ( var-name ) 

derived-rule ::= derived (derived-elem-list with derived-templ) 

derived-elem ::= int-range-expr 

int-range-expr ::= arbitrary integer expression + ranges are al-

lowed in index expressions, use of align-dummy variables. 

derived-templ ::= var-name [ derived-templ-axis-spec ]... 

derived-templ-axis-spec ::= [ ] | [ @ align-dummy [ + shadow-

name ]... ] | [ int-expr ] 

Fig. 1. BNF formula for new distribution rules. 

All references to distributed arrays in int-range-expr must be available (the ele-

ment belongs to extended local part) for the corresponding element of the template 

(search of template elements is performed in its local part and specified shadow edg-

es). If according to derived rule the same element should be distributed on several 

processors at once, then DVM system selects one of them where element will actually 

be distributed, and adds it in shadow edge on remaining processors with "overlay" 

name. There shouldn't be elements not distributed on any processor. Such cases are 

runtime errors and cause the program abnormal termination. Calculated non-existent 

indexes of distributed array are ignored without error. 

An overlay is introduced for possibility of consistent distribution of grid elements. 

For example, there are cells, edges, vertexes. In such a case there is an opportunity to 

build one distribution on the basis of another, and in any sequence. 

As a result of such distribution an array has two types of element indexing: global 

(it is also the source in serial program) and local. Local indexing is continuous within 

one processor, i.e. there is such an order of local elements that their local indexes will 

completely fill some integer segment [Li, Hi]. 

By-element shadow edges are also introduced. The shadow edge is a set of ele-

ments, not belonging to the current process (the requirement to belong to adjacent 

process is removed), for which, first, an access from any point of the program is pos-

sible without special specifications, and, second, special tools of operation with them 

are introduced: updating by shadow_renew specification, expansion of parallel loop 

by shadow_compute specification, etc. 

Unlike traditional ones, by-element shadow edges are added to templates during 

the program execution and have names to refer to them. They are specified in almost 

the same way as derived distribution, see Fig. 2. 
shadow-add ::= shadow_add ( templ-name [ shadow-axis ]... = 

shadow-name ) [ include_to ( var-name-list ) ] 

shadow-axis ::= [ ] | [ derived-elem-list with derived-templ ] 

Fig. 2. BNF formula for specification of by-element shadow edges. 

Exactly one of shadow-axis should be non-empty brackets. All arrays from the list 

specified in include_to should be aligned with a template to which dimension the 

shadow edge is added. As a result of such directive execution the shadow edge is 

added to the template and included in specified distributed arrays. After this operation 

shadow elements of the arrays are available for reading from the program, and also 

can be renewed by shadow_renew directive. 
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To implement by-element shadow edges and derived distribution the compiler gen-

erates a special function according to specified expressions. The parameters to bypass 

local part of the template are passed to the function by runtime system. This function, 

bypassing the template, fills the buffer of element indexes according to expressions in 

left part of mapping rule, and then returns it back to runtime system. Then the buffer 

is analyzed by runtime system. 

For experimental use of these possibilities an auxiliary directive of localization of 

index array values was introduced. It modifies the values of integer array, replacing 

global indexes of specified target array by local ones (Fig. 3). 

localize-spec ::= localize ( ref-var-name => target-var-name [ 

axis-specifier ].) 

axis-specifier ::= [ ] | [ : ] 

Fig. 3. BNF formula for directive of localization of index array values. 

After such operation it is possible to use available method of compilation of paral-

lel loops: they will be executed wholly in local indexes. 

Together with modification of the directive of shadow exchanges and implementation 

of exchanges for by-element shadow edges (that now are performed not only between 

adjacent processors, but with arbitrary subset of processors) this set of extensions 

allows to parallelize and launch the applications on irregular grids on a cluster with 

accelerators. 

To illustrate the possibilities of the DVM system for work with unstructured grids, 

consider a small example of Fortran program that implements a three-dimensional 

Jacobi algorithm (Fig. 4). In this program one-dimensional arrays are used instead of 

three-dimensional arrays. Because of this, indirect addressing appears, the tools for 

working with it were not previously available in DVM. 

      program JAC_INDIRECT 

      parameter (L=100, itmax=5000) 

      real*8:: tmp,eps, maxeps=0.005 

      integer x_t,y_t,z_t,cur 

      real*8, allocatable :: A(:),B(:) 

      integer, allocatable :: ibstart(:), ibend(:), ib(:) 

      integer, allocatable :: indir_x(:), indir_y(:),indir_z(:) 

      allocate(A(L*L*L),B(L*L*L), ibstart(L*L*L), ibend(L*L*L)) 

      allocate(indir_x(L*L*L), indir_y(L*L*L), indir_z(L*L*L)) 

! Here a one-dimensional array that "emulates" a three-dimensional array 

! in the usual three-dimensional Jacobi algorithm is created 

      cur = 1 

      do i = 1,L*L*L 

        x_t = (i-1) / (L*L) 

        y_t = mod((i-1) / L, L) 

        z_t = mod(i-1, L) 

        indir_x(i) = x_t 

        indir_y(i) = y_t 

        indir_z(i) = z_t 

        ibstart(i) = cur 

        if (x_t.gt.0) cur = cur + 1 

        if (x_t.lt.L-1 cur = cur + 1 

        if (y_t.gt.0) cur = cur + 1 

        if (y_t.lt.L-1) cur = cur + 1 
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        if (z_t.gt.0) cur = cur + 1 

        if (z_t.lt.L-1) cur = cur + 1 

        ibend(i) = cur - 1 

      enddo 

      allocate(ib(cur-1)) 

      cur = 1 

      do i = 1,L*L*L 

        x_t = (i-1) / (L*L) 

        y_t = mod((i-1) / L, L) 

        z_t = mod(i-1, L) 

        if (x_t.gt.0) then 

            ib(cur) = i - (L*L) 

            cur = cur + 1 

        endif 

        if (x_t.lt.L-1) then 

            ib(cur) = i+(L*L) 

            cur = cur + 1 

        endif 

        if (y_t.gt.0) then 

            ib(cur) = i-L 

            cur = cur + 1 

        endif 

        if (y_t.lt.L-1) then 

            ib(cur) = i+L 

            cur = cur + 1 

        endif 

        if (z_t.gt.0) then 

            ib(cur) = i-1 

            cur = cur + 1 

        endif 

        if (z_t.lt.L-1) then 

            ib(cur) = i+1 

            cur = cur + 1 

        endif 

      enddo 

! A similar CSR (Compressed Sparse Row) format is used to pack the  

! array. Each element can have up to 6 adjacent elements on the left  

! and on the right for each of the three dimensions. For i-th element  

! of array A the list of its neighbors are contained in the array ib,  

! beginning from index ibstart(i)and ending by index ibend(i). 

! Above this CSR-like structure is created. 

! Also the arrays indir_x/y/z which contains indexes that an element had 

! in three-dimensional array are filled. 

! The arrays are filled before iterative loop. Since all elements now  

! are stacked in the one-dimensional array it is required to check the  

! three-dimensional indexes to exclude processing of boundary elements. 

      do i = 1, L*L*L 

        A(i) = 0 

        if (indir_x(i) == 0 .or. indir_x(i) == L-1 .or.  

     &      indir_y(i) == 0 .or. indir_y(i) == L-1 .or.   

     &      indir_z(i) == 0 .or. indir_z(i) == L-1) then 

            B(i) = 0 

        else 

            B(i) = 4 + indir_x(i) + indir_y(i) + indir_z(i) 

        endif 

      enddo 

! After filling the modified Jacobi algorithm is applied 

      do it = 1, itmax 

        eps = 0 

        do i = 1,L*L*L 
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           if (indir_x(i) /= 0 .and. indir_x(i) /= L-1 .and.  

     &         indir_y(i) /= 0 .and. indir_y(i) /= L-1 .and.   

     &         indir_z(i) /= 0 .and. indir_z(i) /= L-1) then 

               tmp  = ABS(B(i) - A(i)) 

               eps = MAX(tmp, eps) 

               A(i) = B(i) 

           endif 

        enddo 

        do i = 1, L*L*L 

           if (indir_x(i) /= 0 .and. indir_x(i) /= L-1 .and.  

     &         indir_y(i) /= 0 .and. indir_y(i) /= L-1 .and.   

     &         indir_z(i) /= 0 .and. indir_z(i) /= L-1) then 

! Indirect addressing 

               B(i) = (A(ib(ibstart(i)))   + A(ib(ibstart(i)+1)) 

     &             + A(ib(ibstart(i)+2)) + A(ib(ibstart(i)+3)) 

     &             + A(ib(ibstart(i)+4)) + A(ib(ibstart(i)+5))) 

     &               / 6.0 

           endif 

        enddo 

        print 200,  it, eps 

200     format(' it = ', i4, '   eps = ', e14.7) 

        if ( eps .lt. maxeps )    exit 

      enddo 

      deallocate(ibstart,ibend) 

      deallocate(ib) 

      deallocate(A,B,indir_x,indir_y,indir_z) 

      end program 

Fig. 4. Serial version of the program that implements the Jacobi algorithm. 

Let 's start to consider a parallel version of the program: 

      program JAC_INDIRECT 

      parameter (L=100, itmax=5000) 

      real*8:: tmp,eps, maxeps=0.005 

      integer x_t,y_t,z_t,cur 

      real*8, allocatable :: A(:),B(:) 

      integer, allocatable :: ibstart(:), ibend(:), ib(:) 

      integer, allocatable :: indir_x(:), indir_y(:),indir_z(:) 

      integer MAP(L*L*L) 

!DVM$   TEMPLATE E(L*L*L) 

!DVM$   TEMPLATE :: E2(:) 

!DVM$   DISTRIBUTE :: E 

!DVM$   DISTRIBUTE :: E2 

!DVM$   ALIGN :: A,B 

!DVM$   ALIGN :: indir_x, indir_y,indir_z, ibstart, ibend 

!DVM$   ALIGN :: ib 

      call fillMap(MAP,L,1) 

      allocate(A(L*L*L),B(L*L*L), ibstart(L*L*L), ibend(L*L*L)) 

      allocate(indir_x(L*L*L), indir_y(L*L*L), indir_z(L*L*L)) 

!DVM$ REDISTRIBUTE E(INDIRECT(MAP)) 

!DVM$ REALIGN (I)  WITH  E(I) :: A,B,indir_x, indir_y,indir_z 

!DVM$ REALIGN (I)  WITH  E(I) :: ibstart, ibend 
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The first update is to add the array MAP. This array will serve as the "distribution 

map" on the basis of which we will distribute the data. Two templates are also de-

clared: the static template E, which will be distributed by-element, and the dynamic 

template E2, which will be discussed later. The distribute directive without parame-

ters is specified for these templates. It means that the templates will be distributed 

later. Also an align directive without parameters is specified for all arrays. It means 

that these arrays will be aligned further with some template or already distributed 

array. The map filling function, fillMap, is then added. One of the possible implemen-

tations of this function looks as follows: 

      subroutine fillMap(MAP,L,axis) 

      integer  numproc 

      integer i,L,axis 

      integer MAP(L*L*L) 

!This line is needed for program compatibility with usual compilers 

      PROCESSORS_SIZE(axis) = 1 

      numproc = PROCESSORS_SIZE(axis) 

        do i = 1,L*L*L 

           MAP(i) = ((i-1) * numproc) / (L*L*L) 

        enddo 

      end subroutine 

PROCESSORS_SIZE (axis) is a utility function that returns the number of proces-

sors in specified axis of the processor grid on which the program was launched. Since 

this program is one-dimensional, axis is equal to 1, and below everything will be de-

scribed taking into account that the launch grid is one-dimensional. The concrete im-

plementation simulates block distribution - the map is divided into equal blocks, and 

all elements from the first block are located on the processor with index 0, all ele-

ments from the second block are located on the processor with index 1, and so on. 

After filling the distribution map, it is immediately used in the redistribute di-

rective. Here indirect - by-element distribution is specified as distribution type. In the 

case of by-element distribution, i-th element of the template appears on the processor 

whose index is specified in the map in the i-th position. It allows to distribute the data 

in any format: the block distribution can be used, as here, the elements can be allocat-

ed alternately when each next element is distributed on another processor, or they can 

be distributed randomly. The programmer has the ability to specify any mapping. 

After that, all the needed arrays are aligned to the newly created template by the 

realign directive. After execution of this directive the elements with index i for all 

specified in it arrays will be distributed on the same processor as the i-th element of 

template E. Using templates to specify the initial by-element distribution is necessary 

in this case, the array cannot be directly distributed by-element. 

The next update in the program appears after memory allocation for the array ib: 

     allocate(ib(cur-1)) 

!DVM$ TEMPLATE_CREATE(E2(cur-1)) 

!DVM$ REDISTRIBUTE E2(DERIVED((ibstart(i):ibend(i)) with E(@i))) 

!DVM$ REALIGN (I)  WITH  E2(I) :: ib 
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Here another new type of data distribution appears - derived distribution. The de-

rived distribution is a variant of by-element distribution whose idea is that it is just 

"derived" from any other distribution. It is worth remembering how indirect address-

ing looked in serial program: 

      B(i) = (A(ib(ibstart(i)))   + A(ib(ibstart(i)+1)) +  

         A(ib(ibstart(i)+2)) + A(ib(ibstart(i)+3)) +  

         A(ib(ibstart(i)+4)) + A(ib(ibstart(i)+5))) / 6.0 

We can notice that on the same processor together with B(i) which is already dis-

tributed by-element, we should have the elements of the array ib with indexes from 

ibstart(i) to ibstart(i)+5, that is, all elements-neighbors. Taking into consideration the 

data storage format, the end index will actually be ibend(i), which for all non-

boundary elements is just equal to ibstart(i)+5. We can to ensure the presence of all 

necessary elements via derived distribution. For the distribution of the array ib, the E2 

template will be used. It is created dynamically, since at the start of the program we 

do not know the size of the array ib, and therefore the size of the template. Immedi-

ately thereafter, a redistribute directive with derived type of distribution is applied to 

the template. This directive means that in the new template E2 the elements with in-

dexes beginning with ibstart (i) and ending with ibend(i) must be on the same proces-

sor as the i-th element of the template E. Instead of specifying the ibstart(i):ibend(i) 

range, a comma-separated list of indexes (or even a single index) can be specified in 

the directive. The array ib is then aligned to the newly created template, thereby en-

suring that the element B(i) and all its neighbors will be located on the same proces-

sor. For all non-boundary elements of the array B this means that all elements from 

ib(ibstart(i)) to ib(ibstart(i)+5) will be located on the same processor together with 

element B(i). It should be noted that if several processors want to get the same ele-

ment, when creating a derived template, this element will be placed on one of the 

processors, and for all other processors it is placed in automatically created shadow 

edges. 

The next update appears after the array ib was filled: 

       if (z_t.lt.L-1) then 

            ib(cur) = i+1 

            cur = cur + 1 

        endif 

      enddo 

!DVM$ LOCALIZE(ibstart => ib(:)) 

!DVM$ LOCALIZE(ibend => ib(:)) 

!DVM$ SHADOW_ADD(E((ib(ibstart(i):ibend(i))) with E(@i)) = "nei1") in-

clude_to A 

!DVM$ LOCALIZE(ib => A(:)) 

The localize directive is a utility directive that transforms global indexes to local 

ones, that is necessary for correct addressing of the arrays. The directive must be ap-

plied to all arrays that are used to index by-element distributed arrays. The array to be 

localized is specified on the left side of the directive and the array to be indexed by 

the localized array is specified on the right side. For arrays with 2 or more dimen-

sions, it is necessary also to specify the dimension to be localized. The directive must 
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be used after the localized array has been fully filled and will not be more modified, 

but before its usage to index a distributed array in a parallel loop or in a shadow_add 

directive. In this case the ibstart and ibend arrays have already been filled, and will be 

used for indexing immediately in the shadow_add directive. 

Let's remember again how indirect indexing looked in the main loop: 

        B(i) = (A(ib(ibstart(i))) + A(ib(ibstart(i)+1)) +  

         A(ib(ibstart(i)+2)) + A(ib(ibstart(i)+3)) +  

         A(ib(ibstart(i)+4)) + A(ib(ibstart(i)+5))) / 6.0 

We took care of the array ib, but we still have the array A, which is indexed by the 

array ib. In order to ensure that the needed elements of array A are placed on the pro-

cessor where element B(i) is located, it is necessary to add a shadow edge to array A, 

using the shadow_add directive. This instance of the directive specifies, that on the 

one processor, together with the i-th element of template E (part "with E (@ i)"), we 

must add to the shadow edge all elements of template E (the first occurrence of E in 

the directive) whose indexes are in the array ib from ibstart (i) to ibend (i). Then this 

shadow edge is called "nei1", and it is specified that this shadow edge should be add-

ed for the array A. Thus, we have created a shadow edge, that for each element A(i) 

contains all its neighbors. The shadow_add directive ensures that there are no dupli-

cate elements in the shadow edge. If an element already presents on the processor, it 

will not be added to the shadow edge. It should be noted that the array ib is localized 

after the shadow_add directive. Since it is used to index the array A - it is localized on 

it. 

After that it remains only to specify the parallel directives and regions: 

!DVM$ REGION 

!DVM$ PARALLEL (i) ON B(i) 

      do i = 1, L*L*L 

        A(i) = 0 

        if (indir_x(i) == 0 .or. indir_x(i) == L-1 .or.  

     &      indir_y(i) == 0 .or. indir_y(i) == L-1 .or.   

     &      indir_z(i) == 0 .or. indir_z(i) == L-1) then 

 

            B(i) = 0 

        else 

            B(i) = 4 + indir_x(i) + indir_y(i) + indir_z(i) 

        endif 

      enddo 

!DVM$ END REGION 

      do it = 1, itmax 

!DVM$ REGION 

        eps = 0 

!DVM$   PARALLEL (i) ON B(i), REDUCTION(MAX(eps)), PRIVATE(tmp) 

        do i = 1,L*L*L 

           if (indir_x(i) /= 0 .and. indir_x(i) /= L-1 .and.  

     &         indir_y(i) /= 0 .and. indir_y(i) /= L-1 .and.   

     &         indir_z(i) /= 0 .and. indir_z(i) /= L-1) then 
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               tmp  = ABS(B(i) - A(i)) 

               eps = MAX(tmp, eps) 

               A(i) = B(i) 

           endif 

        enddo 

!DVM$   PARALLEL (i) ON B(i), SHADOW_RENEW(A) 

        do i = 1, L*L*L 

           if (indir_x(i) /= 0 .and. indir_x(i) /= L-1 .and.  

     &         indir_y(i) /= 0 .and. indir_y(i) /= L-1 .and.   

     &         indir_z(i) /= 0 .and. indir_z(i) /= L-1) then 

               B(i) = (A(ib(ibstart(i)))   + A(ib(ibstart(i)+1)) 

     &               + A(ib(ibstart(i)+2)) + A(ib(ibstart(i)+3)) 

     &               + A(ib(ibstart(i)+4)) + A(ib(ibstart(i)+5))) 

     &               / 6.0 

           endif 

        enddo 

!DVM$ END REGION 

!DVM$ GET_ACTUAL(eps) 

        print 200,  it, eps 

200     format(' it = ', i4, '   eps = ', e14.7) 

        if ( eps .lt. maxeps )    exit 

      enddo 

 

In this case the parallel directive distributes the loop iterations by-element based on 

the array B distribution. The i-th loop iteration is executed on the processor where B(i) 

element is located, and therefore on the processor whose index was written to MAP(i) 

at the time when the distribution directive for the template E was executed. 

In this case a shadow_renew clause for A will update all shadow edges that are 

bound to the array A. In this example there is only one such shadow edge - nei1, that 

was declared by shadow_add. Other directives/clauses do not differ from standard 

DVM without extension. The clause reduction(max(eps)) ensures that on each proces-

sor we will have the maximum value of eps as the result of execution of all loop itera-

tions, not just the iterations, executed of this processor. The clause private (tmp) de-

claired that the variable tmp is private, so its value on one iteration does not affect 

other iterations. The region and end region directives show code areas to be executed 

on the graphics accelerator if such one is assigned to the program, and the get_actual 

(eps) directive specifies that the actual value of the eps variable is on the graphics 

accelerator and it must be copied to CPU memory. 

The resulting program can be executed on a heterogeneous computational cluster 

with accelerators. 
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3 New Possibilities for Additional Parallelization of Existing 

Programs 

Now, when parallel computers are exploited for more than one decade for calculation 

performing, there are many programs which have already been parallelized on a clus-

ter, but don't have parallel versions for CPU cores and also don't use GPU. 

Traditionally in DVM approach programming process (or parallelization of availa-

ble serial programs) begins with distribution of arrays, and then parallel computations 

are mapped on them. It means that to use DVM system tools, it is necessary to con-

vert the programs, parallelized, for example, using MPI, back in serial ones and to 

replace manually distributed data and computations by distributed arrays and parallel 

loops described in DVM language. 

However, firstly, an author doesn't always want to discard his parallel program, 

and secondly, it isn't always possible to realize the source data and computation dis-

tribution schemes in DVM language. In particular, the transformation of the tasks on 

irregular grids to DVMH model may require non-trivial decisions and tricks and is not 

always possible. 

One of the ways to solve both problems is a new operating mode of DVM system: 

DVM system doesn't participate in inter-processor interaction, but works locally on 

each process. 

This mode is turned on by specifying a specially created MPI library when DVM 

system is built. The library doesn't perform any communications and doesn't conflict 

with real MPI implementations. As a result an illusion of a program running on 1 

processor is created for DVMH runtime system. 

In addition to such mode, a notion of non-distributed parallel loop is introduced in 

Fortran-DVMH and C-DVMH languages. For such loop it isn't needed to specify 

mapping on a distributed array. For example, the three-dimensional parallel loop may 

look like this (Fig. 5): 

!DVM$ PARALLEL(I,J,K) REDUCTION (MAX(EPS)) 

!For Fortran-DVMH 

DO I = L1,H1 

   DO J = L2, H2 

      DO K = L3, H3 

... 

#pragma dvm parallel(3) reduction (max(eps)) 

//For C-DVMH 

for (int i = L1; i <= H1; i++) 

    for (int j = L2; j <= H2; j++) 

        for (int k = L3; k <= H3; k++) 

... 

Fig. 5. Non-distributed parallel loop. 

By definition such loop is executed by all processors of current multiprocessor sys-

tem, but since in described new mode DVM system thinks that the multiprocessor 

system consist of only one process, such construction doesn't lead to replication of 

computations but only allows to use parallelism within one process – to use cores of 



24 

 

CPU or GPU. As a result, it is possible to avoid specifying any distributed array in 

terms of DVMH model and at the same time to use following DVM system capabili-

ties: 

 use parallelism on shared memory (use CPU cores): with OpenMP use or 

without, a possibility to bind threads; 

 use GPU: not only "naive" porting of a parallel loop on the accelerator, but 

also execution of automatic reorganization of data, simplified management 

of data movements; 

 select optimization parameters; 

 use convenient tools of performance debugging. 

This mode can be used in particular to obtain the intermediate results in a process 

of full parallelization of a program in DVMH model. It allows to create programs for 

multi-core CPU and GPU faster and noticeably easier (there is a set of restrictions for 

work with distributed arrays, but it is optional to create them in such approach), 

It allows quickly and noticeably easier (there is a set of restrictions for work with 

distributed arrays, but it is optional to create them in such approach) to obtain the 

program for multi-core CPU and GPU, and also to evaluate the perspectives of target 

program speedup on a cluster with multi-core CPUs and accelerators. 

Conclusions and Outlook 

DVM system automates a process of parallel program development. 

Obtained DVMH programs without any change can be efficiently executed on 

clusters of different architectures that use multi-core universal processors, graphics 

accelerators, and Intel Xeon Phi coprocessors. This is achieved through various opti-

mizations that are performed both statically, when compiling DVMH programs, and 

dynamically. 

The article introduced new possibilities of the DVM system, which allow to ex-

pand the scope of its applicability and allow to parallelize not only tasks on structured 

grids, for which the DVM system was designed initially [4], but also the tasks on 

unstructured grids. 

Recently, adaptive grids have been actively used for numerical solution of mathe-

matical physics problems. It is a method that allows to locally rebuild the grid. The 

adaptation is required to refine the grid elements in the areas where they are most 

needed, and to leave the grid less detailed elsewhere. Such grids with maximum pre-

cision allow to represent shock waves, phase transitions and other areas of large gra-

dients of functions. The authors of the project are working to expand the capabilities 

of the DVM system to support adaptive grids. 

This work was partially supported by Presidium RAS, program I.26 "Fundamentals 

of creating algorithms and software for advanced ultra-high performance computing". 
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