
 

Copyright © 2020 for this paper by its authors.  

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

Development of Parallel Software Code for Calculating 

the Problem of Radiation Magnetic Gas Dynamics  

and the Study of Plasma Dynamics  

in the Channel of Plasma Accelerator 

Vladimir Bakhtin 1,2,3 [0000-0003-0343-3859], Dmitry Zakharov 1 [0000-0002-6319-5090], Andrey 

Kozlov 1,2 [0000-0002-6242-0911] and Venyamin Konovalov1[0000-0002-5106-7622] 

1 Keldysh Institute of Applied Mathematics, Miusskaya sq., 4, 125047, Moscow, Russia 
2 Lomonosov Moscow State University, GSP-1, Leninskie Gory, 11999, Moscow, Russia 

3 Bauman Moscow State Technical University, ul. Baumanskaya 2-ya, 5/1, 105005, Moscow, 

Russia 

dvm@keldysh.ru 

Abstract. DVM-system is designed for the development of parallel programs of 

scientific and technical calculations in C-DVMH and Fortran-DVMH lan-

guages. These languages use a single parallel programming model (DVMH 

model) and are extensions of the standard C and Fortran languages with paral-

lelism specifications, written in the form of directives to the compiler. The 

DVMH model makes it possible to create efficient parallel programs for hetero-

geneous computing clusters, in the nodes of which accelerators (graphic proces-

sors or Intel Xeon Phi coprocessors) can be used as computing devices along 

with universal multi-core processors. The article describes the experience of 

successful use of DVM-system for the development of parallel software code 

for calculating the problem of radiation magnetic hydrodynamics and the study 

of plasma dynamics in the channel of plasma accelerator. 

Keywords: Automation of Development of Parallel Programs, DVM-system, 

GPU, Fortran, Plasma Accelerator, Radiation Magnetic Hydrodynamics. 

1 Introduction 

The current level of experimental and numerical studies allows to simultaneously 

determine the local values of macroscopic plasma parameters and radiation character-

istics. This opens up new opportunities for complex research, validation of models 

and approximation of the results of calculations with the possibilities of experimental 

studies. This determines the relevance of the development of numerical models of 

radiation transport, considered as injectors for thermonuclear installations. The study 

of ionizing gas and plasma flows, respectively, for the first and second stages of qua-

si-stationary plasma accelerators (hereinafter QSPA) is carried out on the basis of the 

developed evolutionary models of radiation magnetic hydrodynamics, the effective 

solution of which required the development of parallel software codes for calculations 



60 

 

on high-performance multiprocessor computer systems. Studies of plasma flows in 

the second stage of the QSPA on the basis of the model of radiation magnetic hydro-

dynamics allowed to reveal the conditions providing generation of deuterium-tritium 

or D-T plasma flows with thermonuclear parameters at discharge currents up to 1 MA 

in the second stage of the QSPA. 

2 Mathematical formulation of the problem 

The problem formulation includes a system of MHD equations taking into account the 

finite conductivity of the medium, thermal conductivity and radiation transport. Under 

the condition of quasineutrality nnn ei   and equality VVV  ei  for fully ion-

ized plasma we have: 

0)( 



V


div

t
,  Hj

V


c
P

td

d 1
 ,   




 ,V

ttd

d ,       (1) 

    Wq
j

VV divdivdivPdiv
t









2
, 

Tcv2 , T q , 



j
HV

H
rotcrot

t





)( ,                      Hj rot

c

4
 , 

here nm i  is the density, TnkPPP Bei 2  is the total pressure, q  is the heat 

flux,   is the thermal conductivity, eee mne  /2  is the electrical conductivity, W   

is the density of the radiation energy flux defined by (3) and (4).  

The radial plasma current flowing between electrodes and the azimuthal magnetic 

field provide the acceleration of plasma behind the ionization front due to the Ampere 

force Hj
c

1 , here j  is the current density in plasma. 

As units of measurement we will choose a length of channel L , the characteristic 

concentration or gas density at the inlet of accelerator channel on  ( oo nm ) and 

temperature oT . The characteristic value of the azimuthal magnetic field oH  the inlet 

to channel is defined by discharge current in device pJ  so that opo RcJH /2 , 

where oR  is the characteristic radius of channel. These values allow to form the units 

of pressure 4/2
oo HP  , velocity ooo HV 4/ , time oo VLt /  and plasma 

current LHcj oo 4/ . The set of the MHD equations in the dimensionless variables 

contains such dimensionless parameters as the ratio of the characteristic gas pressure 

to magnetic one 2/8 oo HP   and 2/31Re Tom    , as well as dimension-

less values of thermal conductivity and flux W . 

Formulation of the problem includes the boundary conditions at the electrodes and 

at the inlet and outlet of the accelerator channel. We assume that at the inlet of chan-



61 

 

nel 0z  the plasma is supplied with the known values of the density )()( 1 rfr   

and the temperature )()( 2 rfrT  . Not solving an additional electric circuit equation it 

is possible to assume that the current is kept constant and comes into the system only 

through electrodes. Then at 0z  we have 0zj  or constrHr o   where 

LRr oo /  . The boundary conditions at electrodes )(zrr a  and )(zrr к forming 

the wall of the channel are based on the assumptions that the electrode surfaces are 

equipotential ( 0E ) and impermeable for plasma ( 0nV ). When 0r we have:  

0rV ,   0V ,   0H . 

The algorithm for the numerical solution of equations (1) assumes the mapping of 

computational domain onto a unit square in ( zy, ) plane using the relation:  

                                )()()1( zryzryr aк  .                                           (2) 

The finite-difference scheme with flux correction is used to calculate the hyperbol-

ic part of the MHD equations. Magnetic viscosity and thermal conductivity calcula-

tion is based on the flux variant of the back-substitution method. Quasistationary 

flows are calculated by the establishment method. The radiation transfer problem was 

solved within the framework of the developed 3D model. 

Rate of the radiation propagation is significantly higher than the specific rates of 

the plasmodynamic processes. In this case the radiation field instantly adapts to distri-

bution of the flow parameters, and it is possible to reduce the problem to solve the 

stationary equation of the radiation transport: 

                           ΩrrrΩrΩ ,,   II  ,                                (3) 

here  Ωr,I  is radiation intensity with the particular frequency  , emitting in direc-

tion of the spatial angle Ω , corresponds to the point with the coordinate r . The main 

radiation characteristics are the density of the radiation energy U and density of the 

radiation energy flux W  are determined by the radiation intensity: 

     


0

4

0

,
1



 ddI
c

U Ωrr ,      


0

4

0

,


 ddI ΩΩrrW .         (4) 

The absorption coefficient  r  and emissivity  r  are known functions that 

depend on the condition of medium, its density and temperature and are sums of three 

parts corresponding to a) absorption and emission in lines; b) photo-ionization and 

photo-recombination; and c) scattering. 

In accordance with equations (4) the problem of the radiation transport in flow of 

the ionizing gas and plasma should be solved in the three-dimensional formulation. 

It is easy to obtain a grid for the 3D problem of the radiation transport as rotation 

the initial grid in plane of the variables ),( rz  by 360 degrees around the axis of chan-

nel with a certain step. The radiation intensity has to be determined in different direc-

tions for the further calculation of the integral values in relations (4) in any node or 

cell of a three-dimensional grid. For this purpose an additional angular grid is built in 

the azimuth and polar angles. The splitting of the complete spatial angle 4  into 

elements of an angular grid is made by the method providing the uniform distribution 



62 

 

of rays in all directions. For each node in calculation we use as a rule 440 rays for the 

complete spatial angle. 

The ray tracing is carried out in accordance with the method of the long character-

istics in order to determine the points of the crossing of a ray with the faces of cells in 

the three-dimensional grid and the position of the crossing of a ray with one of the 

boundaries of the three-dimensional computational domain. The invisible shadow 

regions are excluded from calculation of the radiation energy flux for the given node 

of grid in the tracing process of the computational domain by rays emerging from any 

node of the grid. Coefficients )(r  and )(r  are calculated by the average value of 

density and temperature in the center of the cell. Intensity along rays or characteristics 

passing through any number of homogeneous regions with known coefficients   и 

  is determined as a result of addition of solutions for homogeneous areas. 

The more detailed formulation of the problem is presented in [1–3]. 

3 Development of a parallel version of the program 

A parallel program code for the study of high-speed plasma flows in the channels of 

quasi-stationary plasma accelerators is implemented using the DVM-system [4, 5] in 

the Fortran-DVMH language. 

Let's consider the process of parallelization of this software complex. The main 

difficulty of developing a parallel program for a cluster is the need to make global 

decisions on the distribution of data and computations taking into account the proper-

ties of the entire program, and then perform the complex work of modifying the pro-

gram and debugging it. The large amount of program code, multi-modularity, multi-

functionality makes it difficult to make decisions on the consistent distribution of data 

and computations. 

Incremental parallelization can be used to facilitate the development of a parallel 

version of the program. The idea of this method is that not the whole program is par-

allelized, but its parts (areas of parallelization) - additional instances of the required 

data are created in them, the distribution of this data and the corresponding computa-

tions are made. The regions are selected based on the times obtained by profiling the 

sequential program. 

To interact with those parts of the program that have not been parallelized, copy 

operations are used from original to additional (distributed) data and back. In this 

way, we can isolate the areas of code we are interested in and parallelize each area 

separately from the rest of the program. This allows you to test different approaches 

to data distribution and calculations distribution within the scope, which can signifi-

cantly change the structure of data storage, but any changes within the scope will not 

require any modifications of the code outside the scope. At the same time, it is much 

easier to find the most optimal distribution of data and computations in a small local 

area than for the whole program. 

After parallelizing individual areas, parallel program optimization is performed to 

minimize the amount of data copied. To do this, several regions can be combined into 



63 

 

one if an effective common distribution can be found for a common area. It is also 

possible to add less time-consuming fragments to the area if this reduces the number 

of data copying operations. This allows you to minimize the amount of program code 

for analysis and parallelization-it is enough to consider only those fragments that 

work with data already used within the parallelized area. 

Having optimal solutions for distributing data and calculations in local areas makes 

it a little easier to find a common distribution for the combined area. However, in the 

case where the optimal global distribution cannot be found for the combined domain, 

incremental parallelization makes the process of finding local optimal distributions 

much easier. This is very useful if the program consists of several parts, the data in 

which differ significantly in structure. 

To solve this problem, several different mathematical models are used at once, so it 

was decided to use incremental parallelization, which was successfully applied. The 

most time-consuming parts of the program were determined using the performance 

analyzer, which is part of the DVM system. From the point of view of command exe-

cution time, the most essential part of the software package was the run_radiat func-

tion, which corresponds to the calculation of radiation transfer in the 3D formulation 

of the problem. In addition, considerable time was required to perform an iteration 

loop responsible for the calculations of axisymmetric flows based on the MHD model. 

We describe the process of parallelizing the main iteration loop and the run_radiat 

function. 

The iteration loop was a regular loop with a fixed number of iterations. The inner 

loops have been described using labels (Fig. 1): 

         do 43 L = 1,NZ 

            do 43 M = 1,NR 

               HFI(M,L) = HRFI(M,L) / RAD(M,L) 

43             continue 

Fig. 1. Fragment of the source program 

For convenience, all internal loops were rewritten without the use of labels, and all 

arrays used in them were replaced (Fig. 2). The rejection of the use of labels was a 

purely technical transformation with the aim of increasing the readability of the pro-

gram and facilitating parallelization. 

 

      do L = 1,NZ 

        do M = 1,NR 

          new_HFI(M,L)=new_HRFI(M,L)/new_RAD(M,L) 

        end do 

      end do 

Fig. 2. Fragment of program after conversion 

Arrays were replaced as a preparation for further distribution of these arrays in iso-

lation from the rest of the program. Since the iterative loop is only some part of the 

whole complex, it was necessary to make sure that the distribution of arrays would 



64 

 

not require any changes to the rest of the program. In total, about 45 arrays were re-

placed in this way. All these arrays, both original and copies, were replaced by dy-

namic ones, and their selection occurred just before the start of the iterative loop. At 

that moment, the original arrays were destroyed on the contrary, so as not to consume 

extra memory (Fig. 3): 

      allocate(new_HRFI) 

      new_HRFI = HRFI 

      deallocate(HRFI) 

      <итерационный цикл> 

      allocate(HRFI) 

      HRFI = new_HRFI 

      deallocate(new_HRFI) 

Fig. 3. Work with copies of arrays 

The above transitions from one array to another were placed before and after the it-

eration loop if the data available in these arrays were used respectively inside or after 

the iteration loop. Most of the loops had a fairly simple array access patterns - either 

using the elements appropriate for loop iteration, or the nearest neighbors of those 

elements (Fig. 4): 

     do L = 2,NZM1 

       do M = 2,NRM1 

               FGB = (GAM - 1.) / BB * new_RDY(L) / new_TEM(M,L) 

               DRHDY = (new_HRFI(M + 1,L) - new_HRFI(M - 1,L)) / DY2 

               DRHDZ = (new_HRFI(M,L + 1) - new_HRFI(M,L - 1)) / DZ2 

               ! more code 

             end do 

          end do 

Fig. 4. Typical loop in the program 

For arrays such as new_HRFI from the example above, the corresponding shadow 

edges were specified during distribution (SHADOW specification). The vast majority 

of loops were not closely nested, which did not allow them to be distributed simulta-

neously in two dimensions. It was also impossible to carry out a distribution for any 

one distribution, since there were loops with direct dependencies in both one and the 

other dimensions (Fig. 5): 



65 

 

 do L = 2,NZM1 

   ! more code 

   do N = 2,NRM1 

     M = NR - N + 1 

     WL(M)=((1.-C(M)/A(M)*BET(M))*(B(M)*WL(M+1)- 

              F(M))+C(M)*GAMM(M))/ A(M) 

     PROR(M) = (A(M) * GAMM(M) + BET(M) * (F(M) –  

              B(M) * WL(M + 1))) / A(M) 

   end do 

   !more code 

 end do 

Fig. 5. Dependency loop 

Similar loops were in another dimension. A significant number of loops also had a 

significant amount of access to potentially remote data for one of the dimensions 

(Fig. 6): 

      do L = 2,NZM1 

         ! more code 

         PPL = VR1 * new_RAD(1,L) * new_RDY(L) * new_PLT(1,L) 

         !more code 

      end do 

Fig. 6. Potentially remote data 

To solve these problems, it was decided to use two data distribution templates 

(template specification) - one for each dimension. In one case, it turned out that each 

process received a part of "rows" of a two-dimensional array and worked with them. 

In the other-each process received a part of "columns" of the two-dimensional array 

and processed them. For each loop, a dimension without dependencies and without 

accesses to remote data was selected, and parallelization was performed on it. Previ-

ously created copies of arrays were also distributed to the dimensions on which the 

loop in which they were used was parallelized. If the array was used in loops, among 

which there were parallel loops in both one and the other dimension, 2 copies were 

created for it at once. Between loops parallelized by different dimensions, if neces-

sary, switching between templates was made (Fig. 7): 

!DVM$ PARALLEL(L) ON new_PLT(*,L), PRIVATE(M) 

      do L = 2,NZ 

        do M = 1,NR 

          ! more code 

        end do 

      end do 

      new2_PLT = new_PLT 

!DVM$ PARALLEL (M) ON new2_PLT(M,*), PRIVATE(L) 

      do M = 2,NR 

        do L = 1,NZ 



66 

 

           ! more code 

        end do 

      end do 

Fig. 7. Switching between templates 

There were only 2 serious switches in the program - the transfer of 8 arrays from 

the distribution on the second dimension to the distribution on the first, and the trans-

fer of the same 8 arrays back. The program required another similar translation back 

and forth, but only for one array. About 30 arrays were distributed over the created 

templates, of which about 20 had copies for both distribution templates. Also, more 

than 50 different loops were parallelized. 

In the run_radiat function, 5 loops were parallelized. These loops used a variety of 

data structures and arrays of unique formats (Fig. 8): 

do inode = 1,mesh3d%NNodes 

          den3d%fval(inode) = 0.e0_r8p 

          tem3d%fval(inode) = 0.e0_r8p 

          do i = 1,valsInterp%ielem(inode)%nSrc 

             n1  = valsInterp%ielem(inode)%iSrc(i) 

             eps = valsInterp%ielem(inode)%wSrc(i) 

             den3d%fval(inode) = den3d%fval(inode) + den2d%fval(n1)*eps 

             tem3d%fval(inode) = tem3d%fval(inode) + tem2d%fval(n1)*eps 

          end do 

       end do 

Fig. 8. The use of complex data structures 

Since the main arrays in these loops had a unique structure that could not be corre-

lated well with each other, 4 different distribution templates were created for all 5 

loops (since 2 out of 5 loops were parallelized using the same template). All distribut-

ed arrays were replaced with ordinary arrays of standard types, the remaining arrays 

and data structures were left in their original form. The final version of the loop from 

the example above after transformations and parallelization looked like this (Fig. 9): 

  !DVM$ PARALLEL(inode) ON new_den3d(inode),PRIVATE(n1,eps,i) 

  do inode = 1,m3d 

          new_den3d(inode) = 0.e0_r8pч 

          new_tem3d(inode) = 0.e0_r8p 

          do i = 1,valsInterp%ielem(inode)%nSrc 

             n1  = valsInterp%ielem(inode)%iSrc(i) 

             eps = valsInterp%ielem(inode)%wSrc(i) 

             new_den3d(inode) = new_den3d(inode) + new2_den2d(n1)*eps 

             new_tem3d(inode) = new_tem3d(inode) + new2_tem2d(n1)*eps 

    end do 

   end do 

Fig. 9. Loop after transformations 



67 

 

The main difficulty in parallelizing this part of the program was the indirect ad-

dressing highlighted in the examples above. During any iteration of the loop, the pro-

gram can access an arbitrary number of different elements of the addressable array, 

perhaps even all. Moreover, the situation when each process will request almost all 

the elements of an indirectly addressed array (that is, the values of n1 for each set of 

turns allocated to the process pass through almost all possible elements of the den2d% 

fval and tem2d% fval arrays) is normal for this task. Therefore, it was decided to 

write data to distributed arrays, and if in subsequent loops this array is addressed indi-

rectly, it was redistributed by all processes. Given that every process uses almost eve-

ry element of the array, the extra overhead of making a full copy is negligible. After 

the loop indicated above, for example, redistribution took place in the form (Fig. 10): 

    new2_den3d = new_den3d 

    new2_tem3d = new_tem3d 

Fig. 10. Copy data after loop execution 

The prefix new_ pointed to distributed arrays and new2_ to non distributed arrays. 

A separate problem was the presence of reduction operation sum with indirect ad-

dressing (Fig. 11): 

    Do idir = 1,NDirs 

        do iEn = 1,NEnGroups 

            do isegm = 1,NPoints 

                inode = pTrace%rayTree(idir)%segm(isegm)%inode 

                !more code 

                cUden%fval(inode) = cUden%fval(inode) + cU_ptX 

            end do 

        end do 

    end do 

Fig. 11. Loop with a reduction 

In this fragment of the program, when any iteration of the loop is performed, an ar-

bitrary element of the array cUden%fval(inode) can be written to, and this data 

needs to be summed. To solve this problem, a special distributed array was created, 

allowing each iteration of the loop to carry out the summation in its own "column". 

After this, the summation over the last dimension of the array was performed 

(Fig. 12): 

  do idir = 1,NDirs 

     !DVM$ PARALLEL(iEn) ON new_cuden3d(*,iEn) 

     do iEn = 1,NEnGroups 

        do isegm = 1,NPoints 

           inode = pTrace%rayTree(idir)%segm(isegm)%inode 

           !more code 

      new_cuden3d(inode,iEn) = new_cuden3d(inode,iEn) + cU_ptX 

        end do 

     end do 



68 

 

  end do 

  !DVM$ PARALLEL(iEn) ON uni_cuden3d(*,iEn), PRIVATE(inode),  

  !DVM$* REDUCTION(SUM(new2_cuden3d)) 

  do iEn = 1,NEnGroups  

     do inode = 1,m3d 

        new2_cuden3d(inode)=new2_cuden3d(inode)+ new_cuden3d(inode,iEn) 

     end do 

  end do 

Fig. 12. Reduction implementation 

As a result, each process received a correct copy of the reduction array. 

Based on the results of parallelization, a version of the program was obtained that 

can be run on multi-core clusters. 

4 Efficiency of parallel program 

Calculations using a parallel version of the program were performed on two multipro-

cessor high-performance computing systems K-100 (KIAM RAS) and MVS1P5 

(JSCC RAS). The execution times of the program in seconds on different number of 

cores are shown in the Figures 13–14. 

The calculation of one time step is shown, determined by the Courant condition in 

solving the evolutionary problem based on the MHD model. Curves 1 in the figures 

correspond to calculations using the long characteristics method, which requires the 

most computational resources in the case of solving a fully three-dimensional problem 

and the calculation of integral characteristics in all nodes of the three-dimensional 

coordinate grid. Curves 2 and 3 correspond to the calculations of the integral charac-

teristics of radiation in one plane of variables taking into account the axial symmetry 

of the flow. Along with the method of long characteristics, the method of short char-

acteristics was implemented, which is answered by Curves 2. The method of short 

characteristics leads to numerical diffusion in the calculation of the radiation field, 

and it requires more time to calculate compared to the method of long characteristics, 

which is represented by the curves 3 in the figures, provided that the integral charac-

teristics of radiation in one plane of variables are calculated taking into account the 

axial symmetry of the flow. 

  

Fig. 13. Program execution time in seconds on a different number of К-100 cores 



69 

 

 

Fig. 14. Program execution time in seconds on a different number of MVS1P5 cores 

 

Fig. 15. Acceleration of the program execution process relative to the initial version on a dif-

ferent number of K-100 cores 

Figures 15 and 16 show how the acceleration of the parallel version of the program 

changes relative to the original serial version on a different number of cores of K-100 

and MVS1P5 computer systems. Curves 1, 2 and 3 in these figures meet the same 

calculation conditions specified above. 

 

Fig. 16. Acceleration of the program execution process relative to the initial version on a dif-

ferent number of MVS1P5 cores 

Weaker acceleration on K-100 for curve 3 in Fig. 15 for 32 processors is explained 

by the fact that the program execution time is already very short, less than 30 seconds, 

and overhead costs begin to occupy a significant percentage of the program time. 

The acceleration of the parallel version of the program on a single processor can be 

explained by more optimal memory accesses. Replacing some pointer-based struc-

tures with a set of regular arrays has reduced the total number of memory accesses. It 



70 

 

also allowed in some cases to remove indirect addressing that increased the efficiency 

of the cache memory. The resulting acceleration is significantly dependent on the grid 

used, the mode of operation of the program and characteristics of memory for a par-

ticular machine. It can be enough to cover all the overhead arising from paralleliza-

tion and even speed up the program on a single processor a little. 

Conclusions 

This article describes the experience of successful use of DVM-system for the devel-

opment of parallel software code for calculating the problem of radiation magnetic 

hydrodynamics and the study of plasma dynamics in the channel of plasma accelera-

tor. 

The use of DVM-system allowed to accelerate the process of developing parallel 

program. At the same time, the following results were achieved to accelerate the pro-

gram execution process relative to the original version: up to 24 times on 32 proces-

sors of the K-100 computer complex (KIAM RAS) and up to 22 times on 28 proces-

sors of the MVS1P5 computer system (JSCC RAS). 

Numerous calculations performed using the parallel version of the program have 

shown that the value of the discharge current required to achieve ion energy increases 

in proportion to the size of the installation. It was found that a decrease in the charac-

teristic plasma concentration at the entrance to the accelerator channel can significant-

ly reduce the values of discharge currents. The values of the discharge current in the 

plant were determined, providing the ion energy at the output at the level that is nec-

essary for the subsequent d-T plasma synthesis reaction in magnetic traps to hold the 

plasma. The found discharge currents are quite acceptable for existing QSPA installa-

tions. 

References 

1. Kozlov, A.N., Konovalov, V.S.: Numerical study of the ionization process and radiation 

transport in the channel of plasma accelerator. Communications in Nonlinear Science and 

Numerical Simulation, 51, 169–179 (2017). 

2. Kozlov, A.N. The study of plasma flows in accelerators with thermonuclear parameters. 

Plasma Physics and Controlled Fusion, 51(11), Ar. 115004, 1–7 (2017), 

https://doi.org/10.1088/1361-6587/aa86be. 

3. Kozlov, A.N., Konovalov, V.S.: Radiation transport in the ionizing gas flow in the quasi-

steady plasma accelerator. Journal of Physics: Conference Series, vol. 946 (2018), 

https://doi.org/10.1088/1742-6596/946/1/012165. 

4. C-DVMH language, C-DVMH compiler, compilation, execution and debugging of DVMH 

programs, http://dvm-system.org/static_data/docs/CDVMH-reference-en.pdf, last accessed 

2019/11/21. 

5. Fortran DVMH langauge, Fortran DVMH compiler, compilation, execution and debugging 

of DVMH programs, http://dvm-system.org/static_data/docs/FDVMH-user-guide-en.pdf, 

last accessed 2019/11/21. 


