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Abstract. DVM-system is designed for the development of parallel programs of 

scientific and technical calculations in C-DVMH and Fortran-DVMH lan-

guages. These languages use a single parallel programming model (DVMH 

model) and are extensions of the standard C and Fortran languages with paral-

lelism specifications, written in the form of directives to the compiler. The 

DVMH model makes it possible to create efficient parallel programs for hetero-

geneous computing clusters, in the nodes of which accelerators (graphic proces-

sors or Intel Xeon Phi coprocessors) can be used as computing devices along 

with universal multi-core processors. The article describes the method of de-

bugging parallel programs in DVM-system, as well as new features of DVM-

debugger. 

Keywords: Automation of Development of Parallel Programs, Automation of 
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1 Introduction 

Classic debugging approaches may not always be helpful when it comes to parallel 

programming. A step-by-step study of the executing process at certain breakpoints or 

debug prints are hardly applicable to real scientific and engineering parallel software 

systems designed for continuous execution for hours or even days. 

Parallel algorithms are usually much more complicated than sequential solutions of 

the same problems. Moreover, the parallel code may contain atypical for sequential 

debugging errors associated with the incorrect use of synchronization primitives and 

functions that provide parallelism. 

The following factors affect the complexity of debugging parallel programs: 

 the necessity to track the status of several (or even many) parallel pro-

cesses/threads;  

 the difficulty of reproducing errors caused by non-deterministic execu-

tion;  

 the debugging tools influence on the execution process (different execu-

tion time of the operators, additional internal synchronizations). 
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To debug parallel programs, automated methods have been developed. Such meth-

ods allow to find most errors in the program in automatic mode with minimal in-

volvement of the programmer. One of these methods is the dynamic correctness con-

trol. This method is used in many debugging tools for multithreaded programs, such 

as: Helgrind [1], DRD [2], Intel Parallel Inspector [3]. In the DVM-system, this meth-

od is used to debug parallel programs made for heterogeneous clusters. 

Another automated debugging method is the comparative debugging of parallel 

programs. The main principle of this method is to compare the execution process of 

two programs, by controlling the values of variables at certain controlled points. 

Comparison can be carried out either between simultaneously running programs, or 

using trace files, which store all the necessary data about operations and variable val-

ues at controlled points. This debugging method was implemented in the Guard [4] 

and Wizard [5] debuggers. The term "comparative debugging" was introduced in the 

articles describing these tools. Around the same time, this method was also imple-

mented in the debugger of the DVM-system. 

In the Guard and Wizard debuggers, the controlled points at which the variable 

values are compared are setting by the user. In contrast, in the DVM-debugger, com-

parison points are setting automatically. 

This article briefly describes the approaches for DVMH-programs debugging, pic-

tures the problems that had arose during the use of DVM-system comparative debug-

ging implementation, and suggests new methods to overcome these problems. 

2 Approaches for Debugging Parallel DVMH programs 

To identify errors that lead to incorrect calculations, the DVM-system [6-8] contains 

various special tools for automating the debugging process. Such errors can be detect-

ed by executing a DVMH-program in the dynamic correctness control mode and/or 

by starting computations on one or several processors in a comparing mode with the 

reference results obtained during its sequential execution. 

The use of automated debugging methods requires the instrumentation of a parallel 

program: insertion of special calls to the debugger that allow to control and process 

execution of a program. There are two approaches for such instrumentation: binary 

code instrumentation and source code instrumentation. Helgrind, DRD, Intel Parallel 

Inspector are based on binary instrumentation. But the use of high-level programming 

models (such as OpenMP [9]), can lead to certain difficulties with that approach. 

For example, instrumentation utility must restore the parallelism specifications 

from binary code of the program in order to be able to generate errors in the context 

of the source code of that program. To make this possible, the instrumentation utility 

must know the internal logic of the compiler. If both compiler and debugger are made 

by the same developer (e.g. Intel), then such recovery can be implemented. But when 

the compiler is developed by one company (e.g. Microsoft), and the debugger is by 

another (e.g. Intel), then recovering of parallelism specifications can be difficult. This 

problem can be avoided by using the source code instrumentation. 
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Debugging instrumentation of programs in DVM-system is performed by C-

DVMH [6] and Fortran-DVMH [7] compilers, which add calls to DVM-debugger 

functions at the following points of the program: 

 beginning of a sequential or parallel cycle;  

 completion of a sequential or parallel cycle;  

 beginning of a new iteration of a cycle;  

 accessing a variable for reading;  

 before accessing a variable for writing;  

 after accessing a variable for writing. 

In addition, the debugger functions are also performed while executing calls to the 

Lib-DVMH library [8]. 

Dynamic correctness control of DVMH-directives is based on an analysis of the 

sequence of calls to Lib-DVMH functions and accesses to variables. Dynamic control 

is allowing to detect the following types of errors: 

 undeclared data dependency in a parallel loop;  

 incorrect use of private and reduction variables;  

 undeclared access to non-local elements of a distributed array;  

 incorrect work with shadow edges of reduction arrays modification of 

non-local elements of a distributed array in the sequential part of the pro-

gram;  

 going out of bounds in distributed array;  

 writing data to the remote access buffer. 

It should be mentioned that not all errors can be determined by the dynamic cor-

rectness control. For example, external procedures and functions without any source 

code cannot be analyzed. The comparative debugging method can be used in order to 

check such programs. This method will be discussed in detail in the next section. 

3 Comparative Debugging of DVMH-programs 

The intermediate results comparison implemented in DVM-system allows to detect 

errors in parallel programs that arise due to incorrect DVMH instructions, as well as 

program errors that do not appear in sequential execution and were not detected by 

the dynamic control method. 

The general scheme of comparative debugging method is as follows: 

1. Getting a reference trace (./dvm trc command in console interface). Trace 

contains: readings and modifications of variables, the beginning of each 

loop iteration, the beginning and end of parallel and sequential loops, the 

beginning of each parallel task, the beginning and end of the task group. 

The source for reference trace can be either the sequential execution of the 

same program or parallel execution (e.g. the trace recorded on the differ-

ent computing cluster where the error does not occur); 

2. Automatic comparison of program execution results with previously ac-

cumulated reference trace (./dvm dif command). All integer numbers is 

compared strictly and real numbers are compared with a given absolute 
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and relative accuracy. Information on the all discrepancies is reported to 

user. 
 

<trace context info (OS architecture, working directories)> 
MODE = <NONE | MINIMAL | MODIFY | FULL> 
<SL | PL | TR> <structure number> (<parent structure number>) 

[<loop rank>] {<file>, <line>} = <NONE | MINIMAL | MODIFY | FULL>,  

(<dimension>:<first iteration>, <last iteration>, <loop step>), …  
EL: <structure number> 

… 
<SL | PL | TR> <structure number> (<parent structure number>) 

[<loop rank>] {<file>, <line>} = <NONE | MINIMAL | MODIFY | FULL>,  

(<dimension>:<first iteration>, <last iteration>, <loop step>), … 
EL: <structure number> 
END_HEADER 

Fig. 1. Trace header structure 

Reference trace file is created for each process and has a text format. This file 

starts with the special header that contains used trace parameters and hierarchy of 

loops and task groups (see Fig. 1). 

 
 

- reading variable: 
RD: [<type of variable>] <name of variable> = <value>; {<file>, 

<line>} 

 
- before modification of variable: 
BW: [<type of variable>] <name of variable>; {<file>, <line>}  

 
- after modification of variable: 
AW: [<type of variable>] <name of variable> = <value>; {<file>, 

<line>}  

 
- reading reduction variable: 
RV_RD: [<type of variable>] <name of variable> = <value>; 

{<file>, <line>}  

 
- before modification of reduction variable: 
RV_BW: [<type of variable>] <name of variable>; {<file>, 

<line>}  

 
- after modification of reduction variable: 
RV_AW: [<type of variable>] <name of variable> = <value>; 

{<file>, <line>}  

 
- final result of reduction operation: 
RV: [<type of variable>] <value>; {<file>, <line>}  

 

Fig. 2.  Trace records format (variables) 
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- beginning of parallel loop: 
PL: <structure number> (<parent structure number>) [<loop 

rank>]; {<file>, <line>}  

 
- beginning of sequential loop: 
SL: <structure number> (<parent structure number>) [<loop rank 

(always equals 1)>]; {<file>, <line>}  

 
- beginning of task group: 

TR: <structure number> (<parent structure number>) [<group rank (always 

equals 1)>]; {<file>, <line>}  

 
- next loop iteration of parallel task: 
IT: <absolute index of iteration (calculated from values of all 

index variables of the cycle) or task number>, (<value of 1st index 

variable>,< value of 2nd index variable>,…).  

 
- end of loop (parallel or sequential): 
EL: <structure number>; {<file>, <line>}  

 
- end of the local calculations block in the sequential part of 

the program: 
SKP: {<file>, <line>}  

 

Fig. 3. Trace records format (loops and parallel tasks) 

Global trace details level can be set by modifying the value of the MODE parame-

ter in the trace header. Details level can also be specified for each cycle and task 

group of the DVMH-program by setting the corresponding mode in the line that de-

scribes the desired structure in the header. 

The main body of the trace contains a sequence of specific records. These records 

determine the dynamic structure of the program: the sequence of statements during 

the concrete execution of the program. Fig. 2 and 3 provide a complete list of events 

that are recorded in the trace. 
#define L 3 

int main(int an, char **as) 

{ 

    #pragma dvm array distribute[block] 

    double A[L]; 

    #pragma dvm parallel([i] on A[i]) 

    for (int i = 0; i < L; i++) 

    { 

        if (i == 0 || i == L - 1) 

            A[i] = 0; 

        else 

            A[i] = 2 + i; 

    } 

    return 0; 

} 

Fig. 4. C-DVMH example program (file “test.c”) 

 



76 

 

Figure 5 shows the recorded reference trace of the example program (code of 

which is shown in Fig. 4). This program consists of one parallel loop, which starts on 

the line 7 of the "test.c" file and initializes the elements of the distributed array A. As 

a result of this loop, the elements A[0] and A[2] are set to "0", and A[1] becomes "3". 

# Begin trace header. Don't modify these records 
TRACE_TIME = "Mon Apr  15 00:00:22 2019" 
ARCHITECTURE = "Machine x86_64" 
USER_HOST = "DVM-COREI7@DVM-COREI7" 
WORK_DIR = "/home/DVM/dvm_current/dvm_sys/demo" 
TASK_NAME = "test" 
MODE = FULL 
PL: 1() [1] {"test.c", 7} = #, (0:0,2,1) 
EL: 1 
END_HEADER 
# End trace header 
PL: 1() [1]; {"test.c", 7}, 1.B 
  IT: 0, (0) 
  BW: [4] "A[i]"; {"test.c", 10} 
  AW: [4] "A[i]" = 0; {"test.c", 10} 
  IT: 1, (1) 
  BW: [4] "A[i]"; {"test.c", 12} 
  AW: [4] "A[i]" = 3; {"test.c", 12} 
  IT: 2, (2) 
  BW: [4] "A[i]"; {"test.c", 10} 
  AW: [4] "A[i]" = 0; {"test.c", 10} 
EL: 1; {"test.c", 7}, 1.E 
END_TRACE 

Fig. 5. Reference trace of example program 

Comparative debugging proved to be effective on simple model problems, but 

came across two obstacles: resources and accuracy. Next section describes the es-

sence of these problems. 

4 Issues with the Current Comparative Debugger  

After instrumentation, each operator of debugged program is surrounded by several 

calls to debugging library, so it is not surprising that execution time can increase sig-

nificantly. For example, in experiments with benchmark programs from the NAS 

NPB package [11], the following results were obtained: 

 the slowdown only from debugging instrumentation (i.e. the program was 

compiled for debugging, but executed without collecting/comparing the 

trace) was around 50–100 times;  

 trace file size (several dozens of bytes for each traced operator) turned out 

to be completely unacceptable for real programs. The average size of full 

trace for benchmark program was measured in terabytes, and the approx-
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imate time for collecting the trace is ~28000 sec. (with an average runtime 

of the initial programs of ~5 sec., i.e., a ~4000 times deceleration). 

Therefore, full comparative debugging turned out to be applicable only on small 

"model" data, which are not always available. To overcome this problem, the follow-

ing control and optimization tools were developed and implemented in the DVM-

system debugger [12]: 

 selective tracing: only modifications, only distributed arrays, etc. (compi-

lation options -d1...-d4);  

 local instrumentation, i.e. manual selection of program sections, that will 

be instrumented for debugging (directives DEBUG <debug mode> / END 

DEBUG);  

 preliminary estimation of the trace size by obtaining the trace header, and 

its manual correction to disable tracing of certain loops or iterations 

(command ./dvm size);  

 automatic selection of parallel loops iterations for tracing: “borders” and 

“corners” (compilation options -dbif1 and -dbif2);  

 generation of two cycle bodies: one without debugger calls, the other is 

instrumented; the instrumented loop body is used only on selected itera-

tions, and the original program is executed on the rest;  

 recording the checksums of arrays at the end of the loop instead of tracing 

modifications of their elements in the body of the loop (parameter 

TraceOptions.CalcChecksums). 

Described improvements extend the possibility of applying comparative debugging 

to real applications. For example, when processing large amounts of data through 

loops, the most probable place for errors occurrence (going out of the array bounds, 

uninitialized variables) will be boundary iterations. Moreover, the usual structure of 

computational algorithms is causes that an error occurred at the internal iteration of 

the loop will propagate to the boundaries. For such tasks, selective tracing and com-

paring of boundary iterations can be used (-dbif<level> options), which allows (see 

Table 1): 

 significantly reduce the size of the trace (100-1000 times);  

 significantly reduce the execution time (10-1000 times);  

 preserve most coverage of program operators (over 99%). 

Table 1. Average trace size and execution time for NAS NPB benchmarks (class A)  

 Full trace 
"Corners" 

width = 1 

"Corners" 

width = 2 

"Borders" 

width = 1 

"Borders" 

width = 2 

Average 

coverage 
100% 99,4% 99,8% 99,8% 99,8% 

Average  

trace size, 

bytes 

6,57E+12 

(~6 Tb) 

4,6E+07 

(~44 Mb) 

9,4E+08 

(~894 Mb) 

1,7E+10 

(~16 Gb) 

6,0E+10 

(~56 Gb) 
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Average 

execution 

time, sec 

27915 

(7,75 h.) 
15 19 105 287 

 

But, despite all optimizations, use of comparative debugging for scientific and 

technical algorithms, especially on real data (rather than on artificially created small 

"model" tests) is still very restricted. 

Another problem detected during the practical usage of the debugging system was 

the “allowable” mismatch of the real variables values. Most notable case was with 

reduction variables. The calculation of the sum of the distributed array elements 

changes depending on the the parallel program configuration: firstly local sums are 

calculated, and then they are combined in non-deterministic order. Results of such 

computations are slightly different (usually in the 1-2 minor digits), but, from the user 

point of view, resulting values are be equally valid. Reduction operations create four 

problems for comparative debugging (“false alarms”): 

 the intermediate values of the reduction variable do not coincide at all, be-

cause only partial sums (maximum values, etc.) are calculated;  

 the final value of variable, as mentioned above, may slightly differ (non-

determinism in the weak sense);  

 the difference in one variable can immediately spread to many others (for 

example, if the norm of a vector is calculated and then the vector is nor-

malized);  

 if the variable, that was influenced by the difference in the reduction re-

sults, is used as the condition for ending iterations or choosing a branch of 

calculations, then comparing programs can diverge at that condition (non-

determinism in the strong sense). 

These problems were solved by introducing a special reduction processing mode: 

 reduction variables are recognized (because they are described in DVMH-

directives), and trace records of their reading and modification in the body 

of the loop are ignored by comparative debugger;  

 at the end of the parallel cycle, the final value of the reduction variable 

(RV trace record) is added into the trace for further comparison;  

 the values of the reduction variables are compared with some accuracy, 

which may be less than the accuracy of comparing the values of ordinary 

variables. This accuracy can be set by the programmer through a special 

configuration parameter;  

 during the comparison the actual calculated value of the reduction varia-

ble (after successful comparison with the given accuracy) is replaced by 

its value from the “reference” trace to eliminate the potentially dangerous 

discrepancy. 

The described approach made it possible to suppress the “false alarms” associated 

with reduction variables. However, it was further discovered that this problem can 

appear not only on reduction computations. Executing a program on different ma-

chines or using different compilation tools can leads to different results of any arith-
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metic operation, such as multiplication or division (in 1–2 minor decimal digits of the 

mantissa) [13]. 

5 New Approaches to Comparative Debugging 

Currently, a new version of the comparative debugging system is in development 

[14], aimed to overcome described problems. The new debugger will be based not on 

trace files, but on the exchange of debug information between two simultaneously 

running instances of the program: 

1. program execution will be divided into computational blocks, the order of 

which is deterministic for any parallel system configuration; 

2. during the execution of the next block, each instance of the debugged pro-

gram will be accumulating needed trace records; 

3. upon completion of the block, the accumulated traces will be sent to one 

process for comparison. 

The DVMH parallel model is making it possible to split any program into a deter-

ministic sequence of blocks split by the boundaries of parallel loops. 

Proposed extension will support all previously implemented optimizations of the 

trace size (array checksums and boundary iterations), since all changes made by these 

optimizations affect the trace locally, within a specific parallel cycle, and therefore, 

within one specific block of the new trace. 

Described approach makes comparative debugging more flexible, allowing the 

simultaneous launch of the reference and debugged programs on one multiprocessor 

machine and remote debugging – comparing the execution of the reference program 

on one machine with an experimental version running on another. 

Splitting a parallel DVMH program into deterministic blocks has one more ad-

vantage – the values of all variables at the block boundary should be identical regard-

less of the number of processes and their configuration. Therefore, the block bounda-

ries can be used as controlled points for comparative debugging, instead of tracing 

each operation of reading and modifying variables. In this case, all calculations within 

a certain block will be carried out without additional costs for collecting the trace, and 

values of all variables that was read and/or modified during its execution will be col-

lected and compared at the end of block. 

The current implementation of the debugger already includes a special mode based 

on a similar principle: all calculations intended for execution on graphics accelerator 

can be also simultaneously performed on the central processor and then compared. In 

case of discrepancies, the needed information is reported to the user. After that, only 

results computed on central processor is used for further computations. 

Enabling and using this comparative debugging mode does not require the user to 

make any changes to the program, or even re-compile it. All that is needed is to set 

the value of the environment variable DVMH_COMPARE_DEBUG to 1, or use the 

./dvm cmph command to start the execution of the program. 

Also, to address the problem of discrepancy between the results of operations with 

real numbers, the new version of the debugger includes a mode that extends already 
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described approach of correcting reduction variables to all results of real operations 

(configuration parameter TraceOptions.SubstAllResults). After successfully compar-

ing a real variable with a reference value from trace, this reference will be substituted 

into the running program and used for further calculations. 

This correction approach excludes the possibility of applying the trace size optimi-

zations described above, since both the array checksums and the boundary iterations 

do not cover a significant part of the modifications of variables inside of parallel cy-

cles. Therefore, in order to ensure the possibility of debugging real scientific and 

technical algorithms with this mode, it is recommended to use it in conjunction with 

the comparison of simultaneously running programs. 

6 Conclusion 

DVM-system was designed to automate the process of developing parallel programs. 

Parallel programs with DVMH-directives can be efficiently (and without any addi-

tional changes) executed on clusters of various architectures including multi-core 

universal processors, graphics accelerators and Intel Xeon Phi coprocessors. This is 

achieved through various optimizations that are performed both statically (during 

compilation), and dynamically. 

An important advantage of the DVM-system is the powerful tools for debugging 

developed DVMH-programs. These tools include the dynamic correctness control and 

the comparative debugging. Various instrumentation options were implemented for 

optimizing the process of debugging. 

This article presented the problems that arose during the practical use of compara-

tive debugging implemented in DVM-system, and suggested ways to overcome these 

problems. 

Currently, a new version of the comparative debugging system is being developed, 

in which both the reference and the debugged program are executed simultaneously 

and the comparison of the calculation results is carried out directly in the process of 

execution. The new version of the debugging system will help to solve described 

problems with accuracy of computations, make the debugging process more flexible 

and less demanding to the memory of the computing system. 
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