

Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Distributed Algorithm of Self-transformation of

the Distributed Network Topology in Order to Minimize

the Wiener Index

Igor Burdonov[0000-0001-9539-7853]

Ivannikov Institute for System Programming of the RAS, Alexander Solzhenitsyn st., 25,

109004, Moscow, Russia

igor@ispras.ru

Abstract. We consider a distributed network, the topology of which is de-

scribed by a undirected tree without multiple edges and loops. The network it-

self can change its topology using special “commands” supplied by its nodes.

The paper proposes an extremely local atomic transformation: the addition of an

edge connecting the different ends of two adjacent edges, and the simultaneous

removal of one of these edges. This transformation is performed by a “com-

mand” from the common vertex of two adjacent edges. It is shown that any oth-

er tree can be obtained from any tree using only atomic transformations. If the

formation does not violate this restriction. As an example of the goal of such a

transformation, the tasks of maximizing and minimizing the Wiener index of a

tree with a limited degree of vertices without changing the set of its vertices are

considered. The Wiener index is the sum of the pairwise distances between the

vertices of the graph. The maximum Wiener index has a linear tree (a tree with

two leaf vertices). For a root tree with a minimum Wiener index, its type and a

method of calculating the number of vertices in the branches of the neighbors of

the root is proposed. Two distributed algorithms are proposed: the transfor-

mation of a tree into a linear tree and the transformation of a linear tree into a

tree with a minimum Wiener index. It is proved that both algorithms have com-

plexity not higher than 2n 2, where n is the number of tree vertice.

Keywords: Distributed Network, Transformation of Graphs, Wiener Index.

1 Introduction

The Wiener index [1] is a topological index of molecular graphs used in many appli-

cations, especially in mathematical and computer chemistry and chemoinformatics.

We consider a distributed network whose topology is a dynamically changing tree.

Dynamic graphs [2] model self-organizing networks [3–5], including social networks,

neural networks [6] and swarm intelligence [7]. A feature of these networks is their

homogeneity, without dividing the nodes into switches, hosts, and controllers. The

focus is on routing, bandwidth, noise immunity, security, load balancing and network

resources, etc. A change in the network topology is understood as an external factor

104

that must be taken into account, but which the network itself does not control or only

partially controls [8, 9].

On the other hand, there are many works in the literature devoted to precisely tar-

geted transformation of the graph, in particular, trees in order to optimize according to

certain criteria. The article proposes an atomic transformation that is extremely local,

affecting a minimum of vertices and edges that are as close as possible to each other.

Other tree transformations were considered earlier [10, 11, 12], but they are not local

enough and are reduced to chains of atomic transformations.

The algorithms proposed in the article are distributed and parallel. A tree trans-

forms itself according to “commands” from computing units correlated with vertices.

For this, we need the locality of transformation.

The structure of the article is as follows. Section 2 defines a distributed network

model and an atomic transformation. Section 3 contains basic concepts and statements

related to the Wiener index. In Section 4, we propose an algorithm for transforming a

tree into a linear tree, and in Section 5, an algorithm is proposed how to move from a

linear tree to a tree with a minimum Wiener index under a given restriction on the

degrees of vertices. The complexity estimates are given.

2 Model

Let G be an undirected tree that underlies the distributed network. Let d 3 be the

upper bound on the degrees of the vertices. The edges incident to the vertex are as-

signed various nonzero numbers; in this article we will call such a tree an ordered

tree. The edge ab has two numbers: eab at vertex a and eba at vertex b.

Vertices are identified with computational units that send messages to each other

along the edges of the graph. Vertex memory is a set of variables. First, at each vertex

a, the variable E(a) is initialized by the set of numbers of edges incident to the vertex

a. Further, during the transformation of the graph, the vertex a itself adjusts the varia-

ble E(a).

The message is set by type and parameters: Type(p1, ..., pk). Vertex a, sending a

message along edge ab, indicates its number eab. Vertex b receives the message along

with the edge number eba.

The tree is transformed by “commands” from its vertices. The atomic transfor-

mation acb is the replacement of the edge ac by the edge ab in the presence of

the edge cb (fig. 1). It is executed by the command CHANGE(eca, ecb, P), which is

given by vertex c, where P are additional parameters. The edge ab receives at the

vertex a the same number that the deleted edge ac had, i.e. eac, and at the vertex b it

gets any "free" ebc number. In order for vertex b to “recognize” this number, the mes-

sage Change(P) is automatically sent along the edge from a to b. Other messages

transmitted along the variable edge are not lost, but a message sent to vertex c will be

received by vertex b. Vertex c itself removes the number eca from E(c), and vertex b

itself adds the number eba to E(b).

105

Fig. 1. The atomic transformation acb is the replacement of the edge ac by the edge ab in

the presence of the edge cb.

To estimate the running time of the algorithm, we will neglect the computation time at

the top and assume that the time for sending messages about changes, including for-

warding messages to Change, does not exceed one clock cycle.

The following statements are true for atomic transformation1:

Proposition 1. An atomic transformation does not change the vertices of the tree

and the tree remains a tree.

Proposition 2. Any tree can be transformed into a linear tree by a chain of atomic

transformations preserving the set of vertices and the upper bound d on the degrees of

the vertices.

The atomic transformation is reversible: after the transformation acb, we can

make the inverse transformation abc. If the transformation acb preserves the

upper bound d on the degrees of the vertices, then the transformation abc also

preserves the upper bound d on the degrees of the vertices. If the chain of transfor-

mations converts tree A into tree B, then the reverse chain of inverse transformations

converts tree B into tree A. Therefore, the following statement is true.

Proposition 3. Any tree can be obtained from a linear tree with the same set of ver-

tices by a chain of atomic transformations preserving the upper bound d on the de-

grees of the vertices.

As a corollary of Propositions 2 and 3, we have the following proposition:

Proposition 4. Any tree can be transformed into any other tree with the same set of

vertices using a chain of atomic transformations that preserve the upper bound d on

the degrees of the vertices.

3 Wiener Index

The Wiener index is the sum of all pairwise distances between vertices. For a given

number of vertices, the maximum Wiener index has a linear tree (a tree with two

leaves) (A000292 in [14]). The type of a tree with maximum degree d (d 3) and the

minimum Wiener index was defined in [15]. This is a type of a balanced tree (leaf

heights differ by at most 1) with a strict requirement for the degree of the vertex,

which distinguishes it from B-trees in which all leaves are at the same height, and the

degrees of the vertices can be different, and from AVL trees which are binary.

1 For proofs of these and other statements see [13].

a

b c

Command

CHANGE(eca, ecb, Pc)

a

b c

Message

Change(Pc)

106

A rooted tree is a tree in which one vertex has been distinguished as the root. The

height of the vertex is the distance from it to the root. The tree height is the maximum

height of the vertex. The branch of a vertex v is a subgraph G(v) generated by the set

of vertices connected to the root by a path passing through v. For the edge ab, vertex a

is the father of vertex b, and vertex b is the son of vertex a if the path from the root to

b passes through a. Each vertex, except the root, has exactly one father.

In an ordered root tree, vertices of the same height are linearly ordered: the vertex v

is to the left of the vertex w (w is to the right of v) if, after the maximum common

prefix of the paths leading from the root to v and w, the number of the next edge on

the path to v is less than the number of the next edge on the path to w.

A root tree of height h with n vertices is almost good if the root degree is

min{d - 1, n - 1}, for h 3 all vertices at a height of 1 .. h - 2 have degree d, and the

tree can be ordered so that for h 2 at a height h - 1, the rightmost inner vertex u has

degree at most d, the vertices to the left of u have degree d, and the vertices to the

right of u are leaves. A good tree differs only in the degree of root, it is equal to

min{d, n - 1}. Examples are in Fig. 2.

Fig. 2. Good tree (left) and almost good tree (right).

Proposition 5 (Theorem 2.2. in [15]). A tree with the vertex degree at most d

(d 3) has a minimal Wiener index if and only if it is a good tree.

Proposition 6. For every n, there exists a unique good tree up to isomorphism pre-

serving the root with the number n of vertices and an almost good tree up to isomor-

phism preserving the root with the number of n vertices.

Proposition 7. In a (almost) good tree G, the branch G(v) of the vertex v adjacent to

the root is an almost good tree.

Let an almost good tree have height h, the degree of the root be 0 or d - 1, and the

degrees of all vertices at height h - 1 be d. The number of vertices of this tree is de-

noted by N(d, h) = 1 + (d - 1) + (d - 1)2 + ... + (d - 1)h = ((d - 1)h + 1 - 1) / (d - 2). Let a

good tree have height h, the root degree be 0 or d, and the degrees of all vertices at

height h - 1 be d. The number of vertices of this tree is denoted by M(d, h):

M(d, 0) = 1 and M(d, h) = 1 + d + d(d - 1) + ... + d(d - 1)h - 1 = 1 + dN(d, h - 1) for

h 1. Examples are in Fig. 2 when removing “gray” peaks at a height h.

Let a (almost) good tree with n vertices be given. The branch of the root neighbor

is almost a good tree. We order the neighbors of the root by not increasing the number

of vertices in their branches and denote these numbers:

for an almost good tree: N(d, n, 1) ... N(d, n, min{d - 1, n - 1}),

for a good tree: M(d, n, 1) ... M(d, n, min{d, n - 1}).

0

1

h-2

h-1

h

107

Proposition 8. Let L(d, i) = N(d, i) if G is an almost good tree, and L(d, i) = M(d, i)

if G is a good tree. Let the number of vertices n = L(d, h - 1) + m(d -1) + s < L(d, h),

where 0 s < d - 1, and m = p(d - 1)h - 2 + q, where 0 q < (d - 1)h - 2. Then for p left-

most neighbors of the root, their branches have N(d, h - 1) vertices, for the next right

neighbor of the root, its branch has N(d, h - 2) + q(d - 1) + s vertices, and for the re-

maining neighbors of the root, each branch has N(d, h - 2) vertices.

4 Algorithm A: Transformation to a Linear Tree

4.1 Informal Description

If for a vertex v the branch of its son w is a linear tree, then the path from v through w

to the leaf will be called a line from v. A starlike tree is a root tree consisting of lines

leading from a root.

Let G be a tree with n vertices and with root r. For convenience, we assume that

the root has a fictitious edge with number 0, leading to a fictitious father. The algo-

rithm starts when the message Start() is received by the root from his (fictitious) fa-

ther and ends with sending the message Line(n) from the root along this edge. The

algorithm is recursive, at the recursion level h, the algorithm works on each branch of

G(v), where v has height h, and consists of three stages.

Stage 1 (Fig. 3). The vertex v receives a message Start from his father,stores the

number of the edge leading to his father, and sends Start to all his sons.

Fig. 3. Stage 1: Messages Start and tree branches.

Stage 2 (Fig. 4). Vertex v expects to receive messages Line from its sons, counting

the number of vertices of branch G(v) as 1 + the sum of the parameters of received

messages Line.

Fig. 4. Stage 2: Messages Line and lines.

v

…

v1
1 v2

1 vk-1
1 vk

1

G(vk-1
1

)

G(vk
1)

G(v2
1)

G(v1
1)

sons of v

father of v

v

…

v1 v2
1 vk-1

1 vk
1

G(vk-1
1

)

G(vk
1)

v1
x(1)

v1
2

v2
x(2)

v2
2

sons of v

108

At the beginning of Stage 3 (Fig. 5), the branch G(v) is a starlike tree with k lines.

The length of the ith line is x(i). The vertex v starts k - 1 parallel chains of atomic

transformations so that for i = 1 .. k - 1 at the first edge of the (i + 1)th line, its end

vi + 1
1 is fixed, and the other end moves along the ith line from v to the leaf vi

x(i). To do

this, the vertex v performs k - 1 transformations vi + 1
1vvi

1 simultaneously in the

sequence i = k - 1, ..., 1. Each of these transformations is the first in the chain of trans-

formations along the ith line: vi + 1
1vvi1, vi + 1

1vi
1vi

2, ..., vi + 1
1vi

x(i) - 1vi
x(i).

These transformation chains are performed in parallel along k - 1 lines. When the

chain of transformations along the ith line ends in its leaf, the ith and (i + 1)th lines are

concatenated. When this happens for all i = 1 .. k - 1, the branch G(v) becomes a line-

ar tree. Vertex v is notified of this by a message Finish(). It is sent after the kth and

(k - 1)th lines are concatenated, and then passes along the lines k - 1, ..., 1, and the ith

line goes from the end vi
x(i) to the beginning vi

1. If Finish transfers to the (i -1)th line

before concatenating it with the ith line, the transfer is suspended until the concatena-

tion is completed. At the end, Finish is sent along the edge (v1
1, v). Vertex v sends the

message Line, to its father completing the work on branch G(v).

Fig. 5. Stage 3: Messages Finish and transformations.

4.2 Formal Description

Algorithm A(G, root).

Variables at vertex v:

E(v) is the set of edge numbers incident to the vertex v;

fat(v) is the number at the vertex v of the edge leading from the vertex v to

its father;

line(v) is the flag (Bool) that the vertex v has sent the message Line;

nson(v) is the number of messages Line expected by vertex v from its sons;

sson(v) is the sum of the length of the lines from the vertex v in the received

messages Line;

f(v) is the flag (Bool) of receiving Finish before Change.

Notation: element(S) is the function to select an arbitrary element from a nonempty

set S.

1 while it is not the end of the algorithm {

2 wait () { /* receive message */

3 if Start() on the edge i is received { /* stage 1 */

v

…

v

…

v

…

…

x1 x2 xk-1 xk x1 x2 xk-1 xk x1 x2 xk-1 xk

109

4 fat(v) := i; line(v) := false; /* initialization */

5 nson(v) := | E(v) \ { fat(v) } |; sson(v) := 1; f(v) := 0;

6 send Start() on each edge j E(v) \ { fat(v) };

7 if nson(v) = 0 { /* v is leaf or isolated vertex */

8 send Line(sson(v)) on the edge fat(v); line(v) := true;

9 if fat(v) = 0 { end of algorithm; } /* v is isolated vertex */

10 } }

11 if Line(l) on the edge i is received { /* stage 2 */

12 nson(v) := nson(v) - 1; sson(v) := sson(v) + l; /* new line from v */

13 if E(v) \ { fat(v) } = { i } { /* the vertex v has one son */

14 send Line(sson(v)) on the edge fat(v); line(v) := true;

15 if fat(v) = 0 { end of algorithm; }

16 }

17 else { /* vertex degree is greater than 2 or it is the root of degree 2 */

18 if nson(v) = 0 { /* beginning of Step 3: G(v) is starlike tree */

19 j := element(E(v) \ { fat(v), i }); /* select edge */

20 /* transformation avb, где e(v, a) = i, e(v, b) = j */

21 command CHANGE(i, j, true);

22 E(v) = E(v) \ { i }; /* edge removed */

23 while | E(v) \ { fat(v) } | > 1 { /* transformation cycle */

24 m := j;

25 j := element(E(v) \ { fat(v), m }); /* select edge */

26 /* transformation avb, where e(v, a) = m, e(v, b) = j */

27 command CHANGE(m, j, false);

28 E(v) = E(v) \ { m }; /* edge removed */

29 } } } }

30 if Change(f) on the edge i is received { /* stage 3: transformation acv */

31 f(v) := f(v) f; /* f(v) = true if there is a line v, a, ... */

32 if | E(v) | = 2 { /* the transformation chain along the line is not finished */

33 j := element(E(v) \ { fat(v) }; /* select the next edge */

34 /* transformation avb, where e(v, a) = i, e(v, b) = j */

35 command CHANGE(i, j, f(v)); f(v) := false;

36 }

37 else { /* | E(v) | = 1, the transformation chain along the line is finished */

38 E(v) = E(v) { i }; /* edge added */

39 if f(v) { /* two lines concatenated */

40 send Finish() on the edge fat(v); f(v) := false;

41 } } }

42 if Finish() on the edge i is received { /* Stage 3 */

43 if i E(v) { f(v) := true; } /* vertex v received Finish before Change */

44 else {

45 if line(v) { /* vertex v sent Line */

46 send Finish() on the edge fat(v);

47 }

48 else { /* vertex v did not send Line */

110

49 send Line(sson(v)) on the edge fat(v); line(v) := true;

50 if fat(v) = 0 { end of algorithm; }

51 }} } } }

Proposition 9. Algorithm A transforms a tree with n vertices into a linear tree with-

out violating the restriction d on the degree of vertices with the time complexity

t(n) 2n - 2. The message Line(n) is sent from the root to his fictitious father.

The bound 2n - 2 is reachable for a linear tree when the root is one of the leaves.

The bound cannot be improved: in order to find out that the tree is linear, the message

must go from the root to another leaf and vice versa, i.e. there is a walk through a path

of length 2n - 2.

5 Algorithm B: Transformation of a Linear Tree into a Good

Tree

5.1 Informal Description

Let G be a linear tree with n vertices and a root r being a leaf. The algorithm starts

when the root receives the message Begin(d, n) on the fictitious edge number 0, and

ends with the message End() sending from the root along this edge.

The algorithm is performed recursively, the recursion level is equal to the height of

the vertex in the target good tree. At the recursion level h, a part of a good tree is con-

structed at heights from 0 to h. Initially, h = 0, and the constructed part consists of one

root. At level h, the algorithm runs on each branch of G(v), where the vertex v has

height h in G and consists of two stages.

A starlike tree in which the degree of the root and the number of vertices of the

branches of the neighbors of the root are the same as those of an (almost) good tree

with the same number of vertices, we will call a (almost) good starlike tree.

Stage 1. The branch G(v) is a line from v. We construct a starlike tree with a root in

v: a good starlike tree if v = r, or an almost good starlike tree if v r. The number of

vertices of the branch G(v) is the parameter of the message Begin, from which Stage 1

starts on the branch G(v).

Stage 2. The branch G(v) is a good (v = r) or almost good (v r) starlike tree. The

vertex v sends each son w the message Begin(d, l), where l is the number of vertices

on the branch G(w), initiating the algorithm at the next level of recursion. This can be

done as soon as a line of the desired length from w is constructed. Vertex v is waiting

for messages End() from all its sons and then sends End() to its father. If v = r, the

algorithm ends.

How to build a starlike tree in Stage 1? We use the concept of the current vertex

(first it is the vertex v) and two operations: MOVING and TRANSFORMATION. The

parameter t is the number of transformations that remain to be done to build a line in a

starlike tree.

111

MOVING c⇢b: c is the current vertex, there is an edge {c, b}. The vertex c sends

to the vertex b the message Move(t). Upon receiving the message, vertex b becomes

current vertex.

TRANSFORMATION acb: c is the current vertex; there are edges {a, c} and

{c, b}. The value of t decreases by 1: t := t - 1. Vertex c gives the command

CHANGE(eca, ecb, t). After receiving the message Change(t), vertex b becomes cur-

rent.

The construction is shown in Fig. 6: the gray arrow indicates the current vertex, the

white circle indicates the vertex v. Let l > 2 be the number of vertices of the branch

G(v). First there is a line v = v1, v2, ..., vl for the current vertex v. Use the following

notations:

x = min{d, l - 1} is the degree of the vertex v in a good starlike tree;

SM(d, l, 0) = 1;

SM(d, l, j) = 1 + M(d, l, 1) + M(d, l, 2) + ... + M(d, l, j), for j = 1 .. x, is the number

of vertices in a good star tree on the first j lines plus one (the root);

vj
i = vSM(d, l, j - 1) + i, for j = 1 .. x - 1 and i = 1 .. M(d, l, j), is the ith vertex of the jth

line;

vx
i = vSM(d, l, x) - i + 1, for i = 1 .. M(d, l, x), is ith vertex of the xth line.

We build the lines from right to left, starting from the xth line and ending with the

2nd line.

Construction of the jth line in a good star tree for j = x .. 2:

1. t = M(d, l, j).

2. MOVING v⇢vj
1.

3. The chain M(d, l, j) - 1 TRANSFORMATIONS:

vvj
1vj

2, vvj
2vj

3, ..., vvj
M(d, l, j) - 1vj

M(d, l, j);

t = M(d, l, j) - 1, t = M(d, l, j) - 2, ..., t = 1.

4. M(d, l, j)th TRANSFORMATION: vj + 1
1vj

M(d, l, j)v.

5. Starting the algorithm for constructing an almost good starlike tree on the jth

branch: the vertex v sends the message Begin(d, M(d, l, j)) to the vertex vj
M(d, l, j).

When the 2nd line is built, then the first line is built, so the algorithm on the first

ruler is simultaneously launched: the vertex v sends the Begin(d, M(d, l, 1)) to the

vertex v1
M(d, l, 1).

An almost good starlike tree is constructed in the same way, but the number of

lines x is not min{d, l - 1} but min{d - 1, l - 1}, and the number of vertices in the jth

line is not M(d, l, j) but N(d, l, j).

112

Fig. 6. Building a good starlike tree for n = 27 and d = 3.

5.2 Formal Description

Algorithm B(G, root).

Variables at vertex v:

E(v) is the set of edge numbers incident to the vertex v;

fat(v) is the number at the vertex v of the edge leading from the vertex v to

its father;

sson(v) is the number of vertices in the branch G(v);

d(v) is upper bound on degrees of vertices;

j(v) is the number of the starlike tree line under construction;

first(v) is the number of the first edge of the starlike tree line under construc-

tion;

nson(v) is the number of messages End expected by vertex v from its sons.

1 while is not the end of the algorithm {

2 wait () { /* receive message */

3 if Begin(d, l) on the edge i is received {

4 d(v) := d; sson(v) := l; fat(v) := i; /* initialization */

5 if fat(v) = 0 { nson(v) := min{d, sson(v) - 1}; }

6 else { nson(v) := min{d - 1, sson(v) - 1}; }

7 j(v) := nson(v); /* start with the last line of ?a shortest? length */

8 if sson(v) 3 { /* number of vertices 3, transformation needed */

9 if fat(v) = 0 { t := M(d, sson(v), j(v)); } else { t := N(d, sson(v), j(v)); }

…

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

1

2

3

time

…

12

13

14

19

15

20

21

1st branch

M(1, 27) = 12

2nd branch

M(2, 27) = 7

3rd branch

M(3, 27) = 7

v3
1 v3

2 v3
3 v3

4 v3
5 v3

6 v3
7

v
v2

7 v2
6 v2

5 v2
4 v2

3 v2
2 v2

1
v1

12 v1
11 v1

10 v1
9 v1

8 v1
7 v1

6 v1
5 v1

4 v1
3 v1

2 v1
1

11

113

10 first(v) := element(E(v) \ { i }); /* select edge */

11 send Move(t) on the edge first(v);

12 }

13 else { /* number of vertices 2, no transformation needed */

14 send End() on the edge fat(v);

15 if fat(v) = 0 { end of algorithm; } /* v = root */

16 } }

17 if Move(t) on the edge i is reseived {

18 e := element(E(v) \ { i }); /* select edge */

19 if t > 1 { /* first transformation of the transformation chain */

20 /* transformation avb, где e(v, a) = i, e(v, b) = e */

21 command CHANGE(i, e, t);

22 E(v) := E(v) \ { i }; /* edge removed */

23 }

24 else { /* final transformation */

25 /* transformation avb, где e(v, a) = e, e(v, b) = i */

26 command CHANGE(e, i, t);

27 E(v) := E(v) \ { e }; /* edge removed */

28 } }

29 if Change(t) on the edge i is received {

30 if t > 2 { /* continue the chain of transformations */

31 e := element(E(v) \ { fat(v), i }); /* select edge */

32 /* transformation avb, где e(v, a) = i, e(v, b) = e */

33 command CHANGE(i, e, t - 1);

34 }

35 if t = 2 { final transformation */

36 e := element(E(v) \ { fat(v), i }); /* select edge */

37 /* transformation avb, где e(v, a) = e, e(v, b) = i */

38 command CHANGE(e, i, t - 1);

39 }

40 if t = 1 { all transformations are finished */

41 E(v) := E(v) { i }; /* edge added */

42 /* start the algorithm on the constructed line */

43 if fat(v) = 0 { t := M(d, sson(v), j(v)); } else { t := N(d, sson(v), j(v)); }

44 if t 3 { send Begin(d(v), t) on the edge first(v); }

45 else { nson(v) := nson(v) - 1; }

46 j(v) := j(v) - 1; /* go to the next line */

47 if fat(v) = 0 { t := M(d, sson(v), j(v)); } else { t := N(d, sson(v), j(v)); }

48 if j(v) > 1 { /* start building the next line */

49 first(v) := i; send Move(t) on the edge first(v);

50 }

51 if j(v) = 1 { /* all lines are constructed */

52 /* start the algorithm on the last line */

53 if t 3 { send Begin(d(v), t) on the edge i; }

54 else { nson(v) := nson(v) - 1; }

114

55 } } }

56 if End() on the edge i is reseived {

57 nson(v) := nson(v) - 1;

58 if nson(v) = 0 { /* branch is constructed */

59 send End() on the edge fat(v);

60 if fat(v) = 0 { end of algorithm; } /* v = root */

61 }} } }
Proposition 10. Algorithm B transforms a linear tree with n vertices into a good

tree without violating the restriction of d on the degree of vertices with the time com-

plexity t(n) 2n - 2.

This work was supported by RFBR project 17-07-00682-a.

References

1. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc, 69 (1),

17–20 (1947).

2. Kochkarov, A.A., Sennikova, L.I., Kochkarov, R.A.: Nekotorye osobennosti primeneniia

dinamicheskikh grafov dlia konstruirovaniia algoritmov vzaimodeistviia podvizhnykh ab-

onentov. Izvestiia IuFU. Tekhnicheskie nauki, razdel V, cistemy i punkty upravleniia, 1,

207–214 (2015).

3. Proskochilo, A.V., Vorobev, A.V., Zriakhov, M.S., Kravchuk, A.S.: Analiz sostoianiia i

perspektivy razvitiia samoorganizuiushchikhsia setei. Nauchnye vedomosti, seriia

ekonomika, informatika, vypusk 36/1, 19 (216), 177–186 (2015) [in Russian].

4. Pathan, A.S.K. (ed.): Security of self-organizing networks: MANET, WSN, WMN,

VANET. CRC press, (2010).

5. Boukerche, A. (ed.): Algorithms and protocols for wireless, mobile Ad Hoc networks.

John Wiley & Sons (2008).

6. Chen, Z., Li, S., Yue, W.: SOFM Neural Network Based Hierarchical Topology Control

for Wireless Sensor Networks. Hindawi Publishing Corporation, Journal of Sensors,

vol. 2014, article ID 121278 (2014), http://dx.doi.org/10.1155/2014/121278.

7. Mo, S., Zeng, J.-C., Tan, Y.: Particle Swarm Optimization Based on Self-organizing To-

pology Driven by Fitness. In: International Conference on Computational Aspects of So-

cial Networks, CASoN 2010, Taiyuan, China, 10.1109/CASoN, 13, 23–26 (2010).

8. Wen, C.-Y., Tang, H.-K.: Autonomous distributed self-organization for mobile wireless

sensor networks. Sensors (Basel, Switzerland) 9 (11), 8961–8995 (2009).

9. Llorca, J., Milner, S.D., Davis, C.: Molecular System Dynamics for Self-Organization in

Heterogeneous Wireless Networks. EURASIP Journal on Wireless Communications and

Networking (2010), http://dx.doi.org/10.1155/2010/548016.

10. Wai-kai, C.: Net Theory and Its Applications: Flows in Networks. Imperial College Press

(2003).

11. Wang, H.: On the Extremal Wiener Polarity Index of Hückel Graphs. Computational and

Mathematical Methods in Medicine, vol. 2016, article ID 3873597,

http://dx.doi.org/10.1155/2016/3873597.

12. Xu, X., Gao, Y., Sang, Y., Liang, Y.: On the Wiener Indices of Trees Ordering by Diame-

ter-Growing Transformation Relative to the Pendent Edges. Mathematical Problems in

Engineering, vol. 2019, article ID 8769428, https://doi.org/10.1155/2019/8769428.

https://doi.org/10.1155/2019/8769428

115

13. Burdonov, I.B.: Samotransformatsiia derevev s ogranichennoi stepeniu vershin s tseliu

minimizatsii ili maksimizatsii indeksa Vinera. Trudy Instituta sistemnogo programmiro-

vaniia RAN, 31 (4), 189–210 (2019), https://doi.org/10.15514/ISPRAS-2019-31(4)-13. [in

Russian].

14. The On-Line Encyclopedia of Integer Sequences (OEIS), http://oeis.org/, last accessed

2019/11/21.

15. Fischerman, M., Hoffmann, A., Rautenbach, D., Székely, L., Volkmann, L.: Wiener index

versus maximum degree in trees. Discrete Applied Mathematics 122 (1–3), 127–137

(2002).

http://oeis.org/

