
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Hidden-use Case for Eliciting Quality in Use

Natsuko Noda
Shibaura Institute of Technology

Tokyo, Japan
nnoda@shibaura-it.ac.jp

Tomoji Kishi
Waseda University

Tokyo, Japan
kishi@waseda.jp

Shin'ichi Fukuzumi
RIKEN

Tokyo, Japan
shin-ichi.fukuzumi@riken.jp

Abstract— Finding use cases and developing a use case
diagram is one of the most powerful techniques for eliciting and
specifies requirements. However, the notion of use case cannot
handle the needs of indirect users correctly, because the use case
only describes the direct interaction between the system and the
actors. In this short position paper, we describe our ideas about
extension of the concept of use case and use case description, to
describe and analyze the needs of the indirect users.

Keywords— quality in use, indirect user, use case, use case
diagram, quality model

I. INTRODUCTION
Eliciting requirements is important and at the same time

very difficult. If there is any requirement that is hidden and
not described explicitly, appropriate software cannot be
developed. However, digging up all requirements and
expressing them explicitly is hard.

For this task, finding use cases [1][2] and developing a use
case diagram [2] is one of the most powerful technique. A use
case is a description of an interaction sequence between actors
and a target system. It expresses a behavior of the system.
Therefore, it exposes necessary functions of the system. It
does not describe any quality requirement directly, but it
makes it easy to consider necessary quality attributes along
with the interactions indicated by it; e.g., the system must
respond in 1 msec at this step in this use case.

Quality requirements are ideally considered and organized
in reference to the quality models, which are standardized in
ISO/IEC 25010:2011 [3], one of the SQuaRE series. The
models are the product quality model and the quality in use
model. Quality in use is the quality that a stakeholder
recognize when he/she utilizes a system. The stakeholder may
be of a various type. In the SQuaRE, stakeholders include an
indirect user, who receives output, but does not interact with
the system.

To consider the needs of the indirect users, can we utilize
the concept of use cases and use case diagram? Maybe no; a
use case describe an “interaction” sequence between actors
and a target system, and indirect users do not have interaction
with the system. However, these indirect users may relate to
an interaction occurred in a specific use case, because the
indirect users receive output, which is produced only when the
system is used. Considering this situation, how about
enlarging the concept of the use case and extending the use
case diagram?

In this short position paper, we describe our ideas about
extension of the concept of use case and use case description.

II. USE CASE
The notion of use cases was originally introduced by

Jacobson [1]. According to his definition, a use case is a
special sequence of transactions in a dialogue with the system,
that will be performed by a user. This kind of user is called as
an actor. Jacobson also introduced a model for requirement

specifications; that is a use case model, consists of actors and
use cases.

The concept and the notation for the model are adopted in
the UML. The definition of the use case is almost same as
Jacobson’s. According to the specification of the UML [2],
each use case specifies some behaviors that a subject (target
system) can perform in collaboration with one or more actors.

In use case models, actors may be various stakeholders;
not only (narrowly defined) users, but also maintainers,
system operators, outside systems, and so on. Fig.1. shows a
sample of use case diagram. In this diagram, “Customer”,
“Administrator”, and “Bank” are actors. “Customer” is a type
of ordinary user, “Administrator” and “Bank” are more
general users in broader meaning.

Fig. 1. Sample use case diagram (from [2])

As the definitions and this sample shows, actors may be
various types of stakeholders. In this sense, the use case and
use case diagram of UML handle various types of
stakeholders as actors. However, these actors must interact
with the system. A stakeholder who does not directly interact
with the system cannot be an actor.

Each use case is a grouped functions that the system (the
subject in use case diagrams) provides. Therefore, use cases
and use case diagrams are suitable to analyze and specify
functional requirements. On the other hand, non-functional
requirements are not described directly by use cases. We need
other techniques to describe those requirements. However,
use cases help us to analyze non-functional requirements,
especially quality requirements along with the use case
scenarios.

III. STAKEHOLDERS IN QUALITY IN USE MODEL
In SQuaRE, various types of stakeholders are taken into

account; users, developers, regulators, and society. In these

stakeholders, users are mostly related to the quality in use
model. In ISO/IEC 25010:2011, the following types of users
are considered [3].

• Primary user: person who interacts with the system to
achieve the primary goals.

• Secondary user: person who provides support, for
example
a) content provider, system manager/administrator,
security manager;
b) maintainer, analyzer, porter, installer.

• Indirect user: person who receives output, but does
not interact with the system.

These users’ needs have to be considered in requirements
definitions and specifications. For these processes, use cases
and use case diagrams can be utilized, as described in the
previous section.

Primary users can be obviously actors of use cases. Their
needs can be analyzed along with the use cases related to
corresponding actors. Even though functions for secondary
users sometimes tend to be left out of essential services the
system provides that are easily considered as use cases,
secondary users can also be actors, since they interact directly
with the system. The notion of use cases does not exclude
services for these secondary users, and these services should
be considered using the notion of use cases. We don’t have to
enlarge the notion; we utilize this for the secondary users.
However, indirect users cannot be actors, because they do not
interact with the system. When we consider quality in use
related to indirect users, the concept of use case is difficult to
be used.

IV. HIDDEN-USE CASE
To tackle the issue described in the previous section, we

are trying to enlarge the concept of the use case and extending
the use case diagram.

We introduce a new concept of “hidden-use case.” A
hidden-use case describes an effect that the subject (the
system) provides to indirect users of the subject. The hidden-
use cases may include behaviors of the system and send results
of the behaviors unilaterally to the indirect users. They do not
interact with any users; if they provide any effect to indirect
users, the indirect users do not respond to the subject.

Hidden-use cases cannot exist without use cases and actors.
They appear in consequence of the execution of ordinary use
cases. For example, when the direct user of an AI assistant
service execute the use case “ask schedule” of the service, a
person around the direct user may hear sound from the service.
Here, “hear sound” is a hidden-use case of this AI assistant
service. The person around does not interact with the service,
but the person may hear sound. And this “hear sound” hidden-
use case never exists without the use case “ask schedule”
trigged by the direct user.

Hidden-use cases may be categorized in two types;

• Type 1: its effect appears only from the system. In
“hear sound” hidden-use case, this effect may be
produced directly in the consequence of the use case
“ask schedule.” The actor “Owner” triggers the use
case, but the actor never works over the produced
effect of the use case, before this effect reaches to the
“person around.”

• Type 2: its effect appears from the behavior of the
actor who received the output of the corresponding use
case. For example, if the use case “ask schedule” is
executed and the actor can meet the schedule because
of the exact information produced by the use case “ask
schedule, ” an indirect user “Supervisor” of the actor
may meet a team schedule. However, this result cannot
be obtained only with the result of the original use
case; if the actor does not meet its schedule even with
the exact information produced by the use case, the
supervisor may not meet a team schedule. The effect
depends on the response of the actors to the original
use case.

This categorization is only from the one viewpoint. There
may be other various categorization. For example;

• A hidden-use case that is related to the original purpose
of the original use case. “meet schedule” may be one
of this type.

• A hidden-use case that is as a side effect of the original
use case. “hear sound” may be one of this type.

• A hidden-use case that is produced as the result of the
wrong usage of the original use case.

• A hidden-use case that may be a misuse case [4].

The above categorization is the only example. We have to
consider more explicit and accurate viewpoint to categorize
hidden-use cases.

Fig. 2. Enhanced use case diagram with the notion of “hidden-use case”

Now we are trying to define the notation of the hidden-use
cases and to enhance the use case diagram. Fig. 2 shows an
example of the enhanced use case diagram by our first draft
notation. A dashed ellipse is a hidden-use case. Indirect users
are shown using the same symbol of actors. A hidden-use case
is connected to indirect users with a dashed line. A type 1
hidden-use case is connected to the original use case with a
line and is placed in the subject. A type 2 hidden-use case is
connected to an association between the original use case and
an actor. The indirect user of this hidden-use case depends on
the actor of the original use case; therefore, the indirect user is
connected to the actor with the dependency association.

This notion of the hidden-use case and the enhancement of
the use case diagram with the hidden-use case may make the

usage of the system clear. It is expected that we can analyze
and specify qualities in use, especially those related to indirect
users.

Also, we expect that this hidden-use case concept will help
to re-consider various qualities in use and to re-organize the
model of qualities in use.

V. CONCLUSION
In this short position paper, we introduce a new unique

notion of hidden-use case and an enhancement of use case
diagram with this notion. This is just a first draft; we have to
consider more deeply and refine the idea.

 In the workshop, we would like to discuss the issues
related to quality in use based on our idea described in this
paper.

REFERENCES
[1] I. Jacobson, Object-Oriented Software Engineering: A Use Case

Driven Approach. Addison-Wesley Professional, 1992
[2] Object Management Group, OMG Unified Modeling Language (OMG

UML) Version 2.5.1, 2017
[3] International Organization for Standardization, ISO/IEC 25010:2011

SQuaRE -- System and Software Quality Models, 2011
[4] G. Sindre and A. L. Opdahl, "Eliciting Secutiry Requirements by

Misuse Cases", Proc. TOOLS Pacific 2000, pp 120-131, 20-23 Nov
2000.

	I. Introduction
	II. Use Case
	III. Stakeholders in Quality in Use Model
	IV. Hidden-use Case
	V. Conclusion
	References

