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Abstract. In this article realization method of attacks and anomalies detection 
with the use of training of ordinary and attacking packages, respectively. The 
method that was used to teach an attack on is a combination of an uncontrollable 
and controlled neural network. In an uncontrolled network, attacks are classified 
in smaller categories, taking into account their features and using the self-
organized map. To manage clusters, a neural network based on back-propagation 
method used. We use PyBrain as the main framework for designing, developing 
and learning perceptron data. This framework has a sufficient number of 
solutions and algorithms for training, designing and testing various types of 
neural networks. Software architecture is presented using a procedural-object 
approach. Because there is no need to save intermediate result of the program 
(after learning entire perceptron is stored in the file), all the progress of learning 
is stored in the normal files on hard disk. 
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1 Introduction 

The probability of threats in computer networks increases every year and is a rather 
serious issue, so the use of intrusion detection technologies is an important issue in 
providing network and computer security. The process of detecting an attack is 
implemented as a monitoring of events in the system or computer network, and allows 
you to determine, with the indicated probability, an intrusion or not. 

Modern filters of network traffic, detection systems and counteraction interventions 
become ever less effective when dealing with large volumes of traffic in high-speed 
networks and also unsuitable for recognizing new types and methods of attacks on 
computer systems and networks. Inductive methods provide the opportunity to obtain 
accurate identification or prediction of various complex processes in the case of short 
or noisy input data. This is relevant for network traffic recognition based on protocol 
classification because most of the normal network thread meets the RFC standards set 
by the developers, and the anomalies most often manifest themselves in non-standard 
behavior and packet status. 
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The system of intrusion detection verifies the network traffic that is being 
investigated for suspicious activity and also alerts the system or system administrator 
of possible attacks. The main purpose of intrusion detection system is to protect the 
availability, confidentiality and integrity of critical network information systems. Two 
main approaches to the system of intrusion detection are used: the detection of abuses 
and abnormalities [5]. 

Detection of misuse is based on the description of known dangerous actions. This 
description is often modeled as a set of rules that are referred to as signature attacks. 
The Anomaly Detection ID looks for a threat and applies the rules or predefined terms: 
the normal and abnormal activity of the system. In the future, we use it to detect the 
difference in threats from the normal system behavior, to monitor the report, or to block 
the threats when they arise. Different methods of artificial intelligence are used in 
intrusion detection system (IDS) anomalies, such as machine learning [11; 14], 
intelligent data analysis, image recognition and neural networks [18]. 

To identify abnormalities, it is more rational to develop an interactive intrusion 
detection system than regular rules and programs that work under the normal principle 
of detecting and responding to anomalies in the network. Therefore, it makes sense to 
integrate the classical approaches of IDS and approaches to data analysis using neural 
networks, which is considered a more flexible approach to the analysis and data 
classification [6; 9; 15]. 

2 Formulation of problem 

The aim of this work is to develop an IDS system prototype based on a hybrid neural 
network to detect anomalies and threats from the network, based on the principle of 
self-organizing maps and the error backpropagation of neural network (learning with 
teacher). The object of research is the implementation process of modules for detecting 
threats and anomalies in network. The subject is to formulate model and 
implementation methods of system prototype. 

Research has made it possible to determine that the software should perform 
analysis and separate the usual and dangerous data based on the input data, in this case, 
on the basis of network packets. But after revealing the dangerous data, he still needs 
to carry out the classification of the threat type. 

The approach to using neural networks (perceptrons) is chosen as the basis for 
fulfilling the tasks. These are neural networks based on self-organizing maps used to 
analyze data and to detect ordinary packets on the network when filtering traffic. After 
analyzing the data in the first neural network, potentially dangerous data is transmitted 
to the next neural network to detect the threat type based on the reverse error 
propagation. In this case, both perceptrons need to be trained to distinguish between 
suspicious packages and types of threats, respectively. The data used in the study of 
perceptrons is a dataset of the Lincoln Laboratory of Massachusetts University of 
Technology. This set is designed to evaluate DARPA intrusion detection systems and 
is considered to be a benchmark for IDS research [1; 7; 17]. 
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In conducting the experiment for classifying network traffic models, in accordance 
with the taxonomy of the five templates, we use a data set consisting of five classes of 
packages, which include: ordinary packages, packages for sensing and scanning 
infrastructure, packets that caused denial of service equipment, packages that have 
increased user privileges to super user and external threat packages. 

3 Software tools and solutions 

It was decided to use two interceptors for a more convenient scaling and use software 
with independent modules. This simplifies not only the ability to scale but also reduces 
the concentration of responsibility on each of the software modules. That is to teach 
and arrange two smaller perceptrons is much easier than one big one. Hybrid network 
approach based on a neural network without a teacher (first module) and a neural 
network with a teacher (second module) is used when developing a network threats 
analyzer. As a network without a teacher, use self-organizing maps. 

One of the main approaches to solving cluster analysis problems is a self-organizing 
maps (SOM) [10; 12]. They are adapted for using learning without teacher, that is, 
without the end result. 

The method of back propagation is a learning method that is controlled by the 
training of artificial neural networks [16]. The purpose of back propagation is to prepare 
the network to achieve a balance between the ability to respond correctly to the input 
models used for learning (memorization) and the ability to give intelligent input 
responses, as in the training. 

The process of learning without a teacher in SOM can be briefly described in three 
stages. In the first stage, weights of the connection are assigned small random numbers 
and the choice of the speed learning parameter is made. 

At the second stage, the best matching block is fixed, with determination of neuron 
with the greatest weight in the layer of neural network, Euclidean square is used to 
measure the distance between the input vector and the weight vector, and also the unit 
chosen whose weight vector has the smallest Euclidean distance from the input vector 
is selected. 

At the last stage, weights are updated according to the rule of training of Kohonen 
network according to formula (1): 

 ωij
new =ωij

old + α(xi − ωij
old), (1) 

where xi is the i-th input vector, ωij is the j-th column of the weight matrix, and α, the 
learning rate, decreases as learning proceeds. Updating neuronal weight in the network 
occurs only for active output neurons. It is allowed to teach a unit whose weighted 
vector is closest to the input vector [2]. 

Learning process itself continues until all input vectors are processed. Criterion of 
convergence in neural networks is an epoch. This is one iteration in the learning 
process, which includes representation of all examples from training set, as well as 
verification of quality training in a controlled set. Epoch determines how many times 
all input vectors must be submitted to the SOM for learning. 
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This algorithm is also called the gradient descent algorithm because the strategy of 
selecting such an important parameter as the weight for each neuron of a multi-layered 
network is based on the gradient method. Continuous target function as a measure of 
network success in the general case is defined as quadratic amount difference between 
an actual result and expected output value. Algorithm for the reverse distribution of a 
learning error uses two extensions of the network - direct and reverse. 

At the very beginning of the algorithm there is a direct passage where input data in 
the form of a vector implement distribution among the layers, from the original to the 
last. As a result of direct pass, a set of output signals is generated, which determines 
response of the network to the input data. During a straight pass, all synaptic weights 
of network are fixed. The second stage of algorithm is return pass where parameters 
(all synaptic weights) are adjusted according to the error correction rules. The essence 
of the rule is as follows: expected output values subtract resulting (resulting) value of 
an actual output and error signal is generated as a result of such an operation. Error 
signal extends like an echo in opposite synaptic bonds, so the algorithm got this name. 
And synaptic scales, in turn, are adapted to maximize expected output of network’s 
output signal. 

Scales are adjusted to reduce the error by distributing original error back through 
the network. Training kit is supplied several times to the network, and the weight values 
are corrected until overall error exceeds the specified one. Developed system uses 
identification process of abnormal and normal packets in a computer network. Whole 
process of system development can be divided into 2 stages. The first is the stage of 
training in which the SOM neural networks and reverse error propagation have been 
trained for a certain amount of time (epoch), it is shown in Fig. 1. 

Next step is to detect threats or testing yourself. Model of method functioning is 
shown in Fig. 2. Since the usual packet-transfer analysis operations are specified and 
they display the expected behavior, we can initiate knowledge-based definitions 
(improper use), whereas the non-typical packet activity (the invasion is likely to 
indicate the non-typical behavior of the packet) is constantly being developed and can’t 
be regarded as defined an attack, so identifying IDS abnormalities is performed on 
attacks. 

An uncontrolled neural network based on a self-organizing map (SOM) divides 
classification of threats into smaller categories, taking into account their similar 
features, and then, clustering of threats is performed based on the error of 
nonpropagation of the neural network. 

The SOM training is implemented on the basis of data from KDD-99 (knowledge 
discovery in databases), which is a set of data used during the second international 
competition on open knowledge and data mining. 

Connections in KDD-99 are presented in the form of functions, each of which is 
located in significantly different ranges, in one of the continuous, discrete, and 
symbolic forms. Functions in this set are protocol type, service type and respectively. 
The protocol type value can match tcp, udp or icmp; the service type may be one of the 
different network services, such as http, smtp, etc.; the checkbox corresponds to one of 
11 values, such as SF or S2. Other parameters in these connections are the length of 
connection; number of bytes of data from the beginning to destination and vice versa; 
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number of connections to the same end node as the current connection in the last two 
seconds, etc. The full list of attributes set for the connection records is given in 
corresponding sources of information [3; 7]. 

 
Fig. 1. Phase training algorithm. 
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Fig. 2. Detection phase algorithm. 
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4 System for detecting network anomalies 

In the process of designing and system software implementation, authors developed 
software (utility) that allows you to fulfill the purpose of the work – detection and 
classification of threats in network traffic (packets). 

As a software method, Python has been selected as an interpreted object-oriented 
programming language that supports module packs and several programming 
paradigms: object-oriented, procedural, functional, and aspect-oriented [4; 8]. The 
choice has been influenced by: Python’s support of object-oriented approach, simplicity 
of syntax, and availability of built-in functions and data structures. Also, in this 
language, a large number of ready-made solutions and documentation in the field of 
development and training of perceptrons is realized. 

We use PyBrain as the main framework for designing, developing and learning 
perceptron data. This framework has a sufficient number of solutions and algorithms 
for training, designing and testing various types of neural networks. Software 
architecture is presented using a procedural-object approach. Because there is no need 
to save intermediate result of the program (after learning entire perceptron is stored in 
the file), all the progress of learning is stored in the normal files on hard disk. 

We use setuptools as the main software, when creating this utility, to simplify the 
construction of the main framework of the system. 

Program consists of the main function that is called when the program is started and 
after class initialization [13]. 

from __future__ import __all__ 
from scipy import random 
from scipy.ndimage import minimum_position 
from scipy import mgrid, zeros, tile, array, floor, sum 
from module import Module 
 
class Kohonen_SOM_Map(Module): 
  learn_rate = 0.01 
  neighbourd = 0.9999 
  outdim, winner, neurons_num, dist_matrix, inputs_num, diff, 
neurons, outputFullMap = None, None, None, None, None, None 
 
  def __init__(self, dim, neurons_num, name=None, 
output_full_map=False): 
    outdim = 2 if output_full_map else neurons_num ** 2 
    Module.__init__(self, dim, outdim, name) 
    Kohonen_SOM_Map.outputFullMap = output_full_map 
    Kohonen_SOM_Map.neurons = random.random((neurons_num, 
neurons_num, dim)) 
    Kohonen_SOM_Map.winner = zeros(2) 
    Kohonen_SOM_Map.diff = zeros(self.neurn.shape) 
    Kohonen_SOM_Map.inputs_num = dim 
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    Kohonen_SOM_Map.neurons_num = neurons_num 
    Kohonen_SOM_Map.neighbours = neurons_num 
 
    # Init matrix of predicates 
    Kohonen_SOM_Map.__dist_matrix_create() 
 
  def _forward_err_implement(self, inbuf, outbuf): 
    Kohonen_SOM_Map.diff = Kohonen_SOM_Map.neurons - tile(inbuf, 
(Kohonen_SOM_Map.neurons_num, Kohonen_SOM_Map.neurons_num, 1)) 
    error = sum(Kohonen_SOM_Map.diff ** 2, 2) 
    Kohonen_SOM_Map.winner = array(minimum_position(error)) 
    if not Kohonen_SOM_Map.outputFullMap: 
      outbuf[:] = Kohonen_SOM_Map.winner 
 
  @classmethod 
  def _backward_err_implement(cls): 
    n = floor(cls.neighbours) 
    cls.neighbours *= cls.neighbourdecay 
    tl = (cls.winner - n) 
    br = (cls.winner + n + 1) 
    tl[tl < 0] = 0 
    br[br > cls.neurons_num + 1] = cls.neurons_num + 1 
 
    # calculate distance matrix 
    tempm = 1 - sum(abs(cls.dist_matrix - cls.winner.reshape(1, 1, 
2)), 2) / cls.neurons_num 
    tempm[tempm < 0] = 0 
    distm = zeros((cls.neurons_num, cls.neurons_num, cls.nInput)) 
    for i in range(cls.nInput): 
      distm[:, :, i] = tempm 
      distm[:, :, i] = tempm 
    cls.neurons[tl[0]:br[0], tl[1]:br[1]] -= cls.learningrate * 
cls.diff[tl[0]:br[0], tl[1]:br[1]] * distm[tl[0]:br[0], 
tl[1]:br[1]] 
 
  @classmethod 
  def __dist_matrix_create(cls): 
    if not cls.neurons_num: 
      print ("Kohonen_map: not setted neural layers") 
    distx, disty = mgrid[0:cls.neurons_num, 0:cls.neurons_num] 
    cls.dist_matrix = zeros((cls.neurons_num, cls.neurons_num, 2)) 
    cls.dist_matrix[:, :, 0] = distx 
    cls.dist_matrix[:, :, 1] = disty 
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The KohonenMap _forward_err_implement method assigns one of the neurons to input 
dates in the input buffer and fixed coordinates of neurons in the output buffer, and also 
performs calculation of the largest neuron, calculating data with the slightest error using 
square of difference. 

The KohonenMap _backward_err_implement method training the Kohonen map in 
an uncontrolled mode, moving the closest neuron and neurons adjacent to it closer to 
the input template [4; 13]. 

The main function performs initialization of an instance of the class, namely, it 
creates the KohonenMap object and assigns variable to given object. After that, in the 
input buffer, training data is asked in order to conduct training of this object. Learning 
result is stored on the hard disk after training for several cycles. 

The obtained results confirm that the quality of the classification of packages 
depends on the number of standards of separate classes in the educational voter. If the 
number is small, then the detection rate of the attacks is high and the number of detected 
intrusions by class is improved. This indicates that the method works in real-time with 
high performance. 

5 Conclusion 

The purpose of this work is to develop a hybrid neural network (perceptron) based on 
2 other neural networks, namely, the Kohonen neural network and the neural network 
with back propagation. Data set from the Lincoln Laboratories of Massachusetts 
Technology University from United Stateswas used as learning data sets. This data set 
includes type of package, its useful data and metadata. The Python language and 
PyBrain framework are selected as the software component. 

When developing software based on the idea of hybridization of neural networks, 
the problem was solved to ensure protection of internal network from external threats 
using packet filtering for threats such as denial of service and unauthorized increase of 
user privileges. Effectiveness of methods to protect computer networks from harmful 
traffic has been increased using prior analysis of packets risk. Also, in this neural 
network, the so called boosting is applied - an increase in the efficiency of the neural 
network at the expense of another neural network, which delivers already filtered 
information to the inputs. 

In the following, the possibility of using this software on operating system for such 
routers as OpenWrt is considered. This integration will not only increase an efficiency 
of this system while protecting the network, but also will increase an accuracy of the 
perceptron through the adoption of a large number of network traffic with self-study of 
neural networks. 
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