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Abstract Knowledge graphs (KGs) are at the core of numerous appli-
cations and their importance is increasing. Yet, knowledge evolves and so
do KGs. PubMed, a search engine that primarily provides access to med-
ical publications, adds an estimated 500’000 new records per year—each
having the potential to require updates to a medical KG, like the Na-
tional Cancer Institute Thesaurus. Depending on the applications that
use such a medical KG, some of these updates have possibly wide rang-
ing impact, while others have only local effects. Estimating the impact
of a change ex-ante is highly important, as it might make KG-engineers
aware of the consequences of their actions during editing or may be used
to highlight the importance of a new fragment of knowledge to be added
to the KG for some application. This research description proposes a uni-
fied methodology for predicting the impact of changes in evolving KGs
and introduces an evaluation framework to assess the quality of these
predictions.

Keywords: Knowledge Graph Evolution · Ontology Evolution · Im-
pact.

1 Relevancy

Knowledge graphs (KGs) or ontologies 1 capture the knowledge of a particular
domain. They are at the core of applications, such as search, logic-based reason-
ing, and inductive model training. KGs represent the knowledge of a universe
that evolves. Thus, such KGs capture the current knowledge of a particular do-
main: their content can change to (1) include new facts or axioms, (2) adhere to
the changing world, or (3) correct wrong or imprecise knowledge. It is natural
to ask ourselves how this evolution affects the services built on top of it.

Let us consider the following example: National Cancer Institute thesaurus
(NCIt) [5] is a KG that relies on new research accessible through PubMed,
which provides access to medical publications. Researchers use NCIt to compute
recommendations and tag instances automatically [15]. However, NCIt is not
static: every year PubMed receives roughly 500’000 new records, in addition to
1 KG and ontology are used interchangeably.
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updates to existing ones. Therefore, NCIt needs revisions with a subsequent need
to also update the recommendation and materialization tasks built on top of it.

The results of operations built on top of KGs, e.g. search results, materializa-
tion, machine learning models, can shift strongly due to those changes. Taking
actions to adapt to changes may be expensive: in some cases results can be in-
crementally updated, while in others they must be recomputed from scratch,
leading to a potential high usage of resources or costly revisions of previous
decisions. It is worth noting that not every change has the same impact, e.g.
renaming a concept would have a minimal impact on the materialization, while
removing a central node could significantly change the materialization.

Initial research, e.g. [14], focused on studying KG evolution, without consid-
ering the tasks relying on it, while later research, e.g. [8,15], focused on specific
tasks or KGs. However, these studies are usually limited to one application sce-
nario or one specific KG, hampering the generalization and comparability of
their insights. As a consequence, the research community lacks a comprehensive
understanding of changes, their impact, and mechanisms that help adapting to
them. Hence, a framework is needed that helps to (1) understand changes on
KGs leading to a general in-depth study, (2) estimate the impact of changes on
a task that relies on the evolving KG, and (3) develop mechanisms for adap-
tation to evolutionary KG changes. Such mechanisms can include maintenance
processes that are triggered when changes cause significant impact.

To enable the study of impact over different tasks and KGs, a unified method-
ology is necessary. This would ensure that the results are comparable to each
other. Therefore, the impact prediction should be embedded in a framework
enabling consistency in approach and comparison of results. Additionally, adap-
tation to real world scenarios would be made easier.

2 Problem Statement

The challenge I want to address in my PhD studies is the development of a
methodology to predict the impact of KG changes on the results of respective
functions. Using a unified setting, I can develop such methodologies and compare,
evaluate, and improve them iteratively as done in design science approaches [12].
Inside each iteration of the methodology, I will define impact, features, selection
and prediction algorithms to build a predictor of KG evolution impact. A first
general methodology is introduced in Section 5. In the following paragraphs, I
introduce some terminology and explain the formal setting of the problem.

A knowledge graph K is a set of triples (s, p, o), where s and o are two
resources connected by a predicate/relation p. In Fig. 1, I define an evolving
knowledge graph K as a sequence (K1,K2, . . . ,Kt,Kt+1, . . .), where Kt denotes
the KG at the time instant t. This definition of evolving KG is similar to the one
of ontology stream proposed by Ren and Pan in [17]. Let Kt and Kt+1 be two
consecutive versions of K. The update of K between t and t+ 1 is described by
a set of changes δt. δ indicates a set of edits that are authored by one or more
agents, such as ontology engineers or maintenance bots.
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As shown in Fig. 1, I define the operation op1(·) as a function which accepts a
KG as argument and produces a result R. When the operation op1(·) is applied to
K, it creates a sequence of results R = (R1, R2, . . . , Rt, . . .), where Rt = op(Kt).
Examples of such operations might be the materialization, the computation of
an embedding space, or some recommendations. Therefore, the Fig. 1 also shows
a second operation op2(·) that is defined accordingly.

Given Kt and Kt+1, the respective results Rt and Rt+1 can be the same, i.e.
when the changes δt do not affect the result of op1(·), or they can differ. I model
this comparison through the function impactop1

(Rt, Rt+1), which represents the
impact that the evolution had on the results of op1(·). In the case of op1(·) being
the calculation of embeddings the impactop1(Rt, Rt+1) would be the comparison
of the embedding of Kt and Kt+1 for example using the overall loss, neighbor-
hood similarity, or link prediction hit rate. In a practical setting, it may be too
expensive to compute the impact at every time instance or I may want to know
the impact before applying a change.

I indicate the estimator with ̂impactop1
(Kt, δt), since it takes as arguments a

KG and the set of changes leading to the next version. Moreover, op1(·) should
be considered as well, since different operations may entail different impact func-
tions. Ideally, my research would lead to the definition of general impact esti-
mators ̂impact(·), which are independent of any specific operation as shown by
op1(·) and op2(·) in Fig. 1.

Taking this formal setting, the problem of my research lies in the definition
of a general methodology applicably within this setting. Inside the methodology,
impact has to be defined together with features describing δ, the feature selection
procedure, and the prediction algorithm. As mentioned before, the methodology
will be improved iteratively by applying it to use cases with adjusted factors
(impactop1

(·), op1(·), δ, K). Each iteration will yield estimators, which perfor-
mances I can compare and consequently refine the methodology. The perfor-
mance of predictors is given with the distance between estimation ̂impactop1

(·)
and real value impactop1

(·). The comparison of methodologies is based on the
performance of predictors built by them.
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Figure 1: General model of the problem setting with Kt being the KG at time
t, δt the changes on Kt which lead to Kt+1, op1(·) the operation executed on
the KG, Rt the result of op1(·) and impactop1(Kt, αt) the impact of δt over the
result of op1(·) on Kt. op2(·) is another operation equivalent to op1(·).
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3 Related Work

Many researchers have focused on topics close to my proposed one. Essentially,
they can be split in two groups, those being research on the evolution of KGs
and research about the impact of KG evolution on KG-based tasks.

Evolution of KGs. Zablith et al. [22] survey various evolution processes. In
addition, Hartung et al. [11] show the different tools for managing, exploring, and
propagating changes on knowledge graphs. These studies focus on how ontologies
are maintained. They do not investigate the consequences of updates. In contrast,
I would like to focus on the impact of KG evolution on the operations that
rely on that KG. Rashid et al. [16] use the evolution of a knowledge graph to
asses the quality of the current version by examining consistency, completeness,
persistence, and historic persistence. In my study, those quality metrics can be
seen as impact measures to be predicted rather than observed measures for
quality assessment. Another related area aims at detecting ontology changes
and classify them. OntoDiff [21] is a tool that enables the user to detect changes
between two versions of the same graph. It works by identifying semantically
equivalent elements between the ontologies. COnto-Diff [10] and the integrated
CODEX [9] both detect changes and group low level changes into high level
change actions. They provide a simple classification and a rich action semantics.
Klein and Noy [13] developed an ontology describing 80 basic changes. Similarly
to COnto-Diff and CODEX, they also introduce a notion of complex changes,
showing how they help in the interpretation of consequences for data and entities.

Impact of KG Evolution. SemaDrift [18] calculates various semantic drift
measures between versions of ontologies. An alternative notion of semantic drift
(assuming that code can be seen as a kind of ontology describing functionality)
has also been investigated in the context of code repositories and bug fixing [3].
The authors discovered a semantic drift that had a grave influence on the defect
prediction quality. Thus, the evolution of the repository showed an impact on
the prediction. Chen et al. [1] discuss how learned models become less accurate
as a stream evolves semantically. Impact is measured with accuracy loss and
changes are addressed using concept drift. In Know-Evolve [20], the authors ap-
ply machine learning over the graph and predict re-occurrence of events. The
time component directly affects the results of the reasoning from which an im-
pact could be derived. Goncalves et al. [6] investigate the influence of change
classification on the set of entailed axioms in the next version. Gross et al. [8]
examine how the changes in an ontology impact previously conducted functional
analysis. Osborne et al. [15] present an analysis of the selection of concepts for a
new version by evaluating the performance of four different tasks. Gottron and
Gottron [7] implemented various indexing methods and evaluate how the index
is affected by the KG evolution. All of these mentioned studies focus either on
a specific task or a specific knowledge graph. One of the goals of my research is
to define a general methodology that would also capture previous studies. This
means, that the approach of other researchers could be mapped to my proposed
methodology making their results comparable.
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4 Research Questions and Hypotheses
The related work shows that it is possible to predict the impact of changes for
specific tasks and knowledge graphs. My first research question builds on those
studies, and generalizes them to define a methodology. The goal is to predict the
impact on tasks of KG changes using a general methodology that can be applied
on different tasks and KGs.
RQ-I: Can I define a unified methodology to develop predictors for the impact

of a task on an evolving knowledge graph?

The development of the methodology is a design science task [12]. It requires
the iterative development of a series of improving frameworks that get evaluated
in a practical context. Using the insights from the evaluation, the next iteration
of the framework development can be started. A first version of the framework
will be introduced in Section 5.

The implementation of such a methodology has various requirements. It
should be general enough to be applicable over different tasks and KGs by al-
lowing the definition of impact metrics for every task. In addition, the definition
of features is another factor inside the methodology that can be compared and
therefore also improved between interations.

I plan to investigate this question in practical settings by studying: (1) KGs
of different topics, maintenance processes, size, and structure; (2) features por-
traying different aspects of a change using detailed change information (change
action features) or general graph measures; (3) operations op1(·) that differ in
complexity, stochasticity, and incremental compatibility; as well as (4) impact
measures varying in value range, e.g., Boolean, categorical, or continuous, and
nature, e.g., structural or semantic. Implementing and improving the methodol-
ogy using a broad range of possibilities would set the requirements for a gener-
alized methodology, applicable to a wide number of cases.

Within the settings of these variations and the proposed methodology, I will
then investigate the following hypotheses to answer if the said methodology can
serve as candidate answer to RQ-I. Please note that this list is not exhaustive:
H-I: The impact prediction performance (AUC) of a methodology using change

action features is higher than the performance with general graph features.
H-II: The impact prediction performance (AUC) of a methodology using a

small KG is higher compared to the performance using a KG with twice as
many axioms.

H-III: The impact prediction performance (AUC) of a methodology using a
stochastic operation, such as embedding calculation, is lower compared to
the performance with a logical operation, such as materialization.

H-IV: The impact prediction performance of a methodology using δt of size
one is higher compared to the performance with using δt of larger size.
The results leading to the answering of the hypotheses and of RQ-I will

support my second research question. The methodologies set the foundation
to study how features correlate among different knowledge graphs, tasks, and
impact measures. This is captured in the second research question:
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Figure 2: Framework usage. The upper part shows how ̂impactop1
(·) is estimated

and the bottom part illustrates the procedure for learning the estimator.

RQ-II: Can I build a generalized model for predicting impact that is as accurate
as models specifically built for one knowledge graph, task and impact measure?
To arrive at a generalized model, investigating the relationship between

change features and the impact is necessary. It would reveal which impact mea-
sures interact with which change features. In this interaction, the direction of the
relationship between features and impact measures is important. Using a feature
that correlates with the first impact measure positively but correlates with the
second impact measure negatively would be counterproductive in prediction of
a general impact. Therefore, I can identify features that are common among the
prediction models of different task impacts.
H-V: A feature showing the same coefficient direction between KGs produces

a better performance compared to features with coefficients going in opposite
directions.

H-VI: A feature showing the same coefficient direction between tasks produces
a better performance compared to features with coefficients going in opposite
directions.

H-VII: A feature showing the same coefficient direction between tasks and
KG produces a better performance compared to features with coefficients
going in opposite directions.

5 Approach
I propose a first methodology, which I call CHIMP, to initiate investigation of
RQ-I. The name is derived from change impact, since at its core it predicts the
impact of KG changes on a task. CHIMP will be refined in future iterations.
In Fig. 2, CHIMP provides a workflow to predict the impact using the setting
shown. It is applicable to individual pairs of KG and operation without imposing
requirements.

The bottom section of Fig. 2 shows decisions. These need to be made by
one (or more experts) and used as input for CHIMP. An KG expert needs to
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define how the impact between task results should be measured. Further, a KG
expert defines the features later used as input for the learning models. However,
the decisions about feature selection and learning algorithm require knowledge
about data science and its algorithms.

The middle section of Fig. 2 shows relevant steps of CHIMP: the evolving
KG K is used to determine the set of potential features, while the operation
op1(·) sets the basis to define impactop1

(·). First, a training subsequence Ktr

of K is used to identify the relevant features and train the prediction model.
Secondly, CHIMP computes both (1) the impact impactop1(·) for each pair of
consecutive KGs in Ktr and (2) the values of the potential features using as input
the changes that update every version of Ktr to the successive one. Subsequently,
CHIMP selects a set of candidate features by exploiting impact and potential
feature values. Each candidate feature set is used to build several prediction
models. Finally, CHIMP identifies the best model and feature set to be used
for prediction. The upper part of Fig. 2 shows how to estimate impactop1(·) at
runtime: the model takes an evolving KG Krun and the sets of changes as input.
The selected features are calculated and fed into the already trained prediction
model. For CHIMP to work, it requires an domain or task expert’s guidance
with regard to the (1) definition of impact. The (2) definition of features, (3)
choice of feature selection procedure, and (4) selection of prediction algorithms
are steps that in future could also be automated. For now, these steps require
the knowledge of data mining and machine learning.

To gain insights towards answering RQ-II, predictions from CHIMP over the
different operations and KGs have to be analyzed in detail. By looking at the
interaction between the impact and selected features, similarities between task-
specific and KG-specific predictions models can be identified and used. Ideally,
I would find some features that are used across the models and show the same
relationship towards the different task-specific impact measures. Therefore, the
main step in answering the second research question is the thourough analysis
of the feature selection inside each implementation of CHIMP.

6 Evaluation of Predictors
The first part of the evaluation of the predictors built by CHIMP is a closer look
at the distribution of the impact. The distribution is a vital contributor in the
decision of which prediction approach should be used. For a normal distribution
linear regression is appropriate. If normality can not be detected a transforma-
tion, like the log or square-root transformation, needs to be used on the impact
measure. However, I will also apply non-linear regressions, like polynomial or
principal component regressions that do not require a normal distribution, to
widespread data. If there are distinct peaks close to 0 and 1 impact, assuming
that the impact is a value in the range [0,1], I can treat the impact as a binary
value and use classification. Methods like Support Vector Machine with radial
kernel, K-Nearest Neighbors and Random Forest can be applied in this case.

Before evaluating the prediction models, I take preventive measures against
over-fitting. I split the data into a training and testing datasets, where the train-
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ing dataset contains 70% of the data points. Additionally, for learning, I use
10-fold cross validation. This is especially beneficial for small datasets. Testing
of the learned models is then done on the remaining 30% of the dataset. These
are decisions made within Selection of Prediction Algorithm in CHIMP.

I compare the performance of the different models and approaches using the
area under the receiver operating characteristics curve (AUC). To calculate the
AUC for regression, I determine a threshold for the observed impact. I then
treat the predicted values as probabilities and calculate the AUC as if it was
a classification task. The goal is to only signal the impact (value of 1) when a
recalculation of the task is necessary. The detailed comparison of models is part
of the last step of CHIMP’s middle section.

7 Preliminary Results: First Experiments

I began my research by selecting two tasks, materialization and embeddings.
Materialization is the calculation of a finite set of additional axioms that can be
inferred from the ones that are already present. An embedding is the representa-
tion of the entire graph in a vector space of multiple dimensions. The tasks are
differ significantly. The former creates a graph following a deterministic process,
while the latter produces vectors according to a stochastic process. It follows
that comparison is not directly possible. Subsequently, I describe potential im-
pact measures for the two tasks; next, I describe two experiments I performed
on them, considering two different datasets. Finally, I describe the analysis of
the features I extracted for the scenarios.

Impact for Materialization. Since the result of a materialization is a finite
graph, I can define the impact in terms of a graph distance measure. Dehmer,
Emmert-Streib, and Shi [2] propose the usage of the topological indexes as an
input for the graph similarity distance D:

impactmat(Kt,Kt+1) = D(Kt,Kt+1) = 1− e−(
I(Kt)−I(Kt+1)

σ )2 (1)

where I(Kt) and I(Kt+1) are the zeroth order Randić indices of Kt and Kt+1,
and σ is a parameter set by the user. The zeroth order Randić index 0R(·) is a
topological index and is defined as:

I(K) = 0R(K) =
∑

u∈V (K)

1√
d(u)

, (2)

where u is a node from the set of nodes V (K) in the graph K and d(u) is the
degree of u. This measure ranges from 0 to 1. I have also considered the Randić
and Wiener impact, which are also proposed in [2]. However, my preliminary
experiments did not lead to good results and I have omitted them.

Impact for Embeddings. With a stochastic process, like embeddings, defining
impact becomes more complex. To evaluate embeddings of two snapshots, I
perform the comparison using neighborhoods. Taking the 100 closest neighbors
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of a particular node, I compare how many of these are also in the neighborhood
of the same node in the embedding of the next version. The aggregation for the
whole graph is then done via the mean:

impactemb−avg(Kt,Kt+1) =

∑
u∈V (K) N(ut) ∩N(ut+1)

|V (K)|
(3)

where ut is the node u in Kt and ut+1 is the same node in Kt+1. Nt(u) is
the neighborhood of the node u in the embedding of Kt. |V (K)| is the number
of nodes in K. The measure is normalized to the range [0, 1].

I investigated the overall loss of embedding and link prediction performance.
In addition, there are common measures to compare embeddings, but they are
usually used to compare different embedding approaches over the same KG. I
identified the extension of such approaches to compare embeddings created by
the same techniques on two snapshots of the same KG as future work.

Experiments. I considered three datasets: Bear-B-instant (BB) [4], the Gene
Ontology (GO) [19] and an anonymized and de-identified WebProtege Ontology
(WP). Other ontologies and KGs also need to be considered to be able to confirm
preliminary results and draw general conclusions. The criterion for data selection
are the following: The ontology or KG (1) has at least 2’000 snapshots, (2) was
edited by more than two users, and (3) has less than 40k nodes and 80k edges.
This number of snapshots is a trade of between the time it would be necessary
to compute impact and features and the considered time frame of the evolution
of the KGs. The limitation on the size of the KG is due to calculation time
of impact and features and also to have KGs that are comparable in size. The
initial list of features was comprised using measures from social network analysis
that show the structure of the KG. Spareness and entropy were added to include
features outside of social networks.

I applied two feature selection procedures: Pearson correlation and ridge
regression. Significance was the indicator for a feature to be used in prediction.
For materialization, classification was used because of the impact distribution of
BB and WP datasets showing peaks at 0 and close to 1. I classified the impact
larger than 0.5 as 1 and smaller than 0.5 as 0. The choice of the threshold is
based on the meaning of impact. When doing classification, the model decides if
there will be impact (1) or if there won’t be any impact (0). Including numbers
below 0.5 would give the same attention to changes with lower impact compared
to changes with very high impact. Therefore, the cutoff was decided at 0.5.
However, this number is for now arbitrary and further investigation is necessary
to determine if lower or higher thresholds would be suited better.

SVM with a radial kernel, k-Nearest Neighbors, and Random Forest were the
three prediction models built using the features sets selected by correlation and
ridge regression. With all three algorithms and two feature sets an AUC value of
over 0.97 was achieved. For the impact on embeddings, regression was necessary.
For the BB dataset, performance does not exceed an AUC of 0.64. On the other
hand for WP, prediction models shows a performance of AUC = 0.85.
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Table 1: Selected features for the different prediction models for the two oper-
ations (mat and emb). (+,−) indicate the (positive, negative) direction of the
coefficient using Pearson correlation (corr) and ridge regression (ridge). (.) are
not selected features.

Corr- BB WP Ridge- BB WP
Features mat emb mat emb mat emb mat emb
number of nodes . − . . + − − .
number of edges + + . . + . . .
mean degree . . − . − + − .
mean degree centrality − − . . + − − −
mean closeness − − . . + + − +
mean degree connectivity . . − . − − + .
assortativity . . − . − − − −
cluster coefficient approx . . . . + − − −
cluster coefficient − . − − − + + .
transitivity − . + − + . − −
number of components . . + . . . − +
strong components . − . . + − − .
mean SP length . . . . + . − +
longest SP length . . . . . . + +
centrality entropy + . . . − + + .
closeness entropy + . . . + + + −
sparseness − . . . + − − −

The prediction of the impact for embeddings performed significantly worse
than for materialization. The stochastic nature of embedding computation re-
sults in less predictable outcomes compared to deriving a materialization. Hence,
impact prediction of comparable consistency cannot be expected.

Analyzing Selected Features. Table 1 shows the selected features for sets that
were used in the predictions. As mentioned before, the features are common so-
cial network features with the addition of entropy and spareness to also include
feature outside of this domain. For all these features, the semantics inside the
KG was completely ignored and the KG was turned into a directional unnamed
graph. The first column shows the names of the features. For Pearson correla-
tion (Corr), significance was the selection criterion and the correlation value was
not considered. However, the +/- sign indicates the direction of the correlation
value. For Ridge regression (Ridge, a coefficient determined selection as well as
+/- entry in the table. The comparison between the two feature selection pro-
cedures Corr and Ridge is not advisable, because the respective approaches are
very different in nature. In both selection approaches along with both datasets,
features between the two operations show the same direction of influence on the
impact. Therefore, it can be concluded, that the indicated features describe the
impact partially in the same way. For Corr in BB, three features are in common
as shown in Table 1. For Corr in WP, only the cluster coefficient is in common
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between the tasks. Investigating the ridge models, three features are in common
for BB and six for WP. These findings are of great importance. They show that
the impact measures have common indicators, which could be used in a real
world application. Focusing on fewer features allows potential advantages for
implementation in e.g. impact detector inside an ontology editor.

I have also analyzed the features which are more concerned with the nodes
that are directly affected by a change. However, I was only able to calculate
such features for GO using COnto-Diff [10]. The algorithm inside COnto-Diff
is only applicable on ontologies following the OBO standard. These features
showed great influence on the impact measures in both cases, materialization and
embeddings. The calculation of the change action features also takes less time
than considering features that need calculation over the entire graph, because
the calculation of graph features grows exponentially. It is thus of great interest
to investigate change action features.

8 Reflections
As with the butterfly effect, a small change in a KG can lead to large differences
in operation results. The goal is therefore to decide when an operation needs to be
recalculated due to the KG evolution. In this research description, I propose the
iterative development of a methodology, which can be used to build a predictor
for the impact of changes of KGs. This is a crucial step towards understanding
the magnitude of changes, making KG engineers aware of the possible impact.

So far, I have used a first version of the methodology to build various predic-
tion models across three different datasets and two operations. The experimental
results confirmed that CHIMP can be used to study the impact of changes. I
will continue by revising this first methodology and by applying it to further
operations, different impact measures, new features and prediction algorithms.

The biggest challenge so far has been the definition of an appropriate im-
pact measure given an operation. Looking into practical use cases will help to
distinguish the respective understanding of impact. At the same time, obtaining
suitable datasets has proven difficult. There are many KGs of different contexts
and sizes, each of them recording and reporting the evolution history in a differ-
ent way. This requires an adaptation of KGs and their evolution before usage.

The recent advances by related studies have shown that the desired research
is indeed feasible. In addition, my current results are promising and provide
preliminary answers to both research questions. In future, I want to refine the
introduced methodology and broaden the research to encompass additional KGs,
operations and features.

Acknowledgments. I want to recognize the help of my supervisor Prof. Abra-
ham Bernstein, PhD and Dr. Daniele Dell’Aglio of the University of Zurich.
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