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Abstract. Exploring the effects a chemical compound has on a species
takes a considerable experimental effort. Appropriate methods for es-
timating and suggesting new effects can dramatically reduce the work
needed to be done by a laboratory. In this PhD research we aim at ex-
ploring the suitability of using a knowledge graph embedding approach
for ecotoxicological effect prediction. A knowledge graph is being con-
structed from publicly available data sets, including a species taxonomy
and chemical classification and similarity. We use ontology alignment
techniques to integrate the effect data into the knowledge graph. Our
preliminary experimental results show that the knowledge graph based
approach improves the selected baselines.

Keywords: Knowledge graph - Semantic embedding - Ecotoxicology

1 Problem statement

Ecotoxicological risk assessment is the task of estimating the risk to a ecosystem
by foreign chemicals. The diverse datasets used in risk assessment needs to be
aggregated into a common vocabulary before being used in the risk prediction
process. This aggregation requires the use of (semi-)manually curated mappings.
Creating these mappings is a tremendous task for the domain experts that would
benefit from suitable tool support.

At the heart of the data is the effects. This data describes the effects com-
pounds has on species. The majority of effect data relates a compound-species
pair to a mortality or chronic (e.g., reproductive) effect. Due to the large search
space of compound-species pairs, less than 1% of possible combinations has been
studied. As a result of the large cost and effort to conduct these experiments,
this proportion will not suddenly increase.

Hence, we have two main research tasks, where the latter is reliant on the
first. These can be summarized as follows:

(i) Create a knowledge graph by gathering and integrating the relevant biolog-
ical effect data and knowledge, such that to relieve the (domain) researchers
of the manual work.

* Copyright (©)2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 E. B. Myklebust

Hot spot identification

O —
Risk
Lab Exposure -
U H u : Susceptible species

isk Assessment
Prediction Model

*s

Risk driver

I
If
-
g? M !‘ | T —Hazard
Effects 67

MoA identification

Fig. 1: Risk assessment pipeline.

(#) Using the knowledge graph together with machine learning techniques to
predict effects. The objectives of this task are twofold:
(a) Limit the search space for the laboratory (binary prediction).
(b) Predict effects outright with a margin of error (regression).

2 Background and related work

In this section we introduce some preliminaries and give insights into the current
state of the art efforts applying semantic web technologies within the field of
toxicology and risk assessment.

Use case. Ecotoxicology is a multidisciplinary field that studies the ecologi-
cal and toxicological effects of chemical pollutants on populations, communities
and ecosystems. Risk assessment is the result of the intrinsic hazards of a sub-
stance combined with an estimate of the environmental exposure (i.e., Hazard
+ Exposure = Risk).

Figure 1 shows a risk assessment pipeline. Ezposure is data gathered from
the environment, while effects are hypothesis that are tested in a laboratory.
These two data sources are used to calculate risk, which is used to find (further)
susceptible species and the mode of action (MoA) or type of impact a compound
would have over those species. Results from the MoA analysis are used as new
effect hypothesis.

Effect prediction. Estimating the effect a compound has on a species is a large
research field within ecotoxicology. Currently, state-of-the-art solutions such as
Quantitative Structure-Activity Relationship (QSAR) models ( e.g., 7,13, 14])
exists. However, these are limited in scope. Each QSAR consider small groups of
compounds and a single or a few species. Therefore, a general approach suited
for a larger subset of the domain is favourable.
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Knowledge graphs. We follow the RDF-based notion of knowledge graphs [4]
which are composed by RDF triples (s, p, 0), where s represents a subject (a class
or an instance), p represents a predicate (a property) and o represents an object
(a class, an instance or a data value e.g., text, date and number). RDF entities
(i.e., classes, properties and instances) are represented by an URI (Uniform Re-
source Identifier). A knowledge graph can be split into a TBox (terminology),
often composed by RDF Schema constructors like class subsumption and prop-
erty domain and range,® and an ABox (assertions), which contain relationships
among instances and semantic type definitions. RDF-based Knowledge Graphs
can be accessed with SPARQL queries, the standard language to query RDF
graphs.

There is emerging work in improving the usability of ecotoxicological data
by mapping to knowledge graphs or ontologies, e.g., [10], however, currently this
work is limited. We are unaware of work incorporating the vast array of sources
that is required from beginning to end by a risk assessment system.

Ontology alignment. Ontology alignment is the process of finding mappings or
correspondences between a source and a target ontology or knowledge graph [9)].
These mappings are typically represented as equivalences among the entities of
the input resources.

Currently, mapping ecotoxicological data to different sources are under con-
struction. The ECOTOX web search interface* now contains mappings to a
external taxonomy source [20] (for a limited number of taxons). Fay et al. [10]
indicates a full mapping to external sources exists, however, this is not yet pub-
licly available.

We are not aware of efforts toward mapping taxonomic classes, e.g., genus,
family, etc. which can reveal inconsistencies in the datasets.

Embedding models. Knowledge graph embedding [24] plays a key role in link
prediction problems where the goal is to learn a scoring function S : EXR X E —
R. S(s,p,0) is proportional to the probability that a triple (s, p,0) is encoded
as true. Several models has been proposed, e.g., Translating embeddings model
(TransE) [5]. These models are applied to knowledge graphs to resolve missing
facts in largely connected knowledge graphs, such as DBPedia [17].

There is previous work investigating modelling of chemical effects, e.g., [16,
12]. The prediction of ecotoxicological effects can be seen as a sub-problem. These
works investigate models that use the chemical structures to determine their
effect on species. Yet, we are not aware of approaches where multiple knowledge
graph embeddings are used to model the interaction between knowledge graphs.

3 The OWL 2 ontology language provides more expressive constructors. Note that the
graph projection of an OWL 2 ontology can be seen as a knowledge graph (e.g., [1]).
* https://cfpub.epa.gov/ecotox/
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3 Relevance

The relevance of the research to be conducted during the PhD can be summarized
as follows:

(i) Manually integrating background knowledge into risk assessment systems
is cumbersome since a common vocabulary does not exists. Our approach
will reduce the time spent organizing data, and increase the number of
case studies than can be conducted. A common vocabulary will enhance
the interoperability between several risk assessment systems, increasing the
confidence in the assessments.

(#) The effect data used in risk assessment models is the result of time-consuming
laboratory work. By using machine learning techniques with background
knowledge, in the form of a knowledge graph, we aim at being able to limit
the search space for new tests to be analysed in the laboratory. For exam-
ple, we aim at recommending the top-ten compounds to test on a specific
species, rather than conducting experiments using thousands of possible
compounds.

(#i) Design and implementation of a fully-fledged recommender system to pre-
dict the level of effect on a species. For example, DEET (pesticide) has
the potential to kill 50% of the population of the common house fly. Such
generalization using the available data and knowledge is the main target
of the research, which aims at reducing to a minimum further laboratory
analysis.

4 Research questions and hypothesis

This work aims to address the following questions:

a. Can the disparate data sources used in ecotoxicological risk assessment be
integrated into a knowledge graph to improve accessibility?

b. Can the knowledge graph be used to improve (or diversify) ecotoxicological
effect prediction over current state-of-the-art models?

The hypothesis associated with the above questions are:

A. Tt is possible to integrate disparate data sources in a toxicological knowledge
graph using Semantic Web tools.

B. Extrapolation of effect data increase the reach of risk assessment systems
while remaining accurate.

5 Approaches

This section will describe the approaches used to investigate the hypothesis
above. The evaluation of the hypothesis is described in Section 7.

Hypothesis A. There are multiple sources, varying from tabular, SPARQL
endpoints, REST APIs, and RDF formats, each with its own vocabulary, that
needs to be integrated to enable a unified data access. The main sources of data
are:
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Fig. 2: Data sources in the TERA knowledge graph. Compound classification is
available from PubChem. Chemical class hierarchy from the ChEMBL SPARQL
endpoint. Compound literals are gathered from PubChem REST API and trans-
formed into triples. ECOTOX and PubChem identifiers are aligned using the
Wikidata SPARQL endpoint. ECOTOX and NCBI taxonomies are aligned us-
ing ontology alignment.

(i) Effect data (ECOTOX [23], example seen in Table 1) in tabular format.
Includes limited metadata linked to proprietary identifiers for compounds
and species.

(#i) Compound data from different sources. Hierarchies available through down-
loadable RDF files and SPARQL endpoints (PubChem [22] and ChEMBL
[6]). Compound features, e.g., Molecular weight, XLogP etc. are available
through the PubChem REST API.

(#i) The tabular NCBI taxonomy [20] is used as the hierarchy for species.

We must map the identifiers used in the effect data to open standards to take
advantage of the diversity of data sources. The created Tozicological Effects and
Risk Assessment (TERA) knowledge graph with current sources and aggregation
steps is shown in Figure 2. Excerpts of triples from TERA are shown in Table 2.

test_id ‘reference,number‘ test_cas ‘ species_number

1068553 5390 ‘877430 (2,6-Dimethylquinoline) 5156 (Danio rerio)

2037887 848 79061 (2-Propenamide) 14 (Rasbora heteromorpha)
result,id‘ test_id ‘endpoint‘concl,mean‘ concl_unit
98004 [1068553| LC50 400 mg/kg diet
2063723‘2037887‘ LC10 ‘ 220 mg/L

Table 1: ECOTOX database entry examples.
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# subject predicate object
(1) ecotox:group/Worms owl:disjointWith ecotox:group/Fish
(ii) ncbi:division/2 owl:disjointWith mncbi:division/4

(iii) ecotox:taxon/34010 rdfs:subClass0f ecotox:taxon/hirta
(iv) ncbi:taxon/687295 rdfs:subClass0f ncbi:taxon/513583

() compound:CID10198308 rdf:type obo:CHEBI_134899

(vi) compound:CID10198308 pubchem:formula CCCrHgOgS??
(vii) ecotox:chemical/115866 ecotox:affects ecotox:effect/001
(viii) ecotox:effect/001 ecotox:species ecotox:taxon/26812

(ix) ecotox:effect/001 ecotox:endpoint LC50

(x) ecotox:taxon/33155 owl:sameAs ncbi:taxon/311871

Table 2: Example triples from the TERA knowledge graph

Improving the knowledge graph can be done with several sources. First, a
dataset containing biological activity, e.g., Chemical ontology (CO) [11]. Such
datasets would enable finer grained data to be used by the effect predictor. We
also aim at including an anatomy dataset, such that the biological activity can
be aggregated from proteins to individual level.

Another aspect important to effect prediction is the habitat of the species,
e.g., [8]. Including the species habitat data will limit the effect prediction search
space further, e.g., heavy insoluble compounds (sinks in water) would have lit-
tle/no effect on fish.

Hypothesis B. The prediction task at hand is depicted in Figure 3. Initially,
we use a naive approach, which is to assume that similar compounds has a
comparable effect on the same species and wice versa. The state of the art in
risk assessment systems implement akin solutions. However, it is not clear what
constitutes similarity in this context. The similarity between compounds are
quantifiable using different methods, however, similarity does not imply sim-
ilar biological activity [18]. For species, the naive solution is to calculate the
taxonomic distance, but again the classifications of species is not defined by
the susceptibility to compounds. Consequently, additional sources that describe
these phenomena need to be added to the knowledge graph. When the knowl-
edge graph is enriched with this data we can explore modelling techniques for
embedding the knowledge graph for the purpose of predicting effects. We aim
at applying simple embedding methods, TransE [5], DistMult [25], and HolE
[21], until their performance is exhausted. These model may preform adequately
for producing recommendation to the lab, however, as shown in the next section
these models cannot be fully trusted to predicting effects outright. Therefore, we
intend to include more expressive models, such as Graph Convolution Networks
(GCN) [15]. Current approaches in knowledge graph embedding do not consider
sparsely connected knowledge graphs, such as the hierarchical structures that
make up TERA. Therefore, we aim at using the classification power of GCNs
to embed groups of species or compounds more accurately. This will include the
use of the vast array of chemical properties (experimental or computed) and the
protein classification available for most species.
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Fig. 3: The effect prediction problem. Lowercase s; and ¢; are instances of species
and compounds, while uppercase denote classes in the hierarchy. Solid lines are
observations and dashed lines are to be predicted. i.e., does ¢y affect s17

30 NN| MLP |[MLP + Embedding
Accuracy| 0.53 0.81 0.82 0.82 0.81
Precision| 0.45 0.78 0.78 0.78 0.75
Recall| 0.80 0.74 0.79 0.79 0.80

F1 score| 0.58 0.76 0.78 0.78 0.77
F—2 score| 0.69 0.75 0.78 0.78 0.79
AUC - 0.89 0.89 0.90 0.89

Table 3: Performance of the prediction models. All values are averages over 10
clean test runs. NN is the graph nearest-neighbour approach (using the closest 30
neighbours). MLP is the multi-layer perceptron model. The three values under
MLP + Embedding are the results using TransE, DistMult, HolE embedding
methods, respectively.

6 Preliminary results

We have evaluated three (plus variants) prediction models based on the effect
data and the TERA knowledge graph. Note that currently the TERA knowledge
graph has been created with the bare minimum of sources required to integrate
the effect data with external metadata for compounds and species. Selected re-
sults are shown in Table 3. Prediction models used in this preliminary evaluation:

(i) A nearest-neighbour approach. A compound-species pair can inherent an
effect if another compound or species is close in the knowledge graph.
This method provides a useful baseline. However, the performance of this
method is far from ideal, as it either will over or underestimate effects
based on the number of neighbours considered.

(i) A zero-background-knowledge multi-layer perceptron (MLP) model was
applied to the effects data. This model is able to learn simple relations, e.g.,



8

E. B. Myklebust

0.8

e
N

Accuracy

o
o

M2 (DistMult)
M2 (Transk)
M2 (HolE)
M2

o | ]

0.4

0.0 0.2 0.4 0.6 0.
Threshold

1.0

(a) Accuracy for the MLP prediction models.

1.0

0.8

0.4
0.2{ —— M2 (DistMult)
—— M2 (TransE)
—— M2 (HolE)
0.0y — M2
0.0 0.2 0.4 0.6 0.8 1.0

Threshold

(b) Recall for the MLP prediction models.

Fig.4: Accuracy and Recall for the MLP models with various thresholds.

(iii)

s1 and ss is effected by cs, therefore, c3 is toxic and will effect s3. However,
when this model is presented with previously unseen compound-species
pairs, it cannot rely on background knowledge, and hence, the prediction
will be highly flawed.

Using knowledge graph embedding ([5,25,21]) on TERA, followed by the
same MLP model architecture as above yields better results for recall
(which is preferred), while accuracy remains similar. In contrast to the
above model, this model is more uncertain when unseen combinations are
presented to the model (in dubio pro reo). As shown in Figures 4a and
4b, lowering the decision threshold (from 0.5 to 0.35) would yield a higher
recall (0.93) for the HolE-based model, while reducing the accuracy (0.75).
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The obtained predictions are promising and show the potential usefulness of
the machine learning models in our setting and the benefits of using the TERA
knowledge graph. As mentioned before, we favour recall with respect to precision.
One the one hand, false positives are not necessarily harmful, while overlooking
the hazard of a chemical may have important consequences. On the other hand,
due to the limited experiments in terms of concentration (i.e., effect data may
not be complete), some chemicals may look less toxic than others while they may
still be hazardous. At the same time the adoption of a RDF-based knowledge
graph enables the use of an extensive range of Semantic Web infrastructure
that is currently available (e.g., reasoning engines, ontology alignment systems,
SPARQL query engines).

7 Evaluation plan

In this section, we introduce the evaluation plan for the success of this project.
We can divide the evaluation of both research questions into qualitative and
quantitative measures.

The value of the knowledge graph in toxicology research is uncertain at this
stage. The knowledge graph must provide value for the researchers. We can
ensure this by evaluating the quality of the knowledge graph. Our definition of
quality is that the knowledge graph should have high levels of:

(i) Coverage. The sources included in the knowledge graph must cover the
areas of interest. The coverage also relates to the degree of successful map-
pings between the sources. There will be a trade-off between completeness
and correctness of the mappings.

(#) Integration. The ease of integrating the various sources. This involves align-
ing and mapping to attain a consolidated knowledge graph.

(i4i) Functionality. The ability of the knowledge graph to be integrated into the
risk assessment systems. This includes keeping the flexibility of Semantic
Web technology without a commitment to a schema. We can add new
triples and extend the knowledge graph, without the need of major changes.

(iv) Embedding enrichment. The semantic enrichment the knowledge graph
gives the embeddings compared to embeddings learned from effects.

The quantitative evaluation of the knowledge graph generation is tightly
related to that of evaluating the effect prediction. We can evaluate the ability to
make good effect predictions quite easily. This can be done with precision, recall,
accuracy, etc. for binary effects or with mean squared error, R?-score, etc. for
regression. However, the value of these predictions is integrating them into the
risk assessment pipeline. The evaluation metrics must be inline with the ability
our methods have to enhance risk assessment. We will compare environmental
case studies results before and after the use of our modelling results. Since there is
no ground truth data for risk assessment we rely on domain experts to determine
if our contributions adds value to the assessments.

Risk assessments has currently large margins of errors (experimental errors
etc.), and we may introduce new sources of error with our effect predictions.
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However, we are confident that errors can also be reduced by greater data cov-
erage. These are different types of errors and part of the evaluation process will
be to find the optimal trade-off between them.

The current preliminary results uses random dataset splits for training and
testing the models. We aim at introducing highly selective datasets that can
test predictive performance in different scenarios. We will also try a completely
clean test, where we recommend compound-species pairs to be tested in the lab.
This will obviously be limited by the available compounds and test species of
the particular laboratory.

The methodologies and knowledge graphs will be publicly available such that
feedback from the community can help us evaluate and improve our contribu-
tions.

8 Reflections

The conducted work falls into one of the main research lines of toxicology re-
search to enhance the generation of hypothesis to be tested in the laboratory [19].
Furthermore, the data integration efforts and the construction of the TERA
knowledge graph is a large contribution to the area of risk assessment. The
availability and accessibility of the best knowledge and data will enable optimal
decision making.

Knowledge graph embedding models have been applied in general purpose
link discovery and knowledge graph completion tasks [24]. They have also at-
tracted the attention in the biomedical domain to find, for example, candidate
genes for a disease, protein-protein interactions or drug-target interactions (e.g.,
[3,2]). However, we are not aware of the application of knowledge graph embed-
ding models in the context of toxicological effect prediction.
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