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Abstract. With the rapid development of the Semantic Web, machines
are able to understand the contextual meaning of data, including in the
field of automated semantics-driven statistical reasoning. This paper in-
troduces a semantics-driven automated approach for solving population
health problems with descriptive statistical models. A fusion of semantic
and machine learning techniques enables our semantically-targeted an-
alytics framework to automatically discover informative subpopulations
that have subpopulation-specific risk factors significantly associated with
health conditions such as hypertension and type II diabetes. Based on
our health analysis ontology and knowledge graphs, the semantically-
targeted analysis automated architecture allows analysts to rapidly and
dynamically conduct studies for different health outcomes, risk factors,
cohorts, and analysis methods; it also lets the full analysis pipeline be
modularly specified in a reusable domain-specific way through the us-
age of knowledge graph cartridges, which are application-specific frag-
ments of the underlying knowledge graph. We evaluate the semantically-
targeted analysis framework for risk analysis using the National Health
and Nutrition Examination Survey and conclude that this framework
can be readily extended to solve many different learning and statistical
tasks, and to exploit datasets from various domains in the future.

Keywords: Automated Machine Learning · Semantic Representation ·
Statistical Data and Metadata Publication · Population Health

1 Introduction

Population health strives to improve the health outcomes of subject groups
through the analysis of enormous health-related datasets collected from mem-
bers of these groups [5]. With the great advancements in data analytics and
increasing scope of population health datasets, accurate use of these data and
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statistics will be required to monitor and improve population-wide health situa-
tions. To understand the relationships between population health determinants
and outcomes, observational studies are performed on large patient databases.

These databases include electronic health records and ongoing population-
wide surveys, such as the National Health and Nutrition Examination Survey
(NHANES, [3]) studied here. Run by the National Center for Health Statistics,
NHANES examines about 5000 subjects a year and serves as a primary data
resource for population health studies. These studies, however, often suffer from
a limited scope, and many studies may require the same repeated domain-specific
data preparation procedures. The objective of a study might be confined to a
single health condition, a small number of risk factors, and a manually-chosen
subject cohort.

In this work, we present a framework, semantically targeted analytics (STA),
for automatically generating population health statistical analyses. In order to
overcome limitations on study scope, we develop a semantic representation for
knowledge from key domains: survey design and analysis, health, and data an-
alytics. Integration of each of these domains via a consistent standard [1] is
necessary for our system to formulate and answer meaningful questions. We rep-
resent our knowledge as a knowledge graph (KG1), containing terms defined by
domain-specific best-practice ontologies.

When subject cohorts are no longer manually chosen, there is no guarantee
that a linear statistical model will be sufficient to explain associations found
in population health datasets. Thus, we utilize the supervised cadre model
(SCM, [14]), a machine learning technique that automatically discovers infor-
mative subpopulations in datasets. For subpopulations within these subpopu-
lations, associations between response variables and features are approximately
linear. The SCM has already been applied to predictive analytics and precision
population health [13]; in Section 4, we integrate the SCM with STA.

In STA, semantics encodes, captures, and isolates the domain knowledge
needed to model study definitions, statistical techniques, and data. A key com-
ponent is the knowledge graph cartridge (hereafter cartridges): an application-
specific subgraph of an underlying KG. Cartridges, further described in section
3.2, are a way to express special-purpose, application-specific sub-graphs, to
augment the graph for analysis. They are implemented as RDF KGs and enable
an automated “plug and play” architecture. Further, cartridges are used either
as input when analysts choose to load them to perform a novel risk study, or
as output when the study finding is automatically written into them. Our car-
tridges are sub-graphs that contribute to a larger analysis graph. Additionally,
our output cartridges define the results in a way that is consistent with the input
cartridges and contribute to the modularity of STA.

To model and represent the components of our cartridges, we built a Health
Analytics Ontology (HAO2). HAO models the domain knowledge, analytics

1 Here, KG refers to a graph that describes real world entities and their interrelations
while and enumerating the possible classes and relations of these entities. [19]

2 The HAO is hosted at https://github.com/TheRensselaerIDEA/hao-ontology.
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knowledge, and other analytics pipeline components necessary for population
health analysis.

The main contributions of this paper are a semantic representation of popu-
lation health analysis workflows and results as knowledge graph cartridges, the
integration of this representation with precision machine learning techniques for
the discovery subpopulation-specific risk factors, and the demonstration of how
the STA framework enables rigorous investigation of population health problems.
Via cartridges, our STA framework can analyze, interpret, and report studies per-
formed on a wide variety of chronic health conditions and potential risk factors.
In Section 5, we present and examine the discoveries found by applying STA to
the task of subpopulation-specific identification of risk factors associated with
prediabetes and increased total cholesterol levels. Our framework successfully
identifies risk factors that are not picked up by standard population-level risk
analysis.

1.1 Related work

Our primary inspiration for the KG cartridge is the Oracle database systems no-
tion of a data cartridge [7]; similarities can also be found in the theory of modular
ontology design [17] and cheminformatics chemical cartridges [12]. Just as in the
data cartridge, our cartridges are mechanisms for extending the capabilities of
some underlying system. We differ in how our underlying system is implemented:
data cartridges extend an Oracle server, but KG cartridges are implemented as
and extend knowledge graphs while integrating with data analytics models.

HAO is inspired by several existing analytics-focused ontologies, including
the Data Science Ontology (DSO) associated with the semantic flow graph [18]
approach and the analytics ontology associated with the ScalaTion [15] frame-
work. In semantic flow graphs, functions in an analysis script are mapped to
abstract concepts defined in the DSO; graph visualization allows for language-
independent workflow summarization. With ScalaTion, axioms and an analytics
model taxonomy allow model selection to be performed via inference. In STA
and HAO, we focus on the problem of domain-guided subpopulation-based health
analysis in survey-weighted data [8]. Note that subpopulation discovery and rep-
resentation require descriptive rather than predictive modeling workflows.

With a similar goal as Automated Machine Learning (AutoML, [22]), espe-
cially the Automatic Statistician [21], we aim to automate end-to-end statistical
analysis. Our work differs from existing AutoML in several key areas. First, STA
utilizes domain-dependent analysis techniques. The Automatic Statistician does
not represent domain knowledge semantically; also, much of its work has been
applied to nonparametric Bayesian models, such as Gaussian processes for time
series [11]. In contrast, STA utilizes a variety of parametric statistical models,
and we focus on the special case of data generated by a complex survey de-
sign. Unlike in a nonparametric model, the parameters of our models can act
as explainable summaries of discovered associations. Finally, we note that the
strategies of the Automatic Statistician or any other machine learning method
can be readily incorporated into STA by representation in the KG.
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2 Risk analysis in NHANES

Algorithm 1 illustrates how the STA framework uses semantic structures realized
as cartridges to drive precision health subpopulation discovery and risk factor
identification. In STAGE I, the STA framework queries its input cartridges to
infer requirements for data preparation. This might entail filtering records for
subjects that satisfy study inclusion criteria, log-transforming right-skewed vari-
ables, or constructing new variables based on supplied definitions. In STAGE
II, an array of SCMs is trained on the prepared cohort using different hyperpa-
rameter configurations. A final model is determined by supplied model selection
metrics, e.g., the Bayesian Information Criterion (BIC). In STAGE III, survey-
weighted generalized linear models (GLMs) are trained on each discovered sub-
population. The regression coefficients and log-odds ratios estimated by these
GLMs quantify the association between the supplied risk factor and response
variable. After STAGE II and STAGE III, model findings and subpopulation
characteristics are written to output cartridges for future reference.

In Algorithm 1, we perform precision risk analysis for a single risk factor. In
practice, we repeat this process for many different categories of risk factors, yield-
ing a precision environment-wide association study (EWAS, [16]). Similarly, the
same risk factor can be tested against multiple potential response variables. Out-
put cartridges generated by analyses are written back to the knowledge graph,
where they are linked to the input cartridges used to generate them. This link-
age grants STA explainability: all details of provenance and execution steps are
captured, enabling detailed justifications for conclusions to be generated. Stor-
ing each piece of data and metadata in a knowledge graph also enables analysis
reproducibility, since all details are kept together.

We present the STA framework for addressing population health problems.
By varying models, variables, and the underlying datasets, we can adapt this
workflow for other tasks. Classification and multiple regression models are used
to identify potential risk factors – covariates that are strongly associated with the
response variable in the study cohort, after controlling for known confounders.

NHANES is constructed with a multistage complex survey design (CSD, [8])
for each year. An NHANES subject’s role in the CSD is captured by their survey
weight, stratum, and variance unit; the STA framework encodes these values in
the KG and then automatically utilizes them correctly in analyses. Since CSD
data is not iid, incorporation of survey weights is necessary to attain unbiased
statistical estimates. SCMs in STAGE II of Algorithm 1 use survey weights and
Stage III uses the survey package in R, to create survey-weighted GLMs that
incorporate the weights, strata, and variance units encoded in the KG.

3 Serialized components for automatic analysis

Minimal necessary analysis components from the HAO are stored in modular
serializations called cartridges. A cartridge is a subgraph containing application-
and analysis-specific entities. Cartridges can be edited to include additional el-
ements, thereby enabling the flexibility to address a range of problems with
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Input: NHANES subject records, response-cartridge, cohort-cartridge,
risk-factor-cartridge, parameters-cartridge

Output: model-cartridge, results-cartridge, subpopulation-cartridge

STAGE I: DATA PREPARATION
· Select all subjects satisfying cohort-cartridge’s inclusion criteria and store
as cohort

· Query parameters-cartridge and risk-factor-cartridge for preprocessing
techniques and apply to cohort

· Query response-cartridge and risk-factor-cartridge for necessary
control-variables

· Query risk-factor-cartridge for risk-factor

· Query response-cartridge for response-variable

· Query parameters-cartridge for model-selection metric

· Calculate population-level summary statistics of cohort and write to
subpopulation-cartridge

STAGE II: SUBPOPULATION DISCOVERY
for every hyperparameter configuration in parameters-cartridge do
· Train SCM on cohort using control-variables and risk-factor to
predict response-variable

· Calculate SCM’s metric value
end
· Identify SCM with optimal metric value and write its optimal hyperparameters
and parameters to model-cartridge

· Take optimal SCM and write to model-cartridge, serialized as pickle

STAGE III: RISK MODELING
for every subpopulation discovered by SCM do
· Select members of cohort belonging to subpopulation

· Calculate summary statistics of subpopulation and write to
subpopulation-cartridge

· Train survey-weighted GLM on subpopulation using control-variables

and risk-factor to predict response-variable

· Extract risk-factor’s p-value, regression coefficient, and regression
coefficient standard error from GLM and write to results-cartridge

end

Algorithm 1: STA SCM analysis for subpopulation-specific or precision risk
analysis of a single risk factor. Implemented variants include examining many
potential risk factors in succession via an EWAS, as well as the addition of
STAGE IV: REPORT GENERATION, in which the output cartridges are
used to automatically create a report describing the findings. Reports use text,
tables in the style of Table 3, and figures in the style of Fig. 2.
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minimal modification. In Section 5, we demonstrate this versatility. In STA, car-
tridges are loaded and modified as the user constructs their risk analysis study.

Fig. 1. Structural overview of the cartridge framework for a study using the SCM
to identify subpopulation-specific associations between three heavy metals and total
cholesterol. The descriptions of these cartridges are shown in Table 1.

3.1 Health Analysis Ontology

In the Health Analysis Ontology (HAO), we support modeling of processes,
components, models, variables and factors involved in a health analysis pipeline
such as the one described in Algorithm 1. The HAO reuses classes and properties
from existing ontologies, listed in Table 2, but we also found it necessary to
introduce new terminology.

We represent the ontology using OWL and introduce property associations
between classes using owl:Restrictions. Overall, HAO provides a vocabulary
necessary to model the reusable components of an analysis (sio:Analysis) im-
plemented by an analysis workflow (hao:AnalysisWorkflow) that we store in
cartridges (hao:Cartridge). Cartridges serve as containers that encode informa-
tion about specific portions of a workflow. For example, a response cartridge
(hao:ResponseCartridge) contributes to a high-level overview of a model with
entities (modeled via sio:hasAttribute) such as the analysis question, response
variable, type of model, etc. The HAO schema allows for the representation of
cartridges as named knowledge graphs in the TriG format3.

The HAO ontology only imports the SemanticScience Integrated Ontology
(SIO), as we reuse several classes from SIO and utilize their object properties

3 Learn more at https://www.w3.org/TR/trig/
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to define associations between classes. For other terms that we reuse from large
ontologies such as the National Cancer Institute Thesaurus (NCIT), the Statis-
tical Methods Ontology (STATO) and the Ontology of Biological and Clinical
Statistics (OBCS), we apply the Minimum Information to Reference an Ex-
ternal Ontology Term (MIREOT, [4]) technique to include terms. HAO com-
bines terminology from statistical, scientific and biomedical ontologies to model
a reusable and modular health analysis pipeline. Additionally, to provide infor-
mation on the intended usage of classes, we maintain metadata such as defini-
tions (skos:definition) and descriptions (rdfs:description) on our ontology classes.
We have tested the logical correctness of HAO by reasoning using the Hermit
reasoner [20] in Protege [9]. The HAO ontology can be explored via online doc-
umentation4 generated by using the Widoco [6] tool.

3.2 Cartridges

Cartridges can be grouped into two categories, input and output, with further
subdivisions given in Table 1. Fig. 1 gives a high-level summary of the cartridge
framework. In practice, cartridges are implemented as named graph collections
(in TriG format) encapsulating instances of ontology classes that, when grouped
together, represent different modules of an analysis workflow. Further, cartridges
are constructed using terms from ontologies listed in Table 2. Domain-specific
choices (e.g., choice of confounders or cohort inclusion criteria) about cartridge
contents are adapted from published studies and linked with provenance. In the
case that outdated or inaccurate knowledge is retired, this provenance shows
what cartridges need to be updated.

Currently, input cartridges must be manually defined by domain specialists,
but output cartridges are generated automatically after analysis. Minimal modi-
fication is needed to allow an input cartridge to be applied to a different analytics
question. Cartridges can be edited to allow for the flexible tailoring of a health
analysis pipeline to discover new subpopulations (stato:0000203 - cohort), iden-
tify new outcomes or test different response variables (hao:TargetVariable). For
example, creating a new analysis of hypertension based on a type 2 diabetes
analysis requires only a simple edit of the response cartridge; the other input
cartridges remain the same. We maintain analysis related concepts in HAO,
and for cartridges such as the subpopulation cartridge requiring domain-specific
terminology we directly reference terms from ontologies in the field, within the
cartridge. Additionally, as shown in Fig. 1, cartridges contain links to other
cartridges that were used to generate it, to allow for easy traversal of all the
components of a workflow.

4 Precision risk with supervised cadres

Our method for precision risk is the supervised cadre model [14], which si-
multaneously discovers subpopulations and learns their risk models. We use

4 https://therensselaeridea.github.io/hao-ontology/WidocoDocumentation/doc/index-
en.html
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Cartridge category Cartridge type Contents

Input Response
Analysis concepts and background domain axioms necessary to model a given
health condition

Cohort
Inclusion criteria used to determine if a given subject may be included in the user’s
study, which can be chosen on-the-fly or adapted from existing studies

Risk factor How categories of semantically-similar risk factors should be modeled

Parameters
Rules to complete chosen analysis workflow and potential hyperparameter
configurations for chosen model

Output Model
The hyperparameters used to train a model, the parameter estimates learned during
training, and the rules by which it is applied to new observations

Subpopulation
Summary statistics characterizing discovered subpopulations,
including within-subpopulation variable means and rates

Results
Quantification of subpopulation-specific discovered associations between the risk factor
and the response variable using regression coefficients, standard errors, and p-values

Table 1. Types of cartridges used in STA framework

Ontology Prefix Purpose

Health Analysis Ontology hao Inform analysis design, summarize analysis results for comparison, and generate reports

Study Cohort Ontology sco
Represent cohort variables and control/intervention groups in Cohort Summary
Tables of observational case studies and clinical trials

Children’s Health Exposure Analysis Resource chear Represent the inclusion of environmental exposures in health research

The Statistical Methods Ontology stato Represent concepts and properties related to statistical methods and analysis

Semanticscience Integrated Ontology sio
Provide an upper level ontology (types, relations) for consistent knowledge representation
across physical, process and informational entities

National Cancer Institute Thesaurus ncit
NCIT is an authoritative reference terminology in the cancer domain, but in our case we leverage
its broad coverage and use it root to terminology on model-related parameters

Ontology for Biomedical Investigations obi
Annotate biomedical investigations, including the study design, protocols used, the data
generated and the types of analysis performed on the data

The PROV Ontology prov Model provenance information for different applications and domains

Ontology of Biological and Clinical Statistics obcs Represent additional biostatistics terms not in OBI

DC Terms dct Specify all metadata terms maintained by the Dublin Core Metadata Initiative

Simple Knowledge Organization System skos Define the new terms in the HAO

Table 2. Ontologies currently used in STA. The usage of these ontologies are described
in sections 3.1 and 3.2

subpopulation-specific and precision interchangeably. The SCM is applied dur-
ing STAGE II of Algorithm 1. Subpopulations, which we call cadres, are subsets
of the population defined with respect to a cadre-assignment rule learned by
the SCM. Subjects in the same cadre have the same association with a given
risk factor. In STA, the chosen parameter and response cartridges set up the
appropriate SCM and describe how to tune its hyperparameters. Optimal model
parameters and hyperparameters are written to a model cartridge, which can be
applied to novel subject records to determine their cadre.

We outline SCM for multivariate regression and binary classification. When
trained on a set of subject records {xn} ⊆ RP and response values {yn}, the
SCM divides the observations into a set of M cadres. Each cadre m is character-
ized by a center cm ∈ RP and a linear regression function em parameterized by
weights wm ∈ RP and a bias w0

m ∈ R. New observations x have (for multivariate
regression) an aggregate regression score (e.g., a subject’s expected total choles-
terol level) or (for binary classification) an aggregate risk score (e.g., the logit

of their probability of having prediabetes) given by f(x) =
∑M

m=1 gm(x)em(x),
where gm(x) is the probability x belongs to cadre m, and em(x) is the regression
or risk score for x were it known to belong to cadre m. These have the form

gm(x) = e−γ||x−c
m||2d∑

m′ e
−γ||x−cm′ ||2

d

and em(x) = (wm)
T
x+ w0

m.
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Here, ||z||d =
(∑

p |dp|(zp)2
)1/2

is a seminorm parameterized by d ∈ RP and

γ > 0 is a hyperparameter. SCM parameters are obtained by applying stochas-
tic gradient descent to a survey-weighted loss function based on mean squared
error or logistic loss, along with elastic net [24] regularization to improve in-
terpretablity. The hyperparameters are chosen via a grid-search procedure and
recorded in the chosen parameters cartridge. Compared to other nonlinear ma-
chine learning techniques, SCMs are more interpretable because of their within-
subpopulation linearity. Examining the properties of each subpopulation and
linear prediction model can yield significant insights. We have prototyped a sys-
tem using the shiny R package that interacts with the user to design and conduct
a study and then automatically generates interactive reports with text and fig-
ures explaining the results driven by the results cartridges and other external
domain-specific linked-data. Sample results are presented in the next section.

5 Results

We present two risk analyses to identify subpopulation-specific environmental
exposure factors associated with total cholesterol (TC) and prediabetic-or-worse
glycohemoglobin levels (prediabetes). Elevated levels of serum lipids such as
TC are recognized as risk factors for cardiovascular disease, and associations
between TC and environmental exposure levels were identified previously [2, 23].
Other work also discovered associations between diabetes and environmental
risk factors [16, 10]. Thus, it is worthwhile to identify subpopulation-specific risk
factors associated with TC and prediabetes to improve health situations.

We chose a set of input cartridges shown in Table 3 for TC using control
variables from prior studies [16, 23]. We extract 201 environmental exposure
potential risk factors from NHANES 1999 to 2014 grouped into 17 classes such as
phthalates (PHT) or polyaromatic hydrocarbons (PAH). Each class of potential
risk factors has its own cartridge that describes its usage in analytics models.
However, on the GitHub repository5 we only host an example of the heavy metals
risk factor cartridge used in this analysis. The number of survey subjects that
have measurements for a given risk factor ranges from 1,406 to 15,218.

With our input cartridges, we run Algorithm 1 for every potential risk factor.
Each risk factor is included in a single SCM that discovers subpopulations in
the data. In STAGE II of Algorithm 1, each discovered subpopulation has its
summary statistics written to a subpopulation cartridge to be stored in the
KG. Characteristics of subpopulations with significant positive associations are
visualized in Fig. 2A. In STAGE III of Algorithm 1, each subpopulation has a
survey-weighted GLM trained on it, and the risk factor’s regression coefficient
and p-value are extracted. Due to the large number of hypothesis tests, false
discovery correction is applied to these p-values before assessing significance α
at a threshold specified in the study’s parameters cartridge (here, α = 0.02).

5 Visit: https://github.com/TheRensselaerIDEA/hao-ontology



10 A. New et al.

Cartridge type Contents

Response
TC is a continuous response variable; subjects’ age, Body Mass Index (BMI),
Poverty Income Ratio (PIR), smoking habits, drinking habits, gender, marital status,
and education level should be controlled for

Cohort All available NHANES subjects

Risk factor 201 environmental exposure risk factors divided into 17 categories

Parameters
Standardize risk factor measurements; train models with M = 1, 2 and 3 cadres
and choose best one using BIC for model selection; significance threshold of α = 0.02
for GLM hypothesis tests

Table 3. Chosen input cartridges for TC risk study. The prediabetes risk study uses the
same cohort, risk factor, and parameters cartridge, with a different response cartridge.

Fig. 2B shows significant regression coefficients for total cholesterol, for which
most significant associations were on a population-level. TC’s subpopulation-
specific significant associations were total mercury (LBXTGH), blood lead
(LBXBPB), perfluorodecanoic acid (LBXPFDE), and urinary lead (URXUPB),
and prediabetes’ subpopulation-specific sigificiant association was urinary lead
(URXUPB). In Fig. 2A, subpopulations for which URXUBP and LBXTGH
were risk factors for high TC have higher rates of being married and male and
higher mean ages and BMIs; subpopulations for which LBXBPB, URXBPB,
and LBXPFDE have higher rates of being divorced or living with a partner, and
smoking and drinking. Similar figures can be shown for prediabetes risk factors
and subpopulations, but they are omitted due to space constraints. One finding
was the discovery of a subpopulation with a significant positive association be-
tween urinary cadmium (URXUCD) and prediabetes. Compared to the overall
study cohort, subjects in this subpopulation had higher mean age and BMI and
lower mean PIR.

Now that STA has discovered these associations, they can be used to motivate
analyses that look for causal relationships, via, e.g., randomized control trials.
The fact that subpopulations and associations are written back to the knowledge
graph as cartridges, ensure that they are easily accessible by future queries, and
guarantee study reproducibility.

6 Discussion

We have presented a semantically-targeted analytics framework via which risk
factors specific to a subpopulation may be discovered in datasets. With the su-
pervised cadre machine learning method, we simultaneously discover subpopula-
tions and identify their significant risk factors. To support this we built a novel
Health Analysis Ontology that captures analytics and health domain knowledge.

HAO and other ontologies provide structure for defining cartridges that are
used for modular analysis pipelines. We leverage this semantic modeling to dy-
namically construct and execute a risk model and interpret results. Using STA,
the system provides explainable insights for future population health studies in
a scientifically rigorous and reproducible way.
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Fig. 2. Subpopulation characteristics and significant risk factors for TC
study (A): Heatmap of normalized subpopulation-specific means for subpopulations
with significant associations between a risk factor and TC. (B): Stacked bar chart
showing significant positive associations with TC. Colors shows risk factor type.

In STA, statistical findings and parameters are encoded in results cartridges
and written back to the KG, enabling retrieval for further study. Cartridges
provide semantic extensions that enable a KG system to apply inference to solve
domain-specific analytics problems. By publishing the results cartridges, studies
become reproducible and explainable with provenance. Researchers with new
analysis methods can readily compare results with prior studies, using the same
workflow on the same problems. They can adapt existing peer-reviewed studies
to new diseases by editing cartridge in published workflows.

We report here on semantically-targeted analytics applied to population
health studies that rapidly enables new findings from the ongoing NHANES
database. Using new cartridges, STA can readily be adapted to other types of
statistical analysis on other data sources such as electronic health care records.
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