
Parsing of Context-Sensitive Languages

Lukri5 Rychnovsky

Dept. of Information Systems, Faculty of Information Technology.
Brno University of Technology, BoZet6chova 1, 612 66 Brno, Czech Republic

rychnov@f i t . vutbr . cz

Abstract. This art icle presents some ideas from parsing Context-Sensit ive
languages. Introduces Scattered-Context grammars and languages and
describes usage of such grammars to parse CS languages. Also there
are presented additional results fronr type checking and formal prograrn
verification using CS parsing.

I{eywords: Turing Machines, Parsing of Context-Sensitive Languages,
Fornral Program Verification, Scattered-Context Grammars.

1 Introduction

This work results from [Kol-04] where relationship between regulated pushdown
automata (RPDA) and T\ring machines are discussed. We are particulary inter-
ested in algorithms which rnay be used to obtain RPDAs from equivalent Turing
machines. Such interest arises purely from practical reasons because RPDAs pro-
vide easier implementation techniques for problems where Tbring machines are
naturally used. As a representant of such problems we study context-sensitive
extensions of programming language grammars which are usually context-free.
By introducing context-sensitive synta-x analysis into the source code parsing
process a whole class of new problems may be solved at this stage of a compiler.
Namely issues with correct variable definitions, type checking etc.

2 Scattered context grammars

Definition 1. A scatter-ed co'ntert g'raTrlTnar (SCC) G is a q'uadruple (V,7, P, S),
whereV is af i "n i te set of symbols,T cV, S e I / \ " , andP is aset of product ion
rules of the form

(A r , . . . , A , -) - (u r , . . . , u n) , f r) I , Y A i : A i e I / \ ? , Y w i : w i € V "

D e f i n i t i o n 2 . L e t G - (V , T , P , S) b e a S C G . L e t (A y , . . . , A , .) - (t r r , . . . , w n) €
P. Then we define a deriuation relation + as follows: for 1 S i I n * I let
x i € V " . T h e n

t t A txzAz. . .xnAnIn+r =* I1w1r2w2. . .Tn .u)nunq1

** is refl,eriue, t,ransitiue closure of +.
Langu,age generated bu the grammar G is defined as L(c) - {w € T*l,g +. ar}.

220 L. Rychnovsky

Theorern 1. Let L,(,SC) be the family of languages generated by SC grammars
whose number of product'ions that contains two or more contert-free productions
(degree oJ'co'ntert sensiti'uitu) 'is n o'r less. L(R,E) r\e'notes the farnilg of recur-
siueLy enumerable languag es.

L2(SC) - Loo(^SC) : L(RE)

Proof. See [lvIed-}S] Lemma 1 and Theorem S.

3 Parsing of Context-Sensitive Languages

The main goal of regulated formal systems is to extend abilities from standard
CF Ll-parsing to CS or RE families with preservation of ease of parsing.

In [Kol-04] and [Rych-0s] rve can find some basic facts from theory of reg-
ulated pushdown automata (RPDA). We figured that regulated pushdown au-
tomata can in some cases simulate Turing machines so we could use this theory
for constructing parsers for context-sensitive languages or even type-0 ianguages.

\AIe have also demonstrated the basic problem of this concept: complexity.
Almost trivial Turing machine was transformed to regulated pushdown automata
with aimost 6 000 rules.

As rve have seen in previous lines, converting deterministic (linear bounded)
Turing machine or scattered-context grammar to deterministic RPDA is very
complex task. For the most simpie context-sensitive ianguages corresponding
deterministic RPDA has thousands of rules. If we want to use these algorithms for
creating some practical parser for real context-sensitive programming language
it rnay result in millions of rules. Therefore, we are looking for another wav
to parse context-sensitive languages. We would like to extend some context-
free grammar of any common programming language (such as pascal , ClCff or
Java). After extending context-free grammar to corresponding context-sensitive
grammar, parsing should be straightforward.

3.1 KontextZAP03

As an cxample of a coniext-free language we llse a language calied ZAP}J

[ZAP-03] rvhich has ven' similar syntax to Pascal. We .rvill use follorving pro-
gram as an example program in ZAP03 language.
i n t I & , b , c , d ;
s t r i n g : s ;

begin

a = L ;

b = 2 ;
{ n .

d = 1 5 ;
s = t ' f o o " ;

Parsing of Context-Sensitive Languages 221

c L - \ , .

end

Now we will define KontcxiZAP03, the context-sensitive extension of ZAP03.
In the first phase we will enrich KontextzAPO3 by variable checking. If the
variable is urrdefined or assigned before initialized, the parser of KontextZAPO3
will finish in error state. We will need to analyze three fragments of ZAP03 code
where variables are used (variable c for example).
Variable definitiorr
i " n t r & , b , c , d ;
Assignment statement
c = 1 0 ;
And using variables in commancls
a = c i

Corresponding grammar fragments from ZAP03 are following.
Variable definition
DCL -- , TYPE [:] [1d] ID-LIST
ID-L IST - ' [,] t id l ID-L IST
ID-LIST -+ e
Fragment of assignment statement
COMMAND -- [iA] CMD COMMAND
CMD -+ [=] STMT t ; l
And usage variable in command
STMT -' [id] 6PER
OPER -- E.
Symbols in brackets [,] are terminals. Complete ZAP03 grammar has about 70
context-free grammar rules.

\Aie define grammar of language KontextZAP03 in the following way. Substi-
tute previous rules with these scattered-context ones:
(Dci- , S') - -+ (TYPE [:] [ia] ID-LIST, D)
(I D _ L I S T , S ,) - - ([,] [i d] I D - L I S T , D)
(rD_Lrsr) -- (e)
assignment statemcnt
(COMMAND, D) - ' (t ld] CMD COMMAND, DL)
(C M D) * ([=] S T M T t ; l)
and usage variable in command
(STMT, D) - ' (t id l 0PER, DR)
(OPER) - , (.) .

Parsing rrow proceeds in the fblloiving way: star,rting symbol is S S' arrd
derivation wil l go as usual unti l there is DCL S' processed and (DCL, S') --)

(TYPE [:] [id] ID-LIST, D) rule is to applied. At this moment S' is rewrit len
to D indicating that variable [id] is dcfined. When variable [id] is rised on left resp.
right side of assignrnent D is rewritten to DL resp. DR according to second resp.
thircl previously shown fragment. If variable [id] is used without being definerl
befolehand. a parse error occurs because S' is not rewritten to D and S' cannot

222 L. Rychnovslgt

be rewritten to DL or DR directly. When the input is parsed S is rewritten to
program code and during LL parsiug is popped out of the stack. S' is rewritten
onto D{LR}* and this is only string that remains.
s s ' =+* DCL S' , + TYPE [:] [id] ID-LIST D =+* COMMAND D =+

+ [1d] CMD COMMAND DL +* DL
If the only remaining symbol is D, it means that variable [id] was defined but
never used. If DL+ is the only remaining symbol, we know that variable [id] was
defined and used only on the left sides of assignments. Finally if there is the
only remaining DR(LR)*, w€ know that the first occurrence of variable [id] is on
the right side of an assignment statement and therefore it is being read without
being set. Irr all these cases the compiler should gerrerate a warrrirrg. These and
similar probiems are usually addressed by a data-flow analysis phase carried out
during semantic analysis.

Using this algorithur wc can only process one variable at a time. But the
proposed mechanism can be easily extended to a finite number of variables by
adding new S' . . .' every time we discover a variable definition. Parsing of de-
scribed SC grammar can be implemented by pushdown automaton with finite
number of pushdowns. The first pushdorvn is ciassic LL pushdown. The second
one is variable specific and every [id] holds its own.

Because original ZAP03 grammar is LL1 and using described algorithm
wasn't any rule added, KontextZAPO3 grammar has unambiguous derivations.

A few examples can clear the idea. This program is well-formed according
to ZAP03 grammar, but it's semantics is not correct and parsing it as Kon-
textZAPO3 program should reveal this error.
1 n t r d , b , c , d ;
s t r i n g : s ;

begin
a = 1 ;
b = 2 ;
d = 1 5 ;
s = t t f o o t t ;

c l - L ,

end

Corresponding stack to variable c will be DR wher,t lead to warning:
Va r l ab le c read bu t no t se t ,
Second example shows another variation
i n t i d , b , c , d ;

s t r i n g : s ;

begin

a = 1 ;

d = 1 5 ;

s = t t f o o " ;

a = c ;

Parsing of Context-Sensitive Languages 223

end
Corresponding stack to variable b will be D what lead to warnings (together with
previous one):
Var iab le c read bu t no t se t .
Var iab le b i s de f ined bu t never used.

3.2 Typ. checking

By using scattered-context granrmars we can describe type set of ianguage (INT,
STR) and type check rules directly in grammar. Almost trivial language with
type check using 5 stacks can look like this:

(r) - (pr"ogra,m) (n,ert) -- (program,)
(p r o g r a m) - - (d c l) (t A p " , ,) - ([l n t] , , I M)
(program) * (fbegin]commandfendl) (tAp", ,) * (ls t r ing), , STR)
(dcl,) -, (ty'pr:.1:)dcl2) (:om'mand, D,I I '17,,) *
(dc l2 , ̂9 , 1 ,4 /7 . ,) * (l id l cmd command, D L , I M. I IV f)

(f id] id - l i s t f ; lner t , D , I NT, I ̂ lT) (command, D, ST R, ,) -
(dcl2, S, STR,,) - (l id] c'md co'rn'rnand, D L,STR, S"R)

(l id]id-l ist[;]nert, D, ST R, ST R) (command) -' (e)
(id- l is t) - - - ([,] td l is tz) (cmd) -- ' ([:]s l rnt [;])
(id- l is t2, S) * (l id) id- l is t , D) (stmt, D) - (l id, l , D R)
(z d - l i s t) - , (E) (s t m t . , , , I ^ l T) - - - (f d i g i t] , , , ,)
(ner t) - - - (d .c l ,) (s t rn t , . , , STR) - - - ([s t ' ruo , l] , , , ,)

Stacks at even positions are the variable specific stacks as mentioned in pre-
vious chapter. The first stack is classic LL stack and the rest of stacks at odd
positions are temporary used stacks for additional information. Although the
underlying context-free grammar is not LL grammar because there are several
identic rules (command --* [id] cmd command), this grammar is unarnbiguous.

Example of error program code can be
i n t r d , b , c , d ;
s t r i n g : s ;

begln
{ .

| = 1 5 ;
c = t ' f o o t t ;

a = c ;

end

because c = "foo" is not type correct (STR is assigned to INT) and parsing
will fail.

1 .

2 .

224 L. Rychnovslgt

3.3 Other applications of CS languages

It is obvious, that using a siurple scattered-context extension of CF languages,

we obtain a grammar with interesting properties with respect to analysis of a

programming language source code. We provide some basic motivation examples.

Errors related to usage of undefined variables rnay be discovered and handled

at parse time without the need to handle them by static semantic analysis.

A CS extension of a grammar of the Java programming language, which

copes with problems like mutual exciusion of various key'words, such er,s

abstract and final, reflecting the fact that abstract methods cannot be

declared fi.nal and vice versa. This situation can be handled quite easily, by

introducing additional symbol S" and two corresponding rules S" -- A (cor-

responds to abstract) and S" -- F (corresponds to f inal). Obviously only

one of the ruies can be used at a time.
Introducing an observer keyword for methods in Java, which indicates that

this method does not modify the state of thzs object (similar to defining
rnethod as const in C++). Handling of such keyword in the langr-rage gram-

mar is similar to approach taken in the previous example.

Accounting of statements in a prograln in a ZAP03 ianguage by introducing
riew size key'word, which defines upper bound on the number of statements
in current scope. The parser is than extended such that when the keyword
is discovered, the number of specialized nonterminals (say X) is generated on
the stack - as spccified by the keyword occurrence and the grammar of the
ianguage is modified accordingly. The rule:
COMMAND--- [id] CMD COMMAND
changes to:
(COMMAND, X) * ([id] CMD COMMAND, E)
Then, when a staternent rule is used, one X nonterminal is eliminatcd from
the stack. If there are no remaining X nonterminals, the parsing immediately
fails. The context-sensitive language used in this example is:

L (G) : { t u . l . l t o } ,

where tu is word and lu,'l1s is the length of tl written as a decimal number.

4 Formal Program Verification

Onc of the pr<-rrrrisirrg applicatiorrs of the described corrcept is introducing a no-
tion of preconditions and postcondi,tions to the ZAP03 programrning language.
Preconditions and postconditions are essentially sets of logical formulae, which
arc required to hold at entering resp. leaving a program or method. For exam-
ple, when computing a square root of r,, we can require a positivity of r using
precondition {r ;- 0}. A computation of sirius function {y : sinr} a natural
postcondi t ion {(y <- 1) A (A >- -1)} ar ises.

J .

A=.

Parsing of Context-Sensitive Languages 225

Statements of a programming languages then induce transformation rules on
precondition and postcondition sets. For example, assignment staternent in the
fbrni V'.- E defines a transforrnation:

{P[Elv l]v : : E{P},

whcre V is a variable, E is an cxpression, P is precondition and PItr/V] derrotes
a substitution of V for all occurrences of E in P. Other transformation examples
may be found in [Gor-98].

The purpose of introducing preconditions and postconditions into a languagc
is to be able to derive postconditions from specified preconditions using transfor-
rnation rules irr a particular program. Such program than carries a fbrmal proof
of its correctness with it, which is a desirable property.

In the ZAP}S language we can implement the described concept by introduc-
ing two new kevwords pre and post and by extending the nrles of the language
grammar with above mentioned transformation rules. When the parsing of a pro-
gram is initiated, the precondition set is constructed using the pre declarations
and the transformation rules are applied to it as the parsing progresses through
the source code. When the parsing terrninates, the resulting set of transformed
preconditions is compared with the deciared postconditions. If these two sets
match, the parsed program is correct with respect to the specified preconditions
and postconditions.

However, for practical reasons we must define constraints on the possible
preconditions and postconditions. Postconditions must be generally derivable
from. preconditions or (as a corollary of the Godeis incompleteness theorem)
the postconditions need not be provable from the preconditions at ali, but may
still hold. In this particular case we have encountered a program which may be
correct, but we carrnot verif-y this fact.

Conclusions

In this article are presented some ideas from parsing of context-sensitive lan-
guages based on scattered-context grammars. Very powerful cxtension of classic
parsing techniques is introduced and this context-sensitive extension iet us dis-
co\rer soilre corlnlon errors such as undefined or unused variabies in parsing tirne.
The extension suggested in this work is far more beyond. In some conditions we
are abie to add some features to language that enables us to check formal pro-
granr verification.

References

[Aho 72] Aho, A. , U l lman,
Prentice-Hall INC. 1972.

[Gor-98] Gordon, J. C. \ , I . :
r998.

J.: Thc Theory of Parsing, Translat ion, and Compil ing,

Programming Language 'fheory and its Implementation,

226 L. Rychnovslqt

[Kol-04] I(ol6i, D.: Pushdown Automata: New N'Iodifications and Transformations,
Habil i tat ion Thesis, 2004.

[lvled-00] Meduna, A., Kol, D.: Reguleted Pushdown Automata, Acta Cybernetica,
Vol. 14, 2000. Pages 653-664.

[Med-03] Medutta, A., Fernau, H.: On the degree of scattered context-sensit ivi ty, El-
sevier, Theoretical Computer Science 290 (2003), Pages 2121-2124.

[Sal-73] Salomaa, A.: Irormal Languages, Academic Press, New York, 1973.

[Rych-Os] Ryc]nrovsky, L.: Relation betrveen regulated pushdown autonrata and Tur-
ing mascines, Report from semestral project, 2005.

IZAP-03] htt p: I I www.fi t. vutbr.cz/study f courses f ZAP/public I pr o ject /

