


introduces the solution to the TT2BDD case using NMF, in particular NMF Synchronizations. The code for the
solution is available online1.

2 Synchronization Blocks and NMF Synchronizations
Synchronization blocks are a formal tool to run model transformations in an incremental (and bidirectional) way
[2]. They combine a slightly modified notion of lenses [5] with incrementalization systems. Model properties and
methods are considered morphisms between objects of a category that are set-theoretic products of a type (a set
of instances) and a global state space Ω.

A (single-valued) synchronization block S is an octuple (A,B,C,D,ΦA−C ,ΦB−D, f, g) that declares a syn-
chronization action given a pair (a, c) ∈ ΦA−C : A ∼= C of corresponding elements in a base isomor-
phism ΦA−C . For each such a tuple in states (ωL, ωR), the synchronization block specifies that the elements
(f(a, ωL), g ↗ (b, ωR)) ∈ B ×D gained by the lenses f and g are isomorphic with regard to ΦB−D.

A C

B D

ΦA−C

f g

ΦB−D

Figure 1: Schematic overview of unidirectional synchronization blocks

A schematic overview of a synchronization block is depicted in Figure 1. The usage of lenses allows such
declarations to be enforced automatically and in both directions. The engine simply computes the value that
the right selector should have and enforces it using the Put operation. Similarly, a multi-valued synchronization
block is a synchronization block where the lenses f and g are typed with collections of B and D, for example
f : A ↪→ B∗ and g : C ↪→ D∗ where stars denote Kleene closures.

Synchronization Blocks have been implemented in NMF Synchronizations, an internal DSL hosted by C# [2].
For the incrementalization, it uses the extensible incrementalization system NMF Expressions [6]. This DSL is
able to lift the specification of a model transformation/synchronization in three quite orthogonal dimensions:

• Direction: A client may choose between transformation from left to right or right to left

• Change Propagation: A client may choose whether changes to the input model should be propagated to
the output model, also vice versa or not at all

• Synchronization: A client may execute the transformation in synchronization mode between a left and a
right model. In that case, the engine finds differences between the model and handles them according to
the given strategy (only add missing elements to either side, also delete superfluous elements on the other
or full duplex synchronization)

This flexibility makes it possible to reuse the specification of a transformation in a broad range of different
use cases. Furthermore, the fact that NMF Synchronizations is an internal language means that a wide range of
advantages from mainstream languages, most notably modularity and tool support, can be inherited [7].

3 Solution
When creating a model transformation with NMF Synchronizations, one has to find correspondences between
input and target model elements and how they relate to each other. The first correspondence is usually clear
and is the entry point for the synchronization process afterwards: The root of the input model is known to
correspond to the root of the output model, in our case the TruthTable element should correspond to the BDD
element. Further, their names should match. There is also a correspondence between the ports of a truth table
and the ports of a binary decision diagram and the ports used in the truth table have to be equivalent to the
ports in the binary decision diagram.

In the formal language of synchronization blocks, these synchronization rules look like in Figure 2. Because
the required model elements are directly part of the model, they are rather trivial to implement: The developer

1https://github.com/georghinkel/ttc2019-tt2bdd



TruthTable BDD TruthTable BDD

Port∗ Port∗ String String

ΦTruthTables2BinaryDecisionDiagrams

.Ports .Ports

ΦPort2Port

ΦTruthTables2BinaryDecisionDiagrams

.Name .Name

IdString

Figure 2: Synchronization block to synchronize ports and names

just needs to specify the properties that should be synchronized. If an isomorphism other than the identity
should be used, it has to be specified as well.

1 public class TT2BDD : SynchronizationRule<TruthTable, BDD> {
2 public override void DeclareSynchronization() {
3 Synchronize(tt => tt.Name, bdd => bdd.Name);
4 SynchronizeMany(SyncRule<Port2Port>(), tt => tt.Ports, bdd => bdd.Ports);
5 }}

Listing 1: Definition of synchronization blocks from Figure 2 in NMF Synchronizations

The implementation for the synchronization blocks from Figure 2 is depicted in Listing 1. In particular, line
1 defines the isomorphism φTT2BDD, line 3 implements the right synchronization block from Figure 2 and line
4 implements the left one.

More interesting from an incrementalization and also bidirectionalization point of view is the synchronization
between the rows of a truth table with the leafs of a binary decision diagram. Unlike the ports, the Leaf elements
are spread over the entire output model as descendants of the decision diagram. In order to synchronize these
with the input model, we need to create a virtual collection of all Leaf elements of a decision diagram. This
virtual collection allows to specify the synchronization block to synchronize rows of the truth table with the leafs
of the binary decision diagram as in Listing 2.

1 SynchronizeMany(SyncRule<Row2Leaf>(), tt => tt.Rows, bdd => new BDDLeafCollection(bdd));

Listing 2: Synchronizing the rows of the truth table with the leafs of the binary decision diagram

Virtual collections extend a model query with modification operators in case NMF is not able to add or remove
elements from the underlying collection. The developer only has to implement a modification of the collection
contents, in case of our solution adding an assignment to the input assignments of a leaf and adding a leaf to a
binary decision diagram. Because NMF Synchronizations executes synchronization blocks from the more specific
to the more general, it will first add input assignments to a leaf before adding that leaf to a binary decision
diagram.

1 internal class BDDLeafCollection : CustomCollection<ILeaf> {
2 private readonly BDD _bdd;
3 public BDDLeafCollection(BDD bdd) : base(bdd.Descendants().OfType<ILeaf>()) { _bdd = bdd; }
4 public override void Add(ILeaf item) { ... }
5 public override void Clear() { _bdd.Tree = null; }
6 public override bool Remove(ILeaf item) { item.Delete(); return true; }
7 }

Listing 3: Virtual collection of the leafs of a binary decision diagram

The implementation of the virtual collection of leafs in a binary decision diagram is sketched in Listing 3. In
line 3, a query expression of the collection is provided to the base class. NMF Expressions will use this query
expression to receive notifications when the contents of the virtual collection change.

To add an assignment to a leaf, the implementation creates a new SubTree element with an according port
and puts the leaf or its ancestor SubTree element as child for one or child for zero, as appropriate.

1 internal class TreeAssignmentsCollection : CustomCollection<TreeAssignment> {
2 private ILeaf _leaf;
3 public TreeAssignmentsCollection(ILeaf leaf) : base(
4 leaf.AncestorTree()
5 .Select(tree => new TreeAssignment((tree.Parent as ISubtree).Port, (tree.Parent as ISubtree).TreeForOne == tree.Child)))
6 { _leaf = leaf; }
7 ...
8 }

Listing 4: Virtual collection of input port assignments of a leaf from a binary decision diagram



For this, another virtual collection of assignments for a given leaf is created. An implementation is sketched in
Listing 4. Again, obtainig the assignments for a given leaf can be easily specified as a query which NMF is able
to automatically incrementalize. The developer only has to implement methods to add or remove an assignment.

The by far most complex bit of the implementation in our solution, beating the entire synchronization decla-
ration in terms of lines of code, is the implementation to add a leaf to a binary decision diagram. Whereas the
synchronization blocks allow a very declarative specification, this part of the implementation is very imperative
and longer than the entire synchronization in terms of lines of code. This is necessary, because the declarative
approach of NMF Synchronizations requires a clear semantics, whereas for the mapping of assignments has open
conceptual problems: Meanwhile it is easily possible in the truth table model to insert conflicting information
(there could be two rows having exactly the same input port cells but different output port cells), this is just
not possible in the binary decision diagrams model.

In a first step, we collect the assignments for a leaf to ports. In case the decision diagram does not have any
tree yet, we simply set that tree and return. Otherwise, we collect the assignments and keep a stack of inner
tree nodes. Next, we go from the root of the binary decision diagram towards the leafs and select the path that
should be taken for the leaf in question. That is, we traverse the tree, taking the collected assignments as a basis
whether to walk the TreeForOne or TreeForZero reference until we find a spot where an equivalent inner node
does not exist. There, we copy the SubTree elements for ports not yet processed along the path from the root.

4 Discussion
The solution shows how easy it is to incrementalize or bidirectionalize a model transformation if the representation
of the information contained in the models is similar, such as in case of the input and output ports that have
exactly the same structure. Here, the specification of the model transformation is little more than a mapping
between types and members of input and output model.

To support bidirectional execution, our solution contains a third virtual collection, namely the collection of
assignments of a row. However, here the implementation to add or remove such an assignment is rather easy,
because it just consists of adding or deleting an appropriate cell. This is because the data structure chosen to
synchronize the model contents essentially is the structure used by the truth tables model. Apart from that, the
model transformation can be inverted automatically. Hence, bidirectional execution is a low hanging fruit for
this model transformation.

The price for the incrementality is slightly more subtle. In principle, the incrementalization system of NMF is
powerful enough to automatically incrementalize the entire model transformation without the developer having
to implement a change propagation explicitly. However, the drawback here is that the few model modification
implementations, adding or removing elements from one of the virtual collections, are executed in many more
scenarios. For example, the virtual collection of assignments for a leaf currently does not consider the case where
the leaf is actually contained in a binary decision diagram – a case that is not relevant for a batch transformation
and non-trivial to implement.

Furthermore, the synchronization blocks force the transformation to process the rows one after another and
independently for each property that is synchronized in a synchronization block. From a performance perspective,
this is highly inefficient as it makes any form of preprocessing hard in cases where multiple data is woven together
such as in the tree structure of a binary decision diagram. In particular, the NMF solution creates a range of
SubTree elements just to carry over the information of assignments which then has to be parsed. As a result,
the performance of the NMF solution is not as good as solutions that create the binary decision diagram all
together.

Figure 3 shows the performance results of the solutions submitted to the TTC 2019. These results were
produced through a Google Cloud Compute Engine c1-standard-4 machine with 16GiB of RAM and 30GB
SSDs, using a Docker image produced through the Dockerfile in the root of the benchmark repository. It shows
that the NMF solution is faster than the reference solution by multiple orders of magnitude for the medium-
sized models, but then again significantly slower than the solutions using Fulib, reference attribute grammars
or YAMTL. In particular, the slope of the graph on a logarithmic scale indicates that the NMF solution has a
worse asymptotic complexity.

Last but not least, the fact that NMF automatically enforces bidirectional references and ensures referential
integrity has a nitpick: Removing a model element from its container deletes this model element in NMF, which
in turn causes all model elements referencing this model element to delete this reference (in order to avoid a
reference to a deleted element). Hence, the Port reference of an inner node is reset once it is deleted, because it



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

1000

10000

1e+05

1e+06

I04O2 I08O2 I08O4 I10O2 I12O2 I14O4 I15O5
Model

T
im

e 
(m

s)

Tool
● ● ●ATL

ATLEMFTVMImproved
ATLGraph

Fulib
NMF
RAG_BDT

RAG_OBDD
RAG_OBDT
RAG_ROBDD

RAG_ROBDD−H
RSyncBDD
RSyncBDD−Unordered

RSyncBDT
RSyncBDT−Unordered
YAMTL

Transformation

Figure 3: Performance results of the solutions at the TTC 2019

is an opposite direction reference of the port referencing its inner nodes (which is reset when the inner node is
deleted). Thus, we have to avoid setting any of the container references of an inner node to null.

5 Conclusion
We think that the NMF solution highlights the advantages model transformations based on synchronization
blocks can offer in terms of implicit incremental and bidirectional execution opportunities. On the contrary,
the solution also unveils limitations when it comes to synchronizing information represented in tree structures:
The necessity to implement the synchronization between the flat collection structure and a tree structure using
virtual collections took the largest part of the implementation with relatively little help from the formalism. A
better support for such kind of transformation between structures would therefore be highly welcomed.

References
[1] A. Garcia-Dominguez and G. Hinkel, “Truth Tables to Binary Decision Diagrams,” in Proceedings of the 12th

Transformation Tool Contest, a part of the Software Technologies: Applications and Foundations (STAF 2019)
federation of conferences, ser. CEUR Workshop Proceedings, CEUR-WS.org, 2019.

[2] G. Hinkel and E. Burger, “Change Propagation and Bidirectionality in Internal Transformation DSLs,” Soft-
ware & Systems Modeling, 2017.

[3] G. Hinkel, “Implicit Incremental Model Analyses and Transformations,” PhD thesis, Karlsruhe Institute of
Technology, 2017.

[4] G. Hinkel, “NMF: A multi-platform Modeling Framework,” in Theory and Practice of Model Transformations:
11th International Conference, ICMT 2018, Held as Part of STAF 2018, Toulouse, France, June 25-29, 2018.
Proceedings, accepted, to appear, Springer International Publishing, 2018.

[5] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt, “Combinators for bidirectional
tree transformations: A linguistic approach to the view-update problem,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 29, no. 3, 2007.

[6] G. Hinkel, R. Heinrich, and R. Reussner, “An extensible approach to implicit incremental model analyses,”
Software & Systems Modeling, 2019.

[7] G. Hinkel, T. Goldschmidt, E. Burger, and R. Reussner, “Using Internal Domain-Specific Languages to inherit
Tool Support and Modularity for Model Transformations,” Software & Systems Modeling, pp. 1–27, 2017.


