


• We are not experts in circuit design and hence the application is limited to the cases provided in the
TTC’2019 call for solutions.

• We provide transformation rules written in a formal language which is assisted by automated reasoning
tools; and hence we believe that domain experts may be attracted by our solution. Indeed, translating a
truth table (TT) into a binary decision diagram (BDD), has several applications in safety critical systems
where formal methods became a strong requirement.

• Our objective is not to search for the most compact BDD, but to show how a formal method assisted by
automated reasoning techniques can be applied for the particular field of model transformation.

2 Summary of Meeduse

We advocate for collaborations between the formal methods (FM) community and the model-driven engineering
(MDE) community in order to take benefits of their complementarities. The Meeduse2 tool favors this commu-
nication since it makes possible the use of MDE and FM tools together in one unified framework and supports
a pragmatic approach for mixing model-driven engineering with a proof-based formal approach. In practice,
the tool brings together two technological spaces: EMF for model driven engineering and the B Method [1] for
theorem proving and model-checking. The tool is built on top of three components:

(1) Translator: this component automatically translates an Ecore meta-model into an equivalent B specification
which represents the structure of the meta-model as well as basic operations like constructors, destructors,
getters and setters. The resulting B specification can be manually refined by additional invariants and
concrete operational semantics. The proof of correctness of the full specification can be performed by
AtelierB which is a theorem prover that assists the B method.

(2) Injector: this component takes a model conforming to the Ecore meta-model (which can be designed using
EMF-based modeling tools like Sirius, GMF, XText, etc.) and produces a specialized B machine derived
from the one generated by the Translator component. This component essentially transforms abstract sets
(that represent classes in the meta-model) into enumerations representing the concrete instances of the
model, and hence allows model-checking over finite domains.

(3) Animator: in Meeduse, animation of B specifications is done using the ProB tool [5] which is an open-source
model-checker supporting the B method. The component Animator asks ProB to animate B operations
and gets the reached state by means of B variable valuations. Then, the Animator translates back these
valuations to the initial EMF model resulting in automatic synchronization of the model.

As Meeduse was not initially designed to define model transformation rules, but to define DSL execution
semantics, we need to rethink the model transformation problem in terms of operational semantics of an abstract
machine. The global strategy consists in reusing the Translator component to help automate the writing of the
formal specification of the transformation, and apply the Meeduse’s Animator synchronization capabilities to
produce the resulting EMF output model from a given input model.

3 Specification

3.1 Step 1: merging meta-models

The input of Meeduse is the meta-model of a DSL and hence in order to apply the tool for model-to-model
transformation, we first need to merge both input and output meta-models into a single one as presented in
Figure 1 where the left hand side presents the TT meta-model and the right hand-side presents the BDD
meta-model. We suggest that the execution semantics of the transformation follows a consumption/production
technique: instances of output classes are created while consuming instances of input classes. In order to keep
track of the modeling elements that have been processed by the transformation, we introduce an abstract meta-
class Element which allows to gather modeling elements consumed by the transformation. This class introduces
an attribute name to identify processed elements. We also introduce a Boolean attribute selected inside class
Cell in order to mark cells being processed by the transformation. Having defined this merging meta-model, we
are ready to start thinking about the formalization of the transformation.

2Meeduse: Modeling Efficiently EnD USEr needs.



Figure 1: Merging meta-models

3.2 Step 2: generation of the “model construction” specification

From the merging meta-model, Meeduse automatically generates B specifications that gathers modeling op-
erations as well as structural invariants. This technique allows to write later the transformation rules in the
B language. The Meeduse rules for translating an Ecore meta-model into a B specification can be roughly
summarized as following:

• Primitive types (e.g. integer, boolean) become B basic types (Z, BOOL,. . . ).

• For each meta-class there is a variable in the specification (named as the class) representing the set of
existing instances (e.g. variable Row represents the set of existing instances of class Row). If a class A is a
subclass of a class B then Meeduse generates an inclusion relationship between their corresponding existing
instances (A ⊆ B). For example, we get predicate InputPort ⊆ Port because class InputPort is a sub-class
of class Port. The additional class Element introduced in the merging meta-model is translated into an
abstract set that represents all possible instances.

• Each attribute leads to the definition of a variable that is typed as a function from the set of possible
instances to the attribute type (e.g. Cell value ∈ Cell → BOOL). The function specializations depend on
multiplicities and the optional/mandatory character of the attribute. For example, attribute selected in
class Cell is an optional Boolean attribute, and the corresponding variable is a partial function defined as:
Cell selected ∈ Cell 7→ BOOL.

• Associations are represented as functional relations between the sets of possible instances issued from both
source and target classes (e.g. tree owner ∈ Tree 7� BDD). Like attributes, the relation depends on the
reference cardinalities (and its opposite) like for example, the tree owner variable which is a partial injection
specifying the association between classes Tree and BDD with multiplicity 0..1 in its two extremities.

The behavioral part of the generated B machine provides all basic operations for model manipulation: getters,
setters, constructors and destructors; for this reason we refer to this machine as the “model construction”



machine. Note that this step is similar to what happens in MDE tools that generate code from meta-models.
For instance, from a given meta-model, EMF generates Java modeling code (getters, setters, etc), that can be
used to program model transformation in Java. In the same way, Meeduse generates a B machine that can
in turn be used to specify model transformations in B. The B specification generated automatically from the
merging meta-model is about 1162 lines of code with 89 basic operations which are proved correct (with respect
to the structural invariant) by construction. Proofs were carried out using the theorem prover of AtelierB which
generated 260 proof obligations. This means that the use of the modeling operations guarantees the preservation
of the structural properties (invariant) of the meta-model and they will never create an invalid instance contrary
to a Java-based technique like that of EMF or other tools.

3.3 Step 3: writing and checking the transformation rules

The model transformation is manually written in a new B machine as a set of B operations that call the modeling
operations generated in the previous step. Each transformation rule is defined as a B operation composed of two
parts: the guard and the action. The guard gives the conditions under which the rule can be triggered, and the
action specifies a sequence of calls to modeling operations. Since the individual model construction operations
(constructors, setters, . . . ) were proved correct, the result of executing a sequence of operations in the action
part of a rule will obviously preserve the model structural properties. The B specification of the transformation
gathers three main B operations (see Appendix for details):

• TruthTable2BDD: this rule creates a BDD from a truth table under the condition that the BDD was not
previously created. It also creates the BDD input and output ports, and then adds all generated ports to the
BDD. It sequentially calls modeling operations BDD NEW, BddInput NEW, BddOutput NEW and BDD Addports

which were generated from the meta-model.

• SelectPort: this rule selects an input port satisfying a maximality condition that depends on the current
state of the transformation and then decides whether it creates a new tree or reuses a tree already cre-
ated. When it creates a tree it calls the modeling operation Subtree NEW. For the first tree it only calls
Tree SetOwnerBDD which marks this first tree as a root tree. These are the first actions that the operation
makes. The next actions non-deterministically select cells of value zero or one which leads to two possible
instances of operation SelectPort that can be applied to the same selected port.

• Transform: this operation can be triggered only when there is no more than one selected row, and allows
to consume the row together with its cells. It has two deterministic behaviours: creates an assignment for
output cells if there exists an output cell not yet consumed, or creates a leaf if all output cells are consumed.

In order to verify the correctness of our rules we introduce invariants that define the transformation properties
and we apply a model-checking proof in order to check for the existence of a sequence leading to violations. Since
we deal with a bounded state-space, this proof is sufficient as far as the state-space is entirely covered. The
ProB model-checker computes exhaustively all the execution possibilities and checks the reachability of unwanted
states using the following goals:

• For every consumed row, one distinct leaf is created.

• For every output cell of a consumed row, one assignment is created with the same value.

• When there is no row to deal with then all tree links are produced.

• Values of trees in a computed BDD path are equivalent to the selected cells values in the consumed row.

Our exhaustive model-checking validation technique was done on input models of reasonable sizes: until 5
input ports, 2 output ports, and 32 rows. We believe that the model-checking proofs done given these models are
sufficient to have confidence about our rules because most of the provided models are generated by a combinatorial
technique. We think that since the proof succeeded for a restricted number of port combinations, then it can
be generalized for bigger combinations. Not only the algorithm applies redundantly the same principles to the
consumed rows but also the properties of these rows (by means of cell values and connexion with ports) are
similar and they don’t change during the transformation.



Further study may be required in order to show the existence of a least fixed point, from which one can
generalize the proof and stop building input models for the exhaustive model-checking. For bigger examples we
simply apply Meeduse as a runner of the transformation in order to get the output BDD. For these examples
we set property SET PREF MAX OPERATIONS to one, which forces ProB to compute only one instance of each
operation which is immediately animated by Meeduse in the automatic execution mode. Finally, we note that all
our output models successfully passed the validator provided by the TTC’2019 organizers which was somehow
expected since we checked the B specifications using automated reasoning tools. Meeduse was also helpful for
debugging the formal specifications thanks to the visualization designed in Sirius.

4 Execution

Proofs are mainly for verification purposes (i.e., “is the transformation correct?”). However, we need to validate
the rules in order to be sure that they produce the results expected by a domain expert (i.e., “is this the right
transformation?”). For this purpose, Meeduse provides an interactive animation facility that uses the ProB
[5] animator in the background. When executed on a given root element of an EMF resource, Meeduse is
synchronised with the resource and every Eclipse tool also synchronised with the same resource is expected to
be compatible with Meeduse.

In our solution, one can use our Sirius artifacts for visualizing the models (the TT and the BDD) issued from
the merging meta-model. Sirius has two benefits: (1) it favours graphical animation because when executed
the model changes (input elements are consumed and output elements are produced) and Sirius automatically
updates its rendering at every modification of the model, and (2) it is an easy way to define conditional styles
which changes the visual representation depending on some OCL-like conditions. For example, when a cell is
selected it becomes green which allows the user to know which rows are being transformed. Figure 2 shows
the Sirius views of a truth table under transformation and the current state of the corresponding BDD. In this
snapshot some cells of rows r 6 and r 7 are currently selected (for ports a, c, d), and a sub-part of the BDD
was produced from rows already consumed (r 5 and r 8). In our transformation a consumed row is simply
removed from the truth table.

Figure 2: A Truth Table under transformation



5 Discussion and conclusion

This work used together four tools:

• EMF for meta-modeling and the automatic extraction of an editor plugin in a classical MDE approach.

• The AtelierB prover for theorem proving in order to prove that the various B specifications (the model
construction and the model transformation) preserve the meta-model structural properties.

• ProB for one of its numerous model-checking capabilities.

• Meeduse was involved in order to translate an Ecore meta-model into a B specification, and also for debugging
and executing the transformation given instance of the input meta-model.

In our approach, we are not advising that the MDE expert learns the B method and its associated tooling,
or conversely that the FM expert learns meta-modeling with its tools. We believe that skills in both domains
are required, and we suggest a way to make people collaborate. Meeduse provides practical solutions for that,
as shown by this application. Furthermore, we exploited neither the whole MDE capabilities nor the whole
FM capabilities, but we limited our proposal there to a subset of what can be done for the particular case
of model-to-model transformations. From a methodological point of view we were able to define how formal
DSL execution semantics can be applied to define model transformations. In general, we are satisfied with the
application of Meeduse to the model-to-model transformation problem because as far as we know none of the
existing works combine theorem proving and model-checking in a publicly available tool which is well-integrated
within EMF-based platforms. The performance mainly depends on the performance of ProB. When the number
of model elements grows exponentially (14 input ports and 4 output ports) Meeduse went out of memory. For
bigger examples, it should be useful to try the experiments on a machine with higher performances than that on
which we have done these measures.

For readability, we believe that the verbose notation of the B method is accessible (refer to the appendix)
because it recalls some programmatic styles. It is often said to be less difficult than other formal notations. Our
transformation file is about 150 lines which remains reasonable. We think that model transformation interests
the safety-critical community whose main intention is to develop systems which are bug-free because a failure
can lead to human loss. This study gives solutions to this problem with the support of a tool and advocates for
a collaboration between MDE and FM experts.
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Appendix

REFINEMENT
meeduse tt2bddref

REFINES
meeduse tt2bddmain

INCLUDES
meeduse tt2bdd

DEFINITIONS
selectedRows ==

LET cr BE cr = {cc,rr | rr ∈ Row ∧ cc= card(cells −1 [{rr}] ∩ selectedCells)} IN
LET mx BE mx = max(dom(cr)) IN

cr[{mx}]
END

END;

portRow(rr) == (cellPort −1 ; cells) B rr ;

maxPort(pp,rr) == pp ∈ InputPort ∧ rr ⊆ Row ∧
¬ ( ∃ ss . (ss ∈ InputPort ∧ ss 6= pp ∧ ss ∈ dom(portRow(rr))
∧ card(portRow(rr)[{ss}]) > card(portRow(rr)[{pp}]))) ;

zeroCells(pp) == (cellPort −1 [{pp}] ∩ cells −1 [selectedRows]) ∩ Cell value −1 [{FALSE}] ;

oneCells(pp) == (cellPort −1 [{pp}] ∩ cells −1 [selectedRows]) ∩ Cell value −1 [{TRUE}] ;

selectedCells == dom(Cell selected B {TRUE}) ;

outputCells(rr) == cells −1 [{rr}] ∩ cellPort −1 [OutputPort] ;

inputCells(rr) == cells −1 [{rr}] ∩ cellPort −1 [InputPort]

VARIABLES
branchOne, branchZero,
seqTree, selectedPorts, treePorts, seqLink

INVARIANT
branchOne ⊆ Tree ∧
branchZero ⊆ Tree ∧
selectedPorts ⊆ Port ∧
treePorts ∈ InputPort ↔ Tree ∧
seqTree ∈ seq(Tree) ∧
seqLink ∈ seq(BOOL)

INITIALISATION
branchOne, branchZero, selectedPorts := ∅ , ∅ , ∅ ||
treePorts, seqTree, seqLink := ∅ , ∅ , ∅ ||
setLastTree(card(Subtree))



OPERATIONS
TruthTable2BDD =

ANY src WHERE
src ∈ TruthTable ∧ src 6∈ BDD

THEN
BDD NEW(src) ;
BddInput NEW(InputPort) ;
BddOutput NEW(OutputPort) ;
BDD Addports(bdd, InputPort ∪ OutputPort)

END;

SelectPort =
ANY port WHERE

InputPort 6= ∅
∧ port ∈ BddInput
∧ port 6∈ cellPort[selectedCells]
∧ maxPort(port, selectedRows)
∧ ran(seqTree) ∩ Leaf = ∅

THEN
SELECT

port ∈ selectedPorts
THEN

seqTree := seqTree ← (treePorts(port))
WHEN

port 6∈ selectedPorts
∧ ¬ ( ∃ portBis . (portBis 6∈ cellPort[selectedCells]

∧ maxPort(portBis, selectedRows)
∧ portBis ∈ selectedPorts))

THEN
Subtree NEW(port) ;
BEGIN

selectedPorts := selectedPorts ∪ {port} ||
treePorts(port) := lastTree ||
seqTree := seqTree ← (lastTree)

END ;
IF lastTree = 1 THEN

Tree SetOwnerBDD(lastTree, bddPorts(port))
END

END ;

SELECT zeroCells(port) 6= ∅ THEN
Cells SetSelected(zeroCells(port), TRUE) ||
branchZero := branchZero ∪ treePorts[{port}] ||
seqLink := seqLink ← (FALSE)

WHEN oneCells(port) 6= ∅ THEN
Cells SetSelected(oneCells(port), TRUE) ||
branchOne := branchOne ∪ treePorts[{port}] ||
seqLink := seqLink ← (TRUE)

END
END;



setLinks =
ANY t1, t2 WHERE

t1 = first(seqTree) ∧ t2 = first(tail(seqTree))
∧ ran(seqTree) ∩ Leaf 6= ∅
∧ card(seqTree) > 1

THEN
IF first(seqLink) = TRUE THEN

Subtree SetTreeForOne(t1, t2) ||
seqLink := tail(seqLink)

ELSE
Subtree SetTreeForZero(t1, t2) ||
seqLink := tail(seqLink)

END ||
seqTree := tail(seqTree)

END;

Continue =
SELECT

card(seqTree) = 1 ∧ ran(seqTree) ∩ Leaf 6= ∅
THEN

seqTree := tail(seqTree)
END ;

Transform =
ANY row WHERE

row ∈ selectedRows
∧ card(selectedRows) = 1
∧ ∀ cc . (cc ∈ cells −1 [{row}] ∧ cellPort(cc) 6∈ OutputPort⇒ Cell selected(cc) = TRUE)

THEN
IF card(outputCells(row)) > card(assignPort[outputCells(row)]) THEN

ANY as WHERE as ∈ outputCells(row) ∧ as 6∈ Assignment THEN
Assignment NEW(as, cellPort(as), Cell value(as))

END
ELSE

Leaf NEW ;
seqTree := seqTree ← (lastTree) ;
Assignments SetOwner(outputCells(row), lastTree) ;
Cells Free(inputCells(row) ∪ outputCells(row)) ;
selectedPorts := selectedPorts -

{app | app ∈ selectedPorts ∧ treePorts(app) : (branchZero ∩ branchOne)};
Row Free(row)

END
END

END



Description of the transformation rules

The definition clause allows to define some kinds of helpers (we reuse the ATL term) that calculate some formula
based on the set theory and the first order logic predicates:

zeroCells(pp) == (cellPort −1 [{pp}] ∩ cells −1 [selectedRows]) ∩ Cell value −1 [{FALSE}] ;

oneCells(pp) == (cellPort −1 [{pp}] ∩ cells −1 [selectedRows]) ∩ Cell value −1 [{TRUE}] ;

selectedCells == dom(Cell selected B {TRUE}) ;

outputCells(rr) == cells −1 [{rr}] ∩ cellPort −1 [OutputPort] ;

inputCells(rr) == cells −1 [{rr}] ∩ cellPort −1 [InputPort]

• zeroCells applied to a port pp gives all cells with value 0 that belong to the selected rows. The row selection
mechanism will be discussed while presenting the transformation rules. Definition oneCells is similar but
gives cells with value 1.

• outputCells and inputCells applied to a row rr gives the cells that are concerned by an output or an input
port.

• selectedCells gives the set of cells that are consumed during the transformation.

The algorithm proposed in the TTC’2019 call for solutions suggests to find an input port which is (ideally)
defined in all the Rows, and turn it into an inner node. We somehow applied this technique but introduced a
maximality criterion. In fact our algorithm chooses the port whose set of cells is the biggest one, with respect
to the selected rows.

A step-by-by step execution

The screen-shot of figure 3 shows that at the beginning of the transformation the only port that can be selected
is port a. This is the expected result since port a establishes the maximality criterion. Note that in the initial
state all rows are selected and then a has the biggest set of cells in comparison with the other ports.

Figure 3: First execution

The Animation view provides two possibilities for selectPort(a) because one can select the zero value or
the one value. The animation of the second occurrence of selectPort(a) leads to figure 4 where cells of value
one of port a are selected and a node is created in the BDD model. In fact, every time a port is selected, a node
in the BDD is created. For this state, formula maxPort identifies port d as the one satisfying the maximality
criterion and then the animation view gives two possible executions of selectPort(d) (for value zero and for
value one).

The animation of the first occurrence of selectPort(d) leads to the model of figure 5 where zero cells of
port d are selected and an other node is created in the BDD model. In this new state four possible rules can be
triggered because ports b and c are equivalent regarding the maximality criterion. Meeduse suggests then two



Figure 4: Second execution

possibilities for each of selectPort(b) and selectPort(c). Running the second occurrence of selectPort(b)
produces figure 6 from which it is possible to trigger finally rule selectPort(c) and hence reach the end of the
selection step with nodes extraction.

Figure 5: Third execution

Figure 6: Fourth execution

From step of figure 6 the execution of the second occurrence of selectPort(c) leads to figure 7 where only
one row r 9 has all its cells selected. Now, only rule Transform(r 9) is proposed. When applied this rule iterates
several times on row r 9 until it transforms it entirely. The first calls transform non-deterministically the row
output cells into assignments with the same values (figure 8). After consuming all output cells (in this case we
have only one output cell), this rule creates a Leaf and then removes the row from the model together with its
cells. By this way row r 9 and its cells will not be considered for the next calculus of the enabledness conditions
of the transformation rules.

In figure 9, after removing row r 9, the enabled rules are those that create links between nodes, assignments and
leafs. These are successive occurrences of operation setLinks: setLinks(1,2), setLinks(2,3), setLinks(3,4),
setLinks(4,5). The valuations correspond to tree identifiers managed by the internal state of the B specification
every time an instance of class tree is produced.

Figure 10 gives the resulting model after a row is entirely consumed and the corresponding path in the BDD is
produced. Rule continue then updates the internal state of the B machine and makes possible the port selection
process for the remaining rows. From the model of figure 10 only port c with value zero can be selected. Indeed,
given the set of selected rows and cells, only port c satisfies the maximality criterion.



Figure 7: Fifth execution

Figure 8: Sixth execution

Figure 9: Seventh execution

Figure 10: A successive animation of setLink


