
DAGOBAH: An End-to-End Context-Free
Tabular Data Semantic Annotation System

Yoan Chabot1[0000−0001−5639−1504], Thomas Labbé1[0000−0001−9295−7675],
Jixiong Liu1, and Raphaël Troncy2[0000−0003−0457−1436]

1 Orange Labs, France
yoan.chabot|thomas.labbe@orange.com
2 EURECOM, Sophia Antipolis, France

raphael.troncy@eurecom.fr

Abstract. In this paper, we present the DAGOBAH system which tack-
les the Tabular Data to Knowledge Graph Matching (TDKGM [6]) chal-
lenge. DAGOBAH aims to semantically annotate tables with Wikidata
and DBpedia entities, and more precisely performs cell and column an-
notation and relationship identification, via a pipeline starting from pre-
processing to enriching an existing knowledge graph using the table in-
formation. This paper presents techniques for typing columns with fine-
grained concepts while ensuring good coverage, and for valuing these
types when disambiguating the cell content. This system obtains promis-
ing results in the CEA and CTA tasks on the challenge test datasets.

Keywords: Tabular Data · Knowledge Graph · Entity Linking · Em-
bedding · DAGOBAH · TDKGM Challenge

1 Introduction

The annotation of tables using knowledge graphs is an important problem as
large parts of both companies internal repositories and Web data are repre-
sented in tabular formats. This type of data is difficult to interpret by machines
because of the limited context available to resolve semantic ambiguities and the
layout of tables that can be difficult to handle. The ability to annotate tables au-
tomatically using knowledge graphs (encyclopedia graphs such as DBpedia and
Wikidata or enterprise-oriented graphs) allows to support new semantic-based
services. For example, it opens the way to more efficient solutions to query (e.g.
“moving beyond keyword” for dataset search [2]), manipulate and process het-
erogeneous table corpus [1].

In this paper, we propose a complete system to annotate tabular data, from
pre-processing to entities and relations extracted from knowledge bases, without
using any tables context. The main contributions of our system are:

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).



Chabot et al.

– A new pre-processing tool chain improving the results of the DWTC frame-
work3.

– A three-step annotation process (cell-entity annotation, column-type anno-
tation and disambiguation) leveraging on Wikidata and DBpedia.

– An alternative approach based on clustering operations using Wikidata em-
bedding.

2 DAGOBAH: an End-to-End System for Annotating
Tables

DAGOBAH is implemented as a set of tools, used in sequence, to provide three
main functionalities.

1. The identification of mapping relationships between tabular data and knowl-
edge graphs.

2. The enrichment of knowledge graphs by transforming into triples the knowl-
edge contained in table. DAGOBAH’s target knowledge graph is Wikidata
for several reasons including its dynamics, coverage and the quality of data
[4]. Thus, adaptations had to be made for the challenge to support DBpedia.

3. The production of metadata that can be used for datasets referencing, search
and recommendation processes [1].

To provide these features, DAGOBAH is structured in the following way.
The pre-processing modules (Section 2.1) perform the tables cleaning and a
first high-level characterisation of their shape and content. The entity linking
modules accomplish the tasks of the challenge itself, namely the cell-entity an-
notation (CEA), the column-type annotation (CTA) and the columns-property
annotation (CPA). Two methods have been studied to carry out these tasks: a
baseline exploiting lookup and voting mechanisms (Section 2.2) and a geometric
approach based on clustering applied to Wikidata embeddings (Section 2.3).

2.1 Tables Pre-Processing

In order to correctly process the information contained in the tables, it is first
necessary to infer several characteristics on the shape of the table. In a context
of real exploitation in which there is sometimes little or no knowledge on the
tables, the information produced by this chain is decisive for the quality of the
annotations. The pre-processing toolbox of DAGOBAH, partly based on the
DWTC-Extractor, generates four different types of information. The precision
of the toolbox was evaluated on round 1 dataset (Table 1) and compared to
a modified version of the DWTC (which does not use HTML tags and thus
supports more formats).

Table Orientation Detection. The initial algorithm proposed in the DWTC-
Extractor is based on the length of the strings and the assumption that the cells

3 https://github.com/JulianEberius/dwtc-extractor



DAGOBAH: Tabular Data Semantic Annotation System

in the same column have a similar size. However, the robustness of the DWTC
algorithm can be improved. Indeed, for example, two strings representing very
different elements may have the same length (for example ”Paris” and ”10cm2”).
DAGOBAH introduces a new algorithm based on a primitive cell typing system
with eleven types (string, floating numbers, date, etc.). Based on these types ti,
an homogeneity score is computed on each row and each column x (Equation 1).
The mean of all rows and all columns is then compared, and depending on the
ratio, the table is said “HORIZONTAL” or “VERTICAL”.

Hom(x) = [
1

len(x)

∑
ti∈x

(1− (1− 2 ∗ count(ti)
len(x)

)2)]2 (1)

Header Extraction. The algorithm used in DAGOBAH is based on the prim-
itive types defined above. The header extractor assumes that the header of a
column contain mainly strings and, in most cases, does not share the type of the
column cells. The use of these two heuristics allows to identify if a table contains
or not a header with a good accuracy (see Table 1). It should be noted that
the DWTC framework also offers a header detection tool but it contains several
bugs that make impossible its evaluation.

Key Column Detection. A first step aims to identify a first low level type
for each column among five given types (Object (mentions that are potentially
lookup-able in a knowledge base), Number, Date, Unit (e.g. “12 km”) and Un-
known (containing all the unclassified columns)). The key column is an Object
column containing a large number of unique values and located on the left side
of the table. This pre-processing toolbox was especially useful during the first

Table 1. Precision of pre-processing tasks

Task/Tool DWTC DAGOBAH

Orientation Detection 0.9 0.957
Header Extraction Not evaluated 1.0

Key Column Detection 0.857 0.986

round to automatically identify the information contained in the header as well
as the column to be annotated in each table. In addition, when the goal is to
enrich a knowledge graph with information contained in tables, key column de-
tection is a critical element in determining the subject of the generated RDF
triples. The availability of targets during the second round made the use of this
pre-processing chain obsolete. However, this does not affect the usefulness of
such tools in real world applications.

2.2 Baseline Approach

Entities Lookup. A preliminary cleaning process is first applied in order to
optimize the lookups. The intent is not to correct every string issues, but to



Chabot et al.

have a macroscopic transformation process covering the most known artefacts:
encoding homogenization and special characters deletion (parenthesis, square
bracket and non alphanumeric characters). Five lookup services are simultane-
ously queried to retrieve entity candidates from cell mention: Wikidata API,
Wikidata Cirrus Search Engine, DBpedia API, Wikipedia API and an inter-
nal ElasticSearch index where Wikidata has been ingested, that contains labels,
aliases and types associated to Wikidata QIDs. The benefit of having such source
is also to manage the indexes, thus the search strategy. An occurrence count is
performed at the output of the lookups to select the most popular candidates,
and their corresponding types, among the five services. As DBpedia is the target
knowledge base for the challenge, QIDs and Wikidata types are translated to
equivalent DBpedia entities (using SPARQL query and following owl:sameAs
and owl:equivalentClass predicates). Ancestors are retrieved for each class in the
resulting list through SPARQL query to the DBpedia endpoint in order to have
an extended list of candidates types.

Column Typing. Before proceeding to counting, it is necessary to remove non-
relevant types. A basic type coverage of the cells criteria is not relevant as right
types might be more specific but not frequent enough to be consider as the target
ones. To solve this issue, a threshold based on relative scores is used. To each
type t in {ti} (list of all types in a given column), a score St is first associated,
from which a relative score Rt is computed (Equation 2).

St =
count(t)

sum(ti)
and Rt =

St

max(Sti)
(2)

Only types with Rt > 0.7 (configurable threshold) are considered in the next
steps. In order to select the target type from the short-listed ones, a TF-IDF-like
method is used to compute the specificity. It reflects the importance of a type t
in {ti} (Equation 3).

Sspec(t) = St ∗ log(
NL

count(t)
) (3)

where NL is the number of lookup candidates and count(t) is the occurrences of
type t within the given column. The inherent advantage of this method is to be
independent from the target knowledge base.

Entities Disambiguation. In order to enhance the CEA results, the previous
ordered types are used to disambiguate the candidates entities. If the first can-
didate of the lookup has the target type, it is selected as the target entity; if
not, we select the entity associated to this type in the lookup list (if the list is
empty, no annotation is produced).

2.3 Embedding Approach

The intuition behind this approach is that entities in the same column should be
closed in the embedding space as they share semantic characteristics, and thus
could form coherent clusters. In order to compare this approach to the baseline,



DAGOBAH: Tabular Data Semantic Annotation System

Fig. 1. Workflow of the embedding approach

a syntactic lookup to Wikidata embedding is done.

Embedding enrichment and Lookup. The pre-trained Wikidata embedding
[5] only contains Wikidata QIDs. Labels, aliases as well as types are added to each
entity through an internal Elasticsearch server (step 1 in Figure 1). Lookups are
then used to find candidates matching the content of each cell (step 2 in Figure 1).
Both regex and Levenshtein distance strategies have been implemented.

1. Entity candidate label or aliases should include all the words of the original
mention (with no order).

2. Levenshtein ratio [7] between an entity string and mention (itemsim(i))
should be larger or equal than 0.75.

If an entity (label or aliases) satisfies one of the previous conditions, it is ac-
cepted as candidate.

Candidates Clustering and Scoring. The challenge is to have most of the
expected candidates for a given column in one of the clusters. A grid search
strategy measuring precision of correct candidates clustering with different algo-
rithms and K values was implemented to determine the best algorithm (K-means
with hyperparameter K equals to number of lookup candidates divided by num-
ber of rows)(step 3 in Figure 1). In order to select the relevant cluster, a scoring
algorithm has been defined (step 4 in Figure 1). The clusters with the highest
rows coverage (i.e. number of rows having at least one candidate in the cluster)



Chabot et al.

are selected. Then, a confidence score is associated to each candidate within
these clusters (Equation 4).

Sc(i) = itemconf (i) ∗ itemsim(i)x (4)

where itemconf (i) is the co-occurrence score given by Equation 5 and x ∈ N+

allows to give more importance to the textual similarity.

itemconf = FE + 0.5 ∗ FH (5)

where FE and FH are defined in Equation 6.

FE =
e + 1

NC
, FH =

h + 1

NC
(6)

where e = number of entities in other columns matching with Wikidata proper-
ties values of the candidate; h = number of headers in other columns matching
with Wikidata properties labels of the candidate; NC = number of table columns.
The normalized confidence score for a given cluster n is then computed using:

Sk(n) =

∑
i∈n Sc(i)

len(n)
(7)

where len(n) is the number of elements within cluster n.
From all candidates in the selected clusters, a counting for every existing

type is computed, each type inheriting the confidence score of its corresponding
candidate (step 5 in Figure 1). All types with a score higher than a threshold
(Max(score)∗0.75) is selected. Thus, the output type is the one having the high-
est specificity within DBpedia hierarchy (using subclasses count and distance to
owl:Thing). Finally, the candidates of each cell resulting from the lookup op-
erations are examined according to the selected type (step 6 in Figure 1). The
following score is computed for each lookup entity i belonging to cluster n:

Se(i) = Rt ∗ (0.2 ∗ Sk(n) + 0.5 ∗ Sc(i)) (8)

where Rt = 1.5 if the entity belongs to the type T produced in CTA, 1.2 if it
belongs to a parent of T and else 1. From a given row candidates, the output
entity is the one with the highest score.

3 Results

The baseline was used during the four rounds of the challenge (Table 2). The
CEA’s results are satisfactory, but the baseline has difficulty in producing the
CTA results expected by the evaluator. In round 1, the predicted type was often
too generic or too specific. In addition, the baseline showed two important limi-
tations: a high dependency on lookup services (over which DAGOBAH has little
control) and difficulties in correctly setting up algorithms (in particular finding
the right compromise between specificity and representativeness of types in the



DAGOBAH: Tabular Data Semantic Annotation System

Table 2. Results of the baseline and embedding approaches: rounds 2-3-4 of the chal-
lenge evaluated by AICrowd on 30 November 2019 and round 1 evaluated by the same
scorer after the organizers have made it available

Task CTA CEA CPA
Criteria Prim. Score Sec. Score F1 Score Precision F1 Score Precision

Round 1
Baseline 0.479 0.242 0.883 0.892 0.415 0.347

Embedding 1.212 0.336 0.841 0.853 - -

Round 2 Baseline 0.641 0.247 0.713 0.816 0.533 0.919

Round 3 Baseline 0.745 0.161 0.725 0.745 0.519 0.826

Round 4 Baseline 0.684 0.206 0.578 0.599 0.398 0.874

case of CTA). Concerning the CPA, a simple lookup technique on the header
was used during round 1 explaining the low accuracy.
For the next rounds, a search over relationships between each pair of instances
(output of CEA) of the two candidate columns followed by a majority vote was
used. This second technique has significantly improved the accuracy of the CPA.
To show the contribution of the embedding approach, an evaluation was carried
out on the corpus of round 14 with an enrichment of the CTA GT consisting
in the addition of the parent types (except owl:Thing) of the perfect type in
order to allow the correct evaluation of the primary and secondary scores. CEA
performances are slightly poorer because of basic lookup strategies used (com-
pared to the fully-optimised lookups used in the baseline) and the absence of
expected candidates in the selected clusters. But the embedding approach proves
to be highly proficient to determine the type of a column which is the core of
more reliable annotations. In addition, the results are particularly interesting
in cases where string mentions in the original table are incomplete. In table
54719588 0 8417197176086756912 for instance, one column references movie di-
rectors only by their family names (in that case, our baseline performance was
poor). Doing K-means clustering on a subset of this table (four rows) performs
pretty well even with very few data, as illustrated in Figure 2 (2 clusters shown
among 12). Indeed, the green cluster gives the expected candidates, even if dis-
ambiguation still has to be done for some cells (using Se).

4 Conclusion and Future Works

In this paper, we have presented a baseline and an embedding approach to carry
out the task of generating semantic annotations of tables. The embedding ap-
proach shows very encouraging CTA results and an ability to infer candidates
from incomplete information and with no tailored data cleaning. However, op-
timizing the hyper parameters still remains challenging. The way DAGOBAH
computes the number of clusters for K-means (based on lookup and table prop-
erties) gives good results but might not be robust with all datasets (this is why

4 For timing and performance reasons, this approach could not be tested on other
rounds in time.



Chabot et al.

Fig. 2. Result of K-means clustering applied to Wikidata embedding

we have decided to consider the high-scored clusters instead of relying entirely
on the first one). Other clustering algorithms shall be tested that may be more
accurate to find the best compromise between having all candidates in the same
cluster and enough clusters for good discrimination between candidates.
Combining Wikipedia and Wikidata in a joint embedding space and use Fasttext-
like embeddings, as well as exploiting semantic lookup in addition to syntactic
one could significantly enhance the entities mapping. Finally, a full vectorial ap-
proach [3] consisting of learning table rows embedding (possibly Poincaré-like)
combined with geometric constraints derived from column mentions, and then
find mapping (general or local) transformation(s) with a Wikidata/Wikipedia
embedding space could enhance the results.

References

1. Chabot, Y., Grohan, P., Le Calvez, G., Tarnec, C.: Dataforum: Data exchange,
discovery and valorisation through semantics. In: Extraction et Gestion des Con-
naissances (EGC). Metz, France (2019)

2. Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G., Ibáñez, L.D., Kacprzak,
E., Groth, P.: Dataset search: a survey. The VLDB Journal pp. 1–22 (2019)

3. Chen, J., Jimenez-Ruiz, E., Horrocks, I., Sutton, C.: ColNet: Embedding the Se-
mantics of Web Tables for Column Type Prediction. In: 33rd AAAI International
Conference on Artificial Intelligence (2018)

4. Färber, M., Ell, B., Menne, C., Rettinger, A.: A Comparative Survey of DBPedia,
Freebase, OpenCyc, Wikidata, and YAGO. Semantic Web Journal pp. 1–5 (2015)

5. Han, X., Cao, S., Lv, X., Lin, Y., Liu, Z., Sun, M., Li, J.: Openke: An open toolkit
for knowledge embedding. In: International Conference on Empirical Methods in
Natural Language Processing (EMNLP). pp. 139–144 (2018)

6. Hassanzadeh, O., Efthymiou, V., Chen, J., Jiménez-Ruiz, E., Srinivas, K.:
SemTab2019: Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching - Data Sets. Zenodo (2019), https://doi.org/10.5281/zenodo.3518539

7. Sarkar, S., Pakray, P., Das, D., Gelbukh, A.: JUNITMZ at SemEval-2016 Task 1:
Identifying semantic similarity using levenshtein ratio. In: 10th International Work-
shop on Semantic Evaluation (SemEval). pp. 702–705 (2016)


