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ABSTRACT

The news recommendation problem poses a number of spe-
cific challenges that established recommendation techniques,
successful in other settings, do not tackle adequately. For
example, unlike in other domains, the relevance of news ar-
ticles drops significantly over time, and the order in which
users visit news articles matters greatly. Furthermore, in the
context of breaking news, user interests can change rapidly,
and there is a need to generate recommendations on-the-fly,
taking into account recently published articles and the latest
trends among users’ preferences. To address these issues, we
use a form of sequential pattern mining to generate up-to-
date news recommendations on a click-by-click basis. In this
approach, patterns are mined incrementally from the incom-
ing clickstream so that new items and trends are considered.
Our experimental evaluation demonstrates that our method
compares favorably with existing techniques and outperforms
them on a variety of metrics.
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1 INTRODUCTION

Each recommendation scenario has its own particular char-
acteristics, which call for different approaches in designing
recommender systems (RS). Thus far, numerous technical
approaches have been proposed for generating recommenda-
tions, including data mining techniques, such as sequential
pattern mining (SPM) methods [25]. However, specifically in
the domain of news recommendation, SPM techniques have
only seen limited use so far [9].

News is a peculiar application domain of RS for a number
of reasons. For example, users mostly read news articles in
the first two days after publication, after which the relevance
of articles dramatically decreases [4]. In contrast, in other
domains like music, users regularly listen to tracks from years
ago. In addition, user interests are not completely stable on
news websites. When trending news articles emerge, users
often engage with news topics that do not fit their normal
reading preferences. This change in user preference obviously
occurs in other domains as well. For example, in the context
of fashion, users sometimes adjust their preferences based on
seasonal trends. However, such preference reversals are not
comparable to sudden interest shifts that occur in the news
domain, e.g., when a news article about a natural disaster is
published.
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It is, therefore, necessary to update news recommendation
models immediately, which is not possible with most state-of-
the-art recommendation approaches, such as those based on
latent factors. Instead, a news recommendation model needs
to allow for incremental updates based on every new click.
In this paper, we propose a news recommendation approach
based on the above-mentioned design goals. The algorithm
mines patterns from ongoing user sessions incrementally and
subsequently adds the patterns to a tree-based model. This
model can be scanned efficiently for patterns that match a
given user’s current click session, and recommendations can,
consequently, be generated in real-time based on the most
recent information available.

2 RELATED WORK

In the field of recommender systems, modeling temporal
dynamics of user behavior and the evolution of items are
challenging issues [5, 8, 13, 14], especially in the news do-
main [2, 10]. To address user interest drifts, Lu et al. use
an attenuation function to prioritize news topics that users
were most recently interested in [21], while Epure et al.
model short-term interests using Markov processes with-
out prior user models [3]. Other works rely mainly on tra-
ditional recommendation approaches, such as co-visitation
patterns, and extend them with specialized user profiling
strategies [17, 18, 22, 26].

Other approaches use contextual information, such as the
time of day or the user’s location [15, 19]. In the 2014 CLEF
NewsREEL challenge [20], two teams used contextual infor-
mation in the online task. The runner-up team used an agent-
based approach that delegated recommendation requests to
different algorithms based on the day of the week [19]. The
third placed team implemented an Apriori-based rule-mining
approach that utilizes click data and context features, such
as the user’s location [15].

Recently, deep learning techniques, specifically Recurrent
Neural Networks (RNN), have also been used to model short-
term user behavior, leading to promising results in session-
based news recommendation scenarios [16, 24]. However, neu-
ral approaches are not always the most effective choice, as
their long training times prevent them from immediately
recommending new items, e.g., breaking news.

In contrast, traditional nearest neighbor schemes, which
do not need to train extensive models, have recently been
shown to be a strong baseline in the news domain and other
recommendation scenarios where short-term interests are
important [7]. Specifically, a session-based nearest neighbor
method called V-SkNN, which prioritizes the most recent user
clicks, was able to outperform a state-of-the-art neural ap-
proach on two news data sets [9]. The V-SKNN approach can,
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therefore, be considered as the current benchmark in news
recommendation. We, consequently, include the approach
for comparison in our empirical evaluation and follow the
authors’ evaluation protocol.

Another traditional approach used to generate recommen-
dations in a number of domains is SPM [6, 25]. In the con-
text of news, some papers employ frequent pattern mining
approaches [1, 9] that consider each session as a single un-
interrupted pattern. Our approach is somewhat similar to
these strategies. However, our strategy exploits all possible
subpatterns in each user session. We, thus, consider user
click sessions in a more fine-grained way, which allows us to
capture interest drifts over the course of a few clicks as well
as the whole session context.

3 PROPOSED APPROACH

In this section, we first give a brief overview of the basics
of sequential pattern mining. We then explain the proposed
tree-based model and the recommendation mechanism.

3.1 Frequent Sequential Patterns

Sequential pattern mining is a well-established field in data
mining. In the traditional setting, given a database of se-
quences, the goal is to discover which (sub)sequences occur
often in the data [23]. Such sequences are called frequent
sequential patterns.

Our setting is well-suited for SPM. The data consists of
user sessions, each of which can be represented as a sequence
of clicks, with its associated subsequences. Consequently, a
frequent sequential pattern is an often encountered sequence
of clicks. For example, the frequent sequential pattern {A, B,
C} indicates that many users have first clicked on A, then on
B, and, finally, on C. Therefore, if we know that the current
user has clicked on A and then on B, we could recommend
item C to the user. We require the patterns to be frequent,
i.e., based on a high number of previous sessions, in order for
the recommendations to be reliable.

3.2 Tree-based Model

Our proposed algorithm uses a tree-based model to store
mined patterns, which allows us to easily update the rec-
ommendation model based on each incoming session. In the
following, the tree model is described based on an example.
Let two sessions be S; and S, where S; contains clicks on
items {A, B} and S includes clicks on items {A, C}.' To
capture all (sub)sequences in the session, we first calculate
the power set of the items in the session. For S; the power
set would be {{A}, {B}, {A, B}}, and for S5 it would be
{{A}, {C}, {A, C}}. Next, we build the tree model based on
the power sets. For all sets in the power set, we traverse the
tree and increment the counter of the respective last node.
For example, for the set {A, B}, the algorithm starts from
the root and traverses through node A and then B. Reaching
B, it increments the node’s frequency counter by one. If there

We show the clicks of a user in the current session in set notation.
However, the order of items in the set is important in our model.
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Figure 1: Creation of the Pattern Tree Model

Algorithm 1: Partial Power Set Creation

Data: S;, = s7,s5,...
session
Used subroutines: P(X): creates the (full) power
set of X
Result: P;: partial power set
Sh_1:=5h\ sn; > remove s, (latest click)

, Sp: current (partial) user

P :=P(Sn-1); > create power set of S;_;
foreach Set Q™ € P, do

‘ QT =Q"Usy ; > add s, to each subset
end

return P ;

are items in the set for which no nodes exist in the tree, new
nodes are created on-the-fly. This process is applied to all
sets of the power set. Figure 1 shows the tree-based model
after processing the two sessions from our example.

Since the number of subsets in a power set grows exponen-
tially based on the session length, it is important to limit the
power set size. Thus, we introduce an adjustable parameter
called sliding window which limits the number of clicks in
a pattern. If a user has a session longer than n clicks, the
power set of the first n items is calculated. Then, the window
slides by one, and the power set from the 2°¢ item to the
n—+15% item is calculated, and so on. Thus, we are even able
to process patterns from longer sessions efficiently.

3.3 Incremental Tree Creation

In reality, complete user sessions do not become available for
processing right away, but instead click-by-click. However,
waiting for a session to “finish”, e.g., when a user has not
clicked on an article for 20 minutes, is also not an option,
as this would result in an inherently outdated model. The
algorithm, therefore, needs to build the power set P(S) of
each session S incrementally. To this end, when the n'" click
is added to a session, the algorithm creates a partial power
set P;;. The idea is that, in combination with the previously
created partial power sets of that session, the complete power
set will be assembled as P{' U Py U...U P; = P(S). In this
way, the subpatterns in the partial power sets can already
be applied to the tree model while the user session is still
ongoing.
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The subroutine for creating a partial power set P, based
on an ongoing session S;; is given in Algorithm 1. We explain
this subroutine with an example. Assuming that, so far, a user
clicked on items A and B in an ongoing session, the algorithm
will iteratively process the partial sessions S7 = {A} and
S5 = {A, B}. Thus, when processing the first session snapshot
ST, the algorithm would simply produce the empty set {{}}
and then add A, resulting in

P = {A}. This partial power set would then be applied
to the pattern tree. When processing S5 in the next step,
the algorithm needs to produce a partial power set P; that
does mot overlap with the previously created Py, as this
information is already stored in the tree model. The algorithm
will, thus, first build P5 as {{},{A}} and then add B to
each subset, to create Py as {{B}, {A, B}}. Together, these
partial power sets P; and P5 form the complete power set
of the user’s clicks session {A, B} as Pf U Py = P(S) =
{{A}, {B}, {4, B}}.

3.4 Focusing on Recent Patterns

As mentioned, in news recommendation, it is paramount to
keep track of recent user interests. To focus on more recent
interest trends, while also reducing the volume of patterns in
the model, we remove stale patterns from the tree based on a
queue implementation of adjustable size (w). As clicks occur,
the respective session snapshots are added to this queue, and,
once the queue is full, the oldest session snapshot is removed.
The snapshot is then processed again to revert its effect on
the pattern tree. That is, frequencies of (sub)sequences origi-
nating from this old session are decremented, and, in case a
node’s frequency is reduced to zero, the node is completely
removed from the tree. Consequently, only the w most re-
cent clicks have an effect on the model, and the tree, thus,
represents only the most recent interest trends among users.

3.5 Recommendation Mechanism

To generate recommendations, the score for each candidate
item ¢ from the set of all available items is calculated as
follows:

score; = pep(gy conf(P), with

conf(P) = {f(PUi)/f(P) it f(PUd) >0 ATV >k
0 otherwise

where P(S) is the power set of the current user session S, and
f(P) is a function that returns the frequency of a sequence P
in the tree model. As can be seen from the formula, for each
subset P of the power set P(.S), the pattern tree is scanned for
a matching pattern as well as a continuation of that pattern
by the candidate item ¢, i.e., PUi. The confidence score conf(+)
for this tree branch is then calculated as the frequency of the
pattern continuation f(P U+4) divided by the frequency of its
parent pattern f(P). Additionally, two threshold parameters
are introduced to filter patterns of low potential usefulness.
On the one hand, if the pattern continuation appears less
than o times in the data, it is not considered. On the other
hand, if the confidence score is less than k, the pattern is
also not included in the calculation. This process is then
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continued for each tree branch that matches with a subset of
the current session’s power set. Finally, the items are ranked
based on their accumulated confidence scores.

4 EXPERIMENTS

In this section, we elaborate on the design and results of
an empirical evaluation of the proposed recommendation
approach.?

4.1 Evaluation Setup

We design our experiments based on an open-source frame-
work, called StreamingRec [9]. Its evaluation scheme simu-
lates real-time recommendation by replaying time-stamped
click log data sequentially as a stream. Consequently, algo-
rithms receive the input data click-by-click as it occurred
in reality, and they have to react to each click by making
recommendations. Due to this stream-based protocol, algo-
rithms can also learn incrementally from incoming clicks
during the test phase and, thus, improve their models on-the-
fly. The evaluation protocol used in our experiments is thus
comparable to the replay protocol of the CLEF NewsREEL
challenge [20].

To demonstrate the effectiveness of our proposed approach,
we compare it with a variety of algorithms implemented in the
StreamingRec framework including a popularity baseline, an
item-based co-occurrence scheme, and a session-based nearest
neighbor method. The popularity baseline (Pop.) works by
simply recommending the articles that were clicked most of-
ten in the data set. The recently popular algorithm (R. Pop.)
ranks candidates by their popularity within the recent past
(20 minutes in our setting). The co-occurrence method (Co-
Occ.), on the other hand, selects recommendation candidates
based on how often they occurred together in other sessions
with items from the target user’s session. The nearest neigh-
bor scheme (V-SkNN) performed best in previous evaluations
with the StreamingRec framework [9]. It scores candidate
items from neighborhood sessions based on the overlap be-
tween the target session and the neighboring session, with a
boost in the similarity function for recent clicks in the target
session. We compared our proposed approach with further
algorithms from the StreamingRec framework. However, due
to space constraints, we only report the most representa-
tive results. For our proposed approach, we implemented the
following variations:

e Seq: Recommendation mechanism described in Sec-
tion 3.5.

e Seq,: Similar to Seq but also takes the recency of clicks
into consideration as described in Section 3.4.

e Seq,: The same method as Seq except for the candidate
scoring method. This approach penalizes candidate
items generated from longer patterns. To this end,
instead of dividing by f(P) in the confidence score

2The code for our proposed approach is included as supplementary
material, which can be found here: https://github.com/mozhgank/
StreamingRec
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Table 1: Performance Comparison. MRR = Mean
Reciprocal Rank, RI = Number of Recommended
Items, T = Time. Metrics use a list cut-off at 10. Best
results are indicated in bold. All pairwise differences
w.r.t. F1 and MRR are significant.

Plista Outbrain
F1 MRR  RI  T(ms) F1 MRR  RI  T(ms)

Random  0.002 0.004 1088 0.044 0.002 0.003 1564 0.053
Pop. 0.005  0.007 12 0.347 0.003 0.007 11 0.192
R. Pop. 0.133 0.216 278 0.168 0.117  0.209 156 0.192
Co-Occ.  0.137  0.198 686 0.084 0.140 0.296 1064 0.120
V-SKNN  0.163 0.361 572 2.164 0.158 0.344 1178 5.716

Seq 0.159  0.260 501 0.022 0.195 0.278 1079 0.116
Seqr 0.178  0.286 387 0.011 0.212 0.296 962 0.041
Seqp 0.141  0.296 505 0.038 0.138 0.300 1077  0.209
Seqypr 0.157  0.325 388 0.017 0.151 0.326 955  0.075

formula, we accumulate the support values of all parent
nodes and use it as a divisor.
e Seqp, Combines the recency and penalization varieties.

We evaluate our approach on two real-world data sets from
Plista and Outbrain. The Plista data set contains German
news published by 12 publishers during June 2013 [11, 12].
We chose a medium-sized publisher (ID: 418) with about
1.1 million clicks and more than 220000 users. From the
Outbrain data set®, which is based on US news from June
2016, we also chose a publisher (ID: 43) with roughly 1.1
million clicks and around 280 000 users. We employ a temporal
split into training and test data by 70% and 30%, respectively.
Additionally, we tuned the parameters for each algorithm
on a separate validation set based on 10% of the training
data. The best parameter settings for Seq, were found to be
a recency queue size of w = 9000, support threshold ¢ = 1,
and confidence threshold k = 0.03 for the Plista data set;
for the Outbrain data set, w = 17000, 0 = 1, and « = 0.09.
Moreover, we consider an idle time of 20 minutes per user
to split the clickstream into user sessions, and we use a list
cut-off for the metrics at 10.

4.2 Results

F'1 Performance. Table 1 shows detailed performance results
on the Plista and Outbrain data sets. In terms of F1, the base-
line algorithms such as Random and Most Popular perform
poorly as they do not consider new items and the recency of
the clickstream. On the other hand, the Co-Occurrence and
Recently Popular methods have relatively reasonable F1 per-
formance, as they utilize the session context. The proposed
Seq, approach is the best-performing strategy for both data
sets. The improvement in terms of F1 in comparison with
V-SkNN—the best-performing strategy in previous experi-
ments [9]—amounts to 34 and 9 percent on the Outbrain
and Plista data sets, respectively. Moreover, comparing the
different varieties of the proposed approach shows that the
recency-aware methods always exhibit better F1 performance.

MRR Performance and Aggregate Diversity. Looking at
the Mean Reciprocal Rank measure, the best performing

Shttps://www.kaggle.com/c/outbrain-click-prediction/data

Mozhgan Karimi, Boris Cule, and Bart Goethals

0.25

0.20

0.15

0.10

0.05

0.00
FI@10 Fl@15 F1@20
BSeq, BV-SKNN
(a) F1 Results w.r.t. List
Length

0.25

0.20

0.15

0.10

0.05

0.00

0 5000 10000 15000 20000
Click Queue Size (o)

(b) Effect of Recency on F1@10

Figure 2: Performance Results for Outbrain data set

algorithm is V-SkNN;, due to its prioritization of items closer
to the current click of the user in the session for similarity
calculation. All variations of our approach are, however, not
far behind V-SKNN in terms of MRR. With respect to aggre-
gate diversity, which measures the number of unique items
recommended by each algorithm (RI), the Random strategy
scores highest, which is not surprising. However, most of the
more advanced algorithms, including Seq, are also able to
recommend from a large pool of items.

Runtimes. We also report computation times for each al-
gorithm, i.e.; the time it takes, on average, to generate a
recommendation list. Here, we can observe that the best
method in terms of F1 (Seq,) also performs fastest. In ad-
dition, as expected, methods that consider recency aspects
by filtering “old clicks” are faster compared to methods that
build their model based on the whole clickstream history.
In contrast, the session-based nearest neighbor method (V-
SkNN) is not as efficient in creating recommendations as the
proposed approach. One possible reason for this could be the
large number of sessions that have to be compared with the
current session, while the proposed method, in contrast, only
has to scan a few branches of the pattern tree.

Effect of Window Size. As already mentioned, our approach
features a sliding window constraint that limits the length
of patterns to prevent exponential growth of the pattern
tree. We experimented with different window sizes to observe
the effect on accuracy. As expected, longer window sizes
lead to better performance, but also slower processing times.
However, at a certain point, performance actually decreases
with longer window sizes, indicating that after a certain
number of user clicks, item relations are much less meaningful.
The experiments revealed that a window size of 5 was a good
choice on both data sets.

Performance w.r.t. List Length. As a more detailed analy-
sis of the effectiveness of the proposed approach, we evaluated
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its F'1 performance with respect to different cut-off thresholds
for the recommendation list, i.e., F1@10, 15, and 20. This
way, we can estimate more clearly how useful the recom-
mendations would be in different application scenarios that
require, for example, short lists in mobile apps or longer lists
on news websites optimized for desktop use. The results for
the Outbrain data set show that the F1 performance of Seq,
remains steady around 0.21 when the list cut-off increases,
while V-SkNN’s performance drops (see Figure 2a). Thus,
compared to V-SKNN, which can only be applied where short
recommendation lists are needed, the proposed Seq, approach
shows promising results for a wider range of list lengths.

Effect of Recency. Finally, we seek to understand the effect
of recency on accuracy. Thus, we investigated different queue
size settings (w) for the best method proposed in this work,
namely Seq,. As shown in Figure 2b, the larger the queue
size, the better the performance in terms of F1 becomes. For
example, for the Outbrain data set, when only patterns based
on the last 500 clicks are considered, the algorithm achieves
an F1 of 0.17, while 2000 clicks already produce an F1 of
0.20. However, after a certain point, performance decreases
again. Interestingly, our proposed approach performs better
than V-SKNN even when we only work with the 400 most
recent clicks in the stream. In contrast, V-SkNN needs to
consider 4 500 neighboring sessions to achieve its most opti-
mized F1 performance, which still falls behind our approach,
highlighting the suitability of a pattern-based strategy for
the news domain.

5 CONCLUSION

The principal aim of our work was to recommend up-to-date
news articles that fit user interests in a session-based scheme.
To this end, we implemented an algorithm based on sequential
pattern mining that extracts patterns incrementally from a
continuous clickstream. Our empirical evaluation revealed
that the approach’s ability to capture temporal dynamics in
user behavior led to improved accuracy compared to state-of-
the-art news recommendation approaches. In addition, the
experiments showed that extracting patterns based mainly
on the most recent clicks in the data stream is not only more
efficient but also leads to higher accuracy.

In the future, we plan to extend our session-based ap-
proach by also considering long-term user click sequences
to create personalized news recommendations. Additionally,
more complex weighting functions based on the position of
clicks within sessions are planned. Lastly, we aim to explore
the capabilities of our approach in other evaluation settings
and domains as well as in online studies.
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