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Abstract 

The work focuses on some of the basics of the 
theory and practice of applying extreme value 
statistics and the basics of the information model 
for predicting dangerous states. The task of 
predicting dangerous situations is presented and 
solved on the basis of a statistical description of 
the characteristics of the object and taking into 
account the probabilistic characteristics of the 
extreme external conditions of the object. 

1 Introduction. Sustainability and the area 
of attraction of some distributions 

Let's present known distribution properties, using perhaps 
unusual terms in this context. The composition (or 
distribution of the sum) of two independent normal 
distributions leads to a normal distribution. And in 
general, the sum of any number of normally distributed 
random values is a normally distributed random value. 
This property expressed by the solution of the functional 
equation:1 
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  (1) 
where - 𝐹"(𝑥) the distribution of the amount of 
independent normally distributed random values, the 
corresponding parameters of scale and distribution shift.   
In this sense, we can talk about the stability (or, if you 
will, conformity) of the form of normal law regarding the 
procedure of composition of distributions. 
The various distributions, which are likely to be of some 
known law of distribution, form the area of attraction of 
this law. In this sense, all distributions that meet the 
conditions of the Central Limit Theoreme (e.g., Lapunov's 
conditions) are part of the area of attraction of normal 
law. 
The second property is that for an arbitrary infinite 
sequence of distributions that meet the conditions of the 
Central Limit Theorem, the amount of asymptomatically 
normal in the sense of convergence by probability 
measure. In other words, many distributions that meet the 
conditions of the Central Limit Theoreme (e.g. Lapunov's 
conditions) are part of the scope of the normal law. The 
simplicity and ease of applying normal law in applications 
largely determined by these properties. 
Naturally, the question is whether there are distributions 
and procedures with similar properties. For example, it is 
obvious that an exponential law is sustainable when 
selecting a minimum for an arbitrary number of random 
amounts subject to that law. However, the details of the 
properties of this law, which is a private case of gamma-
distribution, discussed below. 

In the task of modeling extreme situations, important 
to note that the two-parametric double exponential law 
has similar properties: 1) the stability of the form relative 
to the distribution of extreme value from any number / 
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equally distributed values; 2) is the limit for a certain 
class, the "3" of the original distributions in the sense of 
convergence by probability. 

 
 

2 About abnormal sampling members 
When choosing a probability model based on statistics, 
the question naturally arises: what to do when there are 
abnormal observations? How do you distinguish 
anomalous sampling elements from possible but unlikely 
elements? There are known different approaches. 
Let the sample on the basis of which the appropriate 
conclusion should be drawn, {𝑥"}"()"(*, {𝑥"}"()"(*- the same 
sample, the elements of which𝑥("+)are located in a non-
decreasing orderand 𝑥()) - the sample element, suspicious 
of the anomaly, in particular, the smallest or the largest 
𝑥(*). Here are the well-known rules of such filtering. 
1. Reject a suspicious element 𝑥("+) as an anomalous, if 
,𝑥("+) − 𝑥̅, > 𝑐𝜎, where 𝑥̅ - the average value of 
distribution 𝜎 - its standard deviation, with с - a pre-
selected constant. Otherwise, if ,𝑥("+) − 𝑥̅, < 𝑐𝜎 , the 
observation is not rejected. 
Strictly speaking, the constant value is determined by the 
level of significance of some specially chosen criterion, 
and therefore in the decision-making possible errors 
known in mathematical statistics 1 and 2 genus. 
2. If the anomaly of the observation is confirmed, it is 
necessary to create an adequate model to plan 
observations for the use of factor dispersion or, if 
possible, regression analysis. You can't limit yourself to a 
one-dimensional sample. 
3. As we can see, this rule of abnormality testing, 
proposed in n 1, solves the issue only at some, satisfying 
researcher, the level of significance of one or another 
criterion. Objectively speaking, necessary to recognize the 
possibility of implementing elements of the sample, 
anomalous in the sense of p.1, in the same observational 
conditions. 
3 Distribution of extreme values 
In any case, it is advisable, on the basis of the final 
number of one-dimensional samples, located in a non-
decreasing order, to turn to the distribution of statistics 
suspicious of abnormality. We are talking about statistics 
of extreme values. 
The sample is considered {𝑥"}"()"(*, with equally 
distributed by law with the function of distribution F(x) 
elements 𝑥3,𝑖 = 1,2, … ,𝑁. The extreme elements of the 
sample represented by statisticians: 

.  

 (2) 
These statistics have distribution functions: 

   (3) 

The same statistics for the case of independent sampling 
elements with arbitrary independent distributions: 

, 

 (4) 

The possibilities of applying these statistics to relevant 
estimates are significantly limited by the fact that known 
distributions from which the samples are derived are 
assumed. Universal in this sense is the approach based on 
the theorem of B.V. Gnedenko [Gne43] .  Here's the 
following formulation. 
Gnedenko's theorem. If the random value distributed by 
law (4) has a limit distribution, it distributed under one of 
the following three laws after the corresponding rationing. 
For maximums: 

 

 

These distributions called extreme distributions of the 
type I, II and III respectively. 
The distribution of the first type, under some additional 
conditions, caused, for example, by the task of ejecting 
the values of the stationary random process. The 
distribution of the second type, as we can see, is the 
distribution of Weibull, in particular, convenient for 
describing the strength of the object on the break. 
The first distribution, called the Double Exponential Law, 
describes a wide class of original distributions that make 
up the area of its attraction. The second and third 
distributions refer to random values limited to the left and 
right, respectively. These distributions can brought to     
the first [Dav79]. 
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4 Some properties of double exponential 

law 
The annexes look at two forms of recording the double 
exponential law distribution function: for maximum 
values 

 (5) 
and minimum values 

 (6) 
One feature is given to another replacementxon -x. Here 
q- the shear parameter α- the scale parameter. The 
parameters are determined by the first two moments of 
distribution: mathematical expectation and standard 
deviation: 

,  (7) 

whereγ - Euler's constant. The moments of the higher 
order of this distribution have been received. Analysis of 
the moments in particular.points out that it is unacceptable 
to replace these distributions for the sake of simplicity 
with a normal law. This form obtained accordingly for 
maximum and minimum values by substitution by / (for 
simplicity do not change the designations): 

  (8) 

Distributions (6) have, as mentioned above, known 
properties: 1) the stability of the form relative to the 
transition to the distribution of extreme value from any 
number /same distributions respectively (5) or (6);  2) 
Distribution is the limit (after appropriate rationing) for a 
certain class of original distributions in the sense of 
convergence by probability.                         There's a little 
bit more to do with that. The first means that each 
function (8) is the solution to the functional equation 

  (9) 
where	𝐹"(𝑥) - distribution of extreme value from the same 
distributions (8), corresponding parameters of scale and 
distribution shift (8). 
For the convenience of using the second property, let us 
give a sufficient condition of belonging to the distribution 
of the area of attraction of the first limit law 𝐹<(𝑥) 
[Gne43], [Dav79].  . It is enough that the distribution 
function, at least for large modules, has the appearance: 

  (10) 
where the function h(x) increases monotonously and 
indefinitely. This condition is satisfied with symmetrical 
distributions of exponential type, including - normal law. 

 

5 Extreme Situation Forecast 
The task of forecasting strength, taking into account 
external conditions, can lead to the composition of the 
two distributions in the following sense. 
The strength reserve characterized by a different 
characteristic of the strength of the study object X and the 
real load (in the same units of measurement) that occurs 
during its operation Y. If 𝑋 ≤ 𝑌, the object is in working 
or extreme condition, otherwise, if 𝑋 < 𝑌, the object does 
not work (suffers failure). 
Thus, we will be interested for an arbitrary probability 
event 𝑋 − 𝑌 < 𝑥, or composition of distributions 𝑋 +
(−𝑌). 
It is clear that the margin of safety, for the sake of 
simplicity in practice, determined unequivocally by the 
ratio of these values 𝑋/𝑌 (at best - the ratio of their 
average values) does not stand up to criticism, as a 
characteristic of the strength of the object. In this sense, it 
is natural to turn to the marginal distributions of statistics 
(2) taking into account the first two points of the original 
distributions. 
Suppose each of the component of the sum 𝑋) = 𝑋, 𝑋B =
−𝑌 distributed under a double exponential law with the 
appropriate parameters: 

       (11) 

(12) 

and let's turn to the distribution of the amount of 
independent random amounts x1+x2.  Note at once that the 
distribution of this amount of distributions (11) and (12) 
does not retain the original distribution form. This 
complicates the technique in comparison with the 
simplest model based on normal distribution of 
characteristics x, y which is incorrect here. 
As you know, it is possible to determine the distribution 
of the amount of independent values by the characteristic 
function expressed through characteristic functions 
component of composition: / In relation to distributions 
we receive (6): 

(13) 

Where Г(𝑡) – gamma function defined by Euler's 
integrative: 

. (14) 

However, the reverse transition from a characteristic 
function/ to an appropriate function of the distribution of 
the amount is very problematic precisely because the law 
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(8) does not retain forms in the composition of 
distributions (not stable), as will be shown below. 
Therefore, we have directly turned to the roll-out of 
distribution densities and the known formula for the 
function of distributing the amount x1+x2  that can be 
presented in the form of: 

 

(15) 
The immediate calculation of this formula leads to results 
that can formulated in the form of the following theorem. 
Theorem 1. The composition of two independent 
distributions (9) and (10) has a distribution 𝑞), 𝑞B, 𝛼), 𝛼B: 

. 

Theorem 2. The function 𝐻H(𝑎𝑥 + 𝑏) if 𝑎 = 1,  

	𝑏 = 0 has a view:  

 (16) 

Private cases: 𝐻L(𝑥) = 1 − exp	(−𝑒Q). 

 
Thus, the prediction of dangerous states of an object can 
based on the distribution: 

(17) 

Where is 𝛼 = HR
HR
, 𝑎 = )

HR
, 𝑏 = 𝑞B − 𝑞). 

A special standard single-parametric family of 
distributions, generated by the composition (1): is 
introduced:  

: 

   (18) 

distribution for which function value tables 𝐻H(𝑥) 
depending on 𝛼, 𝑥, a snippet of which is below, should be 
available. A reference to these existing tables does not 
mean a complete solution to this issue. We need such 
tables in a form that corresponds to modern information 
tools, and are more convenient for the user, who does not 
have special training. 

In general, 𝛼𝜖[0,+∞). But tables are sufficient for the 
proposed methodology, 𝛼𝜖[0,1]. This follows from the 
commutativeness of the bundle of distributions. However, 
the distribution of the option for all 𝛼𝜖[0,+∞): is 
associated with assigning indexes 1.2 for the original 
distributions (11), (12). Therefore, it is preferable for a 
specially untrained user to complete limit distribution 
tables 𝐻H(𝑥), 𝛼𝜖[0, +∞). 
 
 
 
 
6 Table of probabilities of dangerous 
states 
The dangerous state here discussed as approximating the 
object parameter to an unacceptable value, taking into 
account external influences during its operation. The 
operational characteristics of the system are known to be 
determined by the ratio of different characteristics, among 
which it is necessary to distinguish 1) the own 
characteristics of the object, and 2) the characteristics of 
its operating conditions. Considered, a pair of one-
dimensional characteristics 1 and 2 preferably of the same 
dimension: strength and active load. Their attitude 𝑋) <
𝑋B, 𝑋) = 𝑋B or 𝑋) > 𝑋B really determines the assessment 
of the quality of the system.  Simple Risk Assessment 
Procedure is based on the probability of the probability of 
the different characteristics 𝑋) − 𝑋B. In this case, the 
distribution function 𝐹(𝑥) of the relevant criterion 𝑡 =
𝑋) − 𝑋B determined by the composition of the respective 
distributions. 

.   

(21) 

Normalized distribution (4) linear transformation with 
shear and scale parameters (𝑎	𝑎𝑛𝑑	𝑏) determines the 
desired probability distribution (19). 
The risk of an error associated with accepting a 
satisfactory criterion t assessment result justifies the 
choice [Dav79] of a relatively difficult one for the 
distribution of extreme performance distributions 𝑋), 𝑋B. 
This is a double exponential law, depending on two 
parameters 𝑎, 𝑞, which in turn are clearly determined by 
the first two moments of the respective distributions. This 
is an interest in the worst-case scenario: the least strength 
is the greatest load. This complexity is due to the fact that 
the distribution composition (1) does not retain the shape 
of the distribution component 𝑋), 𝑋B. In the case when the 
distributions of independent random values are subject to 
the limit distribution of extreme values of type 1, their 
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composition results after the corresponding rationing 𝑧 =
𝑎𝑥 + 𝑏 to distribution [Kuk75], [Deg03], [Kuk96], 
depending on the shape setting 𝛼: 

(19) 
Here are the distribution options 𝛼; 𝑎, 𝑏 are uniquely 
determined by the parameters 𝛼), 𝑞);	𝛼B, 𝑞B initial 
distributions and 𝛼 = HR

H[
. At the same time 𝛼 and 𝑎 not 

independent, which presents some difficulties for the 
distribution application (2) in the task of assessing the 
probability of dangerous states. Overcoming these 
difficulties in practice provided by the appropriate 
function tables 𝐻H(𝑥): 

(20) 

Developed [Kuk96], [Kry17] Detailed feature table  
𝐻H(𝑥): and a probability calculation methodology 
based on this table. Below is a snippet of the 
abbreviated version of this table (table.1). 

Table1  Distribution table 

𝑥 α = 
0,1 

α = 
0,3 

α = 
0,5 

α = 
0,7 

α = 
0,9 

α = 
1 

-4 0.929 0.93 0.931 0.932 0.933 0.933 

-3,5 0.897 0.898 0.9 0.901 0.903 0.903 

-3 0.853 0.855 0.857 0.859 0.861 0.862 

-2,5 0.794 0.797 0.8 0.802 0.805 0.806 

-2 0.719 0.722 0.725 0.729 0.732 0.734 

-1,5 0.625 0.63 0.634 0.638 0.642 0.643 

-1 0.517 0.521 0.526 0.53 0.535 0.537 

-0,5 0.398 0.403 0.408 0.412 0.417 0.42 

0 0.28 0.284 0.289 0.293 0.298 0.3 

 
Pictured (Figure 1) shows the function 𝐻H(𝑥): for 
parameter values 𝛼, 𝛼𝜖[0; 1] with long intervals 
∆𝛼 = 0,2. Given the properties of the 
commutativeness of the roll-up operation, as well as 
the fact that determined by the ratio of input 

variances 𝛼 = ^
_[
_R

, we've developed a table 𝛼 ∈

[0; 1] is sufficient to calculate probabilities by 
formula (4) at all values 𝛼. 
However, for values 𝛼, 𝛼 > 1, the proposed method 
of assessing probabilities is somewhat complicated. 
This follows from the fact that the parameters of the 
shift and the scale in formula (4), defined by the first 
two moments of input distributions, depend on the 
order of their chosen statistics: 𝑋) − 𝑋B or 𝑋B − 𝑋). 
This complication is surmountable after selecting the 
appropriate table column and recalculating the scale 
and shift parameters 𝑎, 𝑏. 

 Fig. 1 Schedule Distributions 
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