

29

Stochastic Model of a High-Loaded Monitoring System of Data
Transmission Network

Kirill S. Shardakov

Department of Information Systems and
Technologies, Emperor Alexander I St.
Petersburg State Transport University

k.shardakov@gmail.com

Vladimir P. Bubnov
Department of Information Systems and
Technologies, Emperor Alexander I St.
Petersburg State Transport University

bubnov1950@yandex.ru

Abstract

The article describes a parallel-sequential
model of a non-stationary queueing system
that simulates the operation of a Zabbix
monitoring system based on a distributed
architecture. An algorithm for generating a
list of the states of such system and its
flowchart is given. Derived state transition
rules and transition diagram. A sequential
algorithm for generating a coefficient
matrix for system of ordinary differential
equations and its flowchart are given.

1 Introduction

Automated monitoring systems are an important
part of any information system. Monitoring is a
continuous process of observing and registering the
parameters of an object, processing them,
comparing them with threshold values. Information
systems in transport are developing rapidly, which
causes an increase in the amount of net-work
devices within the information system. In order to
maintain full operability and timely response to
problems within the information system, it must be
included in the monitoring system. This monitoring
system must cope with the increasing load. One of
the main tasks is the ability to carry out an
analytical calculation of the probabilities of the
states of the monitoring system under various
loads.1

The most popular and easily scalable to adapt to
the load freely distributed monitoring system for
information systems is Zabbix [Sha18]. Many
authors use stationary models of the theory [Zeg12-
Upa16]. But of great interest are non-stationary

Copyright c by the paper's authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). In:
A. Khomonenko, B. Sokolov, K. Ivanova (eds.): Selected Papers
of the Models and Methods of Information Systems Research
Workshop, St. Petersburg, Russia, 4-5 Dec. 2019, published at
http://ceur-ws.org

queueing systems (nQS). Examples of works
devoted to the non-stationary models are [Bub11,
Bub99, Bub15, Bub15]. The disadvantage of the
works [Bub11, Bub99] is that they consider only
the classical numerical method for solving systems
of ordinary differential equations (ODE) - the
Runge-Kutta method, but the numerical-analytical
method is presented in [Bub15, Ser15] , the speed
and accuracy of which, when solving ODE system
describing nQS, exceed the most common, when
solving this kind of problems, the Runge-Kutta
method. The advantage of this method is a
recursive algorithm for generating a matrix of
coefficients of an ODE system without deriving the
general equation of the ODE system. But this
algorithm also has significant disadvantages,
described in [Sha18]. Also, in [Sha18], a sequential
method for generating matrix of coefficients was
proposed, without the disadvantages of the
recursive method. In [Ser15] an algorithm is
presented for the network model of the nQS.

This article describes a previously unreleased
parallel-sequential model of the nQS. In
constructing the model, modified sequential
algorithm for generating a matrix of coefficients
was used.

 2 General description of the parallel-
sequential model

As is known from [Sha18], the Zabbix monitoring
system allows to distribute the load and scale
through proxy servers using. Each proxy server
collects data from its own set of devices, and then
sends the data to the main server, which handles the
processing. Consider the option in which there are
two proxy servers and one main server. Figure 1
shows a general scheme of the interaction of system
components.

30

Figure 1: Simplified diagram of the interactions

of the monitoring system components

An information system interacting according to
such scheme can be considered as queuing system.
We divide such system into two subsystems, in the
first subsystem there will be a proxy server, in the
second - the main server. Both proxy servers have
the same bandwidth, each proxy server has a
separate independent queue of tasks, since it is
engaged in polling values from specific set of
devices. In other words, proxy servers work in
parallel. After the request is processed by the first
subsystem (by any of proxy servers), it immediately
goes to the main server for processing. After
processing the task by the main server, task is
considered as processed. Each server is considered
as separate queueing channel. Figure 2 presents a
simplified diagram of such queueing system (QS).

Figure 2: Simplified diagram of parallel-sequential QS

At any time, such QS can be described by the
vectors "in_system" = [in_1, in_2, in_3] and
"served" = [out_proxy, out_main]. The "in_system"
vector contains three values, each value is equal to
the number of tasks in the channel with
corresponding number, while ||in_system|| = 0, N$$$$$.
The "served" vector contains two values, where
each value is equal to the number of tasks served by
corresponding subsystem, while ||served|| =
0, N − ||ın_system||$$$$$$$$$$$$$$$$$$$$$$$$$. Where N is the total number
of tasks that can enter to the system. At the input,
system receives successive which depend on the
number of tasks. Tasks are served in the first
subsystem with intensities {µ1, µ2, … , µN}, and in
the second subsystem with intensities {µ_main1,
µ_main2, … , µ_main N}, which also depends on
the number of tasks.

3 Modification of the state list
generation algorithm

For a parallel-sequential model, the number of
possible states is Ns =
((N+1)*(N+2)*(N+3)*(N+4))/24, and depends on

the number of tasks which can enter to the system.
With a successive increase in the number of such
tasks by 1, a sequence of numbers is formed from
the values of Ns, which is on line 5 of Pascal’s
triangle (sequence A000332 in the OEIS).
The next step is to divide the states into N+1 groups
so that each group has a constant value of “served”
[out_main] and other parameters can be changed.
Each group must be divided into N+1 subgroups so
that each subgroup has a constant value of “served”
[out_proxy] and remaining parameters can be
changed. Each subgroup must be divided into N+1
subgroups of the second order so that in each
subgroup of second order there is a constant value
||in_system|| and other parameters can be changed.
Create an empty structure to store the list of states.
Iterate through all possible combinations of
parameters describing the state of the system. We
consider a combination as new state if it satisfies
the following conditions simultaneously: (1) in_1 +
in_2 + out_proxy <= N; (2) in_3 = out_proxy -
out_main. In this case, the generated state is placed
in the list of states in the subgroup of the second
order according to the order of grouping at the

31

address “states” [out_main] [out_proxy]
[||in_system||]. After list of states generating using
this algorithm, all states will be listed in order in
sequential numbering, which allows not to sort the
list and the matrix of coefficients additionally and

provides convenient way to describe possible
transitions between states. Figure 3 shows the
flowchart of the algorithm for generating a list of
states for a parallel-sequential model.

Figure 3: The flowchart of the sequential algorithm

4 Formation of transition rules and
matrix of coefficients
In the previous step, a structured list of all possible
states was obtained. Thanks to this grouping, you
can easily derive the rules for transitions between
states. Need to notice that the basic rules of
transition between states can be represented as the
life cycle of task that passes through the described
QS:

1. The new task enters the system on any of
proxy servers, transition from the current state;

2. The new task enters the system on any of
proxy servers, transition to the next state;

3. Task is served in the first subsystem (by any
proxy server), transition from the current state;

4. Task is served in the first subsystem (by any
proxy server), transition to the next state;

5. Task is served in the second subsystem (main
server), transition from the current state;

6. Task is served in the second subsystem (main
server), transition to the next state.

Also, by grouping the list of states, we can
derive several rules:

1. Transition within one subgroup of the second
level is impossible;

2. Within the subgroup “subgroup”, transition
from the second level subgroup “under_subgroup”

Start

N – amount of tasks
Structure for states keeping is

preparing
Out_main = 0
Out_proxy = 0

In_3 = 0
In_2 = 0
In_1 = 0

Out_main > N

Out_proxy > N

In_3 > N

In_3 = Out_proxy – Out_main

State = ([In_1, In_2,In_3]
[Out_proxy, Out_main])

States[Out_main][Out_proxy]
[sum(In_1, In_2, In_3)] =

State

No

Yes

Yes

No

No

No

Yes

Finish

Yes

Empty structure preparing

Create empty list of states
states = []

Group number = 0
Subgroup number = 0

Under_subgroup number = 0

Group number > N

Create empty group in states
list

Subgroup number > N

Under_subgroup number > N

Create under_subgroup in subgroup

No

Group number += 1

Subgroup number += 1 No

No

Yes

Yes

Empty structure is
prepared

Yes

Create empty subgroup in
group

Out_main += 1

Out_proxy += 1

In_2 > N

No

In_3 += 1

Yes

In_1 > N

In_2 += 1

Yes

Sum(In_1, In_2, Out_proxy) <= N

No

Yes

No

In_1 += 1

32

to the state “i” and “i”+1 (if they exist) of the next
second level subgroup “under_subgroup”+1 is
possible, if that "under_subgroup" is not the last
nonempty subgroup of the second level of the
subgroup "subgroup". The trigger for such
transition is the receipt of new task in the first
subsystem;

3. Within one group "group" transition is
possible from any subgroup "subgroup" to
subgroup "subgroup"+1. In this case, the transition
is possible from the state "i" of the second level
subgroup "under_subgroup" to the states "i" and
"i"-1 (if they exist) the second level subgroup
"under_subgroup". The trigger of such transition is
the task completion in first subsystem and its
transition to second subsystem;

4. Inside the list of states "states" transition is
possible from group "group" to group "group"+1.
The transition is possible from the state "i" of the
subgroup of the second level "under_subgroup" of
the subgroup "subgroup" to state "i" of the second
level subgroup "under_subgroup" of the subgroup
"subgroup". Such transition is im-possible from the
first non-empty subgroups in the group. The trigger
of such transition is the task completion in the main
server.
Figure 4 shows a simplified diagram of transitions
between states for a parallel-sequential model with
N = 3. As you can see, all states are irretrievable,
which corresponds to the goal.

Figure 4: Simplified state transition diagram with N = 3

Consistently going through the states from
generated list of states and applying the detected
rules to each condition that suits the conditions, it
becomes possible to simultaneously fill the matrix
of coefficients. Each state is checked for
compliance with certain conditions. The required
changes are made to the coefficient matrix on the

run. After making all changes in the matrix of
coefficients, it remains only to solve the system of
ordinary differential equations by a numerical-
analytical method.

Figure 5 shows the flowchart for generating
“matrixA” coefficient matrix.

Subgroup: 1
Under subgroup: 0

Under subgroup: 1
 10 [0, 0, 1] [1, 0]

Under subgroup: 2
 11 [1, 0, 1] [1, 0]
 12 [0, 1, 1] [1, 0]

Under subgroup: 3
 13 [2, 0, 1] [1, 0]
 14 [1, 1, 1] [1, 0]
 15 [0, 2, 1] [1, 0]

Subgroup: 1
Under subgroup: 0

Under subgroup: 1
 10 [0, 0, 1] [1, 0]

Under subgroup: 2
 11 [1, 0, 1] [1, 0]
 12 [0, 1, 1] [1, 0]

Under subgroup: 3
 13 [2, 0, 1] [1, 0]
 14 [1, 1, 1] [1, 0]
 15 [0, 2, 1] [1, 0]

Group: 0
Subgroup: 0

Under subgroup: 0
 0 [0, 0, 0] [0, 0]

Under subgroup: 1
 1 [1, 0, 0] [0, 0]
 2 [0, 1, 0] [0, 0]

Under subgroup: 2
 3 [2, 0, 0] [0, 0]
 4 [1, 1, 0] [0, 0]
 5 [0, 2, 0] [0, 0]

Under subgroup: 3
 6 [3, 0, 0] [0, 0]
 7 [2, 1, 0] [0, 0]
 8 [1, 2, 0] [0, 0]
 9 [0, 3, 0] [0, 0]

Group: 0
Subgroup: 0

Under subgroup: 0
 0 [0, 0, 0] [0, 0]

Under subgroup: 1
 1 [1, 0, 0] [0, 0]
 2 [0, 1, 0] [0, 0]

Under subgroup: 2
 3 [2, 0, 0] [0, 0]
 4 [1, 1, 0] [0, 0]
 5 [0, 2, 0] [0, 0]

Under subgroup: 3
 6 [3, 0, 0] [0, 0]
 7 [2, 1, 0] [0, 0]
 8 [1, 2, 0] [0, 0]
 9 [0, 3, 0] [0, 0]

Subgroup: 2
Under subgroup: 0

Under subgroup: 1

Under subgroup: 2
 16 [0, 0, 2] [2, 0]

Under subgroup: 3
 17 [1, 0, 2] [2, 0]
 18 [0, 1, 2] [2, 0]

Subgroup: 2
Under subgroup: 0

Under subgroup: 1

Under subgroup: 2
 16 [0, 0, 2] [2, 0]

Under subgroup: 3
 17 [1, 0, 2] [2, 0]
 18 [0, 1, 2] [2, 0]

Subgroup: 3
Under subgroup: 0

Under subgroup: 1

Under subgroup: 2

Under subgroup: 3
 19 [0, 0, 3] [3, 0]

Subgroup: 3
Under subgroup: 0

Under subgroup: 1

Under subgroup: 2

Under subgroup: 3
 19 [0, 0, 3] [3, 0]

Group: 1
Subgroup: 0

Under subgroup: 0

Under subgroup: 1

Under subgroup: 2

Under subgroup: 3

Group: 1
Subgroup: 0

Under subgroup: 0

Under subgroup: 1

Under subgroup: 2

Under subgroup: 3

Subgroup: 1
Under subgroup: 0

 20 [0, 0, 0] [1, 1]
Under subgroup: 1

 21 [1, 0, 0] [1, 1]
 22 [0, 1, 0] [1, 1]

Under subgroup: 2
 23 [2, 0, 0] [1, 1]
 24 [1, 1, 0] [1, 1]
 25 [0, 2, 0] [1, 1]

Under subgroup: 3

Subgroup: 1
Under subgroup: 0

 20 [0, 0, 0] [1, 1]
Under subgroup: 1

 21 [1, 0, 0] [1, 1]
 22 [0, 1, 0] [1, 1]

Under subgroup: 2
 23 [2, 0, 0] [1, 1]
 24 [1, 1, 0] [1, 1]
 25 [0, 2, 0] [1, 1]

Under subgroup: 3

Subgroup: 2
Under subgroup: 0

Under subgroup: 1
 26 [0, 0, 1] [2, 1]

Under subgroup: 2
 27 [1, 0, 1] [2, 1]
 28 [0, 1, 1] [2, 1]

Under subgroup: 3

Subgroup: 2
Under subgroup: 0

Under subgroup: 1
 26 [0, 0, 1] [2, 1]

Under subgroup: 2
 27 [1, 0, 1] [2, 1]
 28 [0, 1, 1] [2, 1]

Under subgroup: 3

Subgroup: 3
Under subgroup: 0

Under subgroup: 1

Under subgroup: 2
 29 [0, 0, 2] [3, 1]

Under subgroup: 3

Subgroup: 3
Under subgroup: 0

Under subgroup: 1

Under subgroup: 2
 29 [0, 0, 2] [3, 1]

Under subgroup: 3

Group: 2
Subgroup: 0

Under subgroup: 0

Under subgroup: 1

Under subgroup: 2
Under subgroup: 3

Group: 2
Subgroup: 0

Under subgroup: 0

Under subgroup: 1

Under subgroup: 2
Under subgroup: 3

Subgroup: 1
Under subgroup: 0

Under subgroup: 1

Under subgroup: 2
Under subgroup: 3

Subgroup: 1
Under subgroup: 0

Under subgroup: 1

Under subgroup: 2
Under subgroup: 3

Subgroup: 2
Under subgroup: 0

 30 [0, 0, 0] [2, 2]
Under subgroup: 1

 31 [1, 0, 0] [2, 2]
 32 [0, 1, 0] [2, 2]

Under subgroup: 2
Under subgroup: 3

Subgroup: 2
Under subgroup: 0

 30 [0, 0, 0] [2, 2]
Under subgroup: 1

 31 [1, 0, 0] [2, 2]
 32 [0, 1, 0] [2, 2]

Under subgroup: 2
Under subgroup: 3

Subgroup: 3
Under subgroup: 0

Under subgroup: 1
 33 [0, 0, 1] [3, 2]

Under subgroup: 2
Under subgroup: 3

Subgroup: 3
Under subgroup: 0

Under subgroup: 1
 33 [0, 0, 1] [3, 2]

Under subgroup: 2
Under subgroup: 3

Group: 3
Subgroup: 0

Under subgroup: 0

Under subgroup: 1
Under subgroup: 2
Under subgroup: 3

Group: 3
Subgroup: 0

Under subgroup: 0

Under subgroup: 1
Under subgroup: 2
Under subgroup: 3

Subgroup: 1
Under subgroup: 0

Under subgroup: 1
Under subgroup: 2
Under subgroup: 3

Subgroup: 1
Under subgroup: 0

Under subgroup: 1
Under subgroup: 2
Under subgroup: 3

Subgroup: 2
Under subgroup: 0

Under subgroup: 1
Under subgroup: 2
Under subgroup: 3

Subgroup: 2
Under subgroup: 0

Under subgroup: 1
Under subgroup: 2
Under subgroup: 3

Subgroup: 3
Under subgroup: 0

 34 [0, 0, 0] [3, 3]
Under subgroup: 1
Under subgroup: 2
Under subgroup: 3

Subgroup: 3
Under subgroup: 0

 34 [0, 0, 0] [3, 3]
Under subgroup: 1
Under subgroup: 2
Under subgroup: 3

33

Figure 5: The flowchart of the algorithm for generating matrix of coefficients

Start

N – amount of tasks
Num – state number

Ns – amount of states
Ns = ((N+1)*(N+2)*(N+3)*(N+4))/24

matrixA (Ns x Ns) = 0
Group_index = 0

Subgroup_index = 0
Under_subgroup_index = 0

State_index = 0

Group_index > N

Subgroup_index > N

Under_subgroup_index > N

АNum,Num -= λ[under_subgroup_index] * 2

to_num=subgroup[under_subgroup_index-1]
[state_index-1].number

АNum,to_num += λ[under_subgroup_index-1]
АNum,Num -= µ[subgroup_index]

No

Yes

Yes

No

No

Yes

Finish

Yes

Subgroup_index > group_index

to_num_1=group[subgroup-index-
1][under_subgroup_index][state_inde
x].number
to_num_2=group[subgroup-index-
1][under_subgroup_index][state_inde
x+1].number
АNum,to_num_1 += µ[subgroup_index-1]
АNum,to_num_2 += µ[subgroup_index-1]

АNum,Num -= µ_main[group_index]

(Group_index > 0)
AND

(subgroup_index >= group_index)

Yes

Yes

to_num=states[group_index-
1][subgroup_index][under_subgro
up_index+1][state_index].number

АNum,to_num += µ

Group_index += 1

Subgroup_index += 1

State_index > N

No

Under_subgroup_index += 1

(Subgroup_index < N)
AND

(under_subgroup_index < N-group-index)

(Subgroup_index < N)
AND

(length of under_subgroup > 1)

Yes

No

to_num=subgroup[under_subgroup_index-
1][state_index].number
АNum,to_num += λ[under_subgroup_index-1]

АNum,Num -= µ[subgroup_index]

State_index < length of under_subgroup - 1
No

State_index < 0

Yes

Yes

No

No

State_index += 1

Yes

34

5 Conclusion

For the first time, a parallel-sequential model of a
non-stationary queue system was built, which
simulating the operation of the Zabbix monitoring
system based on a distributed architecture. To build
the model, modified sequential algorithm for matrix
of coefficients generating of ordinary differential
equations was used, which accelerated the process
of matrix formation in several times. In the
modified algorithm, state transition rules derived in
the paper were used.

The further development of the model can be
the introduction of a not instantaneous transition of
each task to the second subsystem after servicing in
the first subsystem. In this case, task will
accumulate in the queue to the main server and
arrive at it for processing by several pieces at once.
Such addition will allow to more accurately
simulate actual behavior of Zabbix monitoring
system when using distributed architecture and
increase the non-stationarity of system.

References

[Sha18] Shardakov K..: Comparative analysis of
the popular monitoring systems for
network equipment distributed under the
GPL license. Intellectual Technologies on
Transport 2018(1), pp. 44–48 (2018). (in
Russ)

 [Zeg12] Zegzhda P., Zegzhda D., Nikolskiy A.:
Using graph theory for cloud system
security modeling. Lecture Notes in
Computer Science (including subseries
Lecture Notes in Arti-ficial Intelligence
and Lecture Notes in Bioinformatics), pp.
309–318 (2012).

[Oso13] Osogami T., Raymond R.: Analysis of
transient queues with semi definite
optimization. Queueing Systems, vol. 73.
pp. 195–234 (2013).

[Upa16] Upadhyaya S.: Queueing systems with
vacation: an overview. International
journal of mathematics in operational
research, vol. 9, issue 2. pp. 167–213
(2016).

[Bub11] Bubnov V., Khomonenko A., Tyrva A.:
Software reliability model with coxian
distribution of length of intervals between
errors detection and fixing moments.
International Computer Software and
Applications Conference, pp. 310-314
(2011).

 [Bub99] Bubnov V., Safonov V.: Razrabotka
dinamicheskih modelej nestacionarnyh
system obsluzhivaniya. [Developing
dynamic modeling of non-stationary
systems.] Saint-Petersburg, (1999). (in
Russ)

[Bub15] Bubnov V., Eremin A., Sergeev S.:
Osobennosti programmnoj realizacii
chislenno analiticheskogo metoda
raschyota modelej nestacionranyh sistem
obsluzhivaniya. [Features of the software
implementation of numerical-analytical
method of calculation models non-
stationary service systems.] SPIIRAS
Proceedings. 2015(1), pp. 218-232
(2015). (in Russ)

[Bub15] Bubnov V., Khomonenko A., Sergeev S.:
Recursive method for generating the
coefficient matrix of the system of
homogeneous differential equations
describing nonstationary system
maintenance. Proceedings of International
Conference on Soft Computing and
Measurements. SCM 2015, pp. 75-77
(2015).

[Ser15] Sergeev S.: Method for compilation of the
system of homogeneous differential
equations for calculation probability-time
characteristics which describing non
stationary systems. Intellectual
Technologies on Transport 2015(2), pp.
32-42, (2015). (in Russ)

[Sha18] Shardakov K., Bubnov V., Pavlov A.:
Generating of the Coefficient Matrix of
the System of Homogeneous Differential
Equations. Workshop Computer Science
and Engineering in the framework of the
5th International Scientific-Methodical
Conference "Problems of Mathematical
and Natural-Scientific Training in
Engineering Education", pp. 42-47,
(2018).

[Wol14] Wolff R., Yao Y.: Little’s law when the
average waiting time is infinite. Queueing
Systems, vol. 76. pp. 267–281 (2014).

[Sud13] R. Sudhesh, K.V. Vijayashree Stationary
and transient analysis of M/M/1 G-
queues. Int. J. of Mathematics in
Operational Research, 2013. vol. 5. no 2.
Pp. 282–299.

[Sud13] R. Sudhesh, L. Francis Raj Stationary and
transient solution of Markovian queues —
an alternate approach. Int. J. of
Mathematics in Operational Research,
2013. vol. 5. no. 3. Pp. 407–421.

 [Bub14] Bubnov V., Tyrva A., Eremin A.: A set of
non-stationary queuing system models
with phase-type distributions. SPIIRAS
Proceedings, vol. 6, pp. 61–71 (2014).

[Feh70] Fehlberg E.: Low-order classical Runge—
Kutta formulas with step size control and
their application to some heat transfer
problems. NASA Technical Report 315
(1969), extract published in Computing,
vol. 6, pp. 61–71 (1970)

