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Abstract 
 
The article describes a parallel-sequential 
model of a non-stationary queueing system 
that simulates the operation of a Zabbix 
monitoring system based on a distributed 
architecture. An algorithm for generating a 
list of the states of such system and its 
flowchart is given. Derived state transition 
rules and transition diagram. A sequential 
algorithm for generating a coefficient 
matrix for system of ordinary differential 
equations and its flowchart are given.  
 

1 Introduction 
 

Automated monitoring systems are an important 
part of any information system. Monitoring is a 
continuous process of observing and registering the 
parameters of an object, processing them, 
comparing them with threshold values. Information 
systems in transport are developing rapidly, which 
causes an increase in the amount of net-work 
devices within the information system. In order to 
maintain full operability and timely response to 
problems within the information system, it must be 
included in the monitoring system. This monitoring 
system must cope with the increasing load. One of 
the main tasks is the ability to carry out an 
analytical calculation of the probabilities of the 
states of the monitoring system under various 
loads.1 

The most popular and easily scalable to adapt to 
the load freely distributed monitoring system for 
information systems is Zabbix [Sha18]. Many 
authors use stationary models of the theory [Zeg12-
Upa16]. But of great interest are non-stationary 
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queueing systems (nQS). Examples of works 
devoted to the non-stationary models are [Bub11, 
Bub99, Bub15, Bub15]. The disadvantage of the 
works [Bub11, Bub99] is that they consider only 
the classical numerical method for solving systems 
of ordinary differential equations (ODE) - the 
Runge-Kutta method, but the numerical-analytical 
method is presented in [Bub15, Ser15] , the speed 
and accuracy of which, when solving ODE system 
describing nQS, exceed the most common, when 
solving this kind of problems, the Runge-Kutta 
method. The advantage of this method is a 
recursive algorithm for generating a matrix of 
coefficients of an ODE system without deriving the 
general equation of the ODE system. But this 
algorithm also has significant disadvantages, 
described in [Sha18]. Also, in [Sha18], a sequential 
method for generating matrix of coefficients was 
proposed, without the disadvantages of the 
recursive method. In [Ser15] an algorithm is 
presented for the network model of the nQS. 

This article describes a previously unreleased 
parallel-sequential model of the nQS. In 
constructing the model, modified sequential 
algorithm for generating a matrix of coefficients 
was used. 

 
 2 General description of the parallel- 
sequential model  

 

As is known from [Sha18], the Zabbix monitoring 
system allows to distribute the load and scale 
through proxy servers using. Each proxy server 
collects data from its own set of devices, and then 
sends the data to the main server, which handles the 
processing. Consider the option in which there are 
two proxy servers and one main server. Figure 1 
shows a general scheme of the interaction of system 
components. 
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Figure 1: Simplified diagram of the interactions 

of the monitoring system components 
 

An information system interacting according to 
such scheme can be considered as queuing system. 
We divide such system into two subsystems, in the 
first subsystem there will be a proxy server, in the 
second - the main server. Both proxy servers have 
the same bandwidth, each proxy server has a 
separate independent queue of tasks, since it is 
engaged in polling values from specific set of 
devices. In other words, proxy servers work in 
parallel. After the request is processed by the first 
subsystem (by any of proxy servers), it immediately 
goes to the main server for processing. After 
processing the task by the main server, task is 
considered as processed. Each server is considered 
as separate queueing channel. Figure 2 presents a 
simplified diagram of such queueing system (QS). 

 

 
Figure 2: Simplified diagram of parallel-sequential QS 

 
At any time, such QS can be described by the 
vectors "in_system" = [in_1, in_2, in_3] and 
"served" = [out_proxy, out_main]. The "in_system" 
vector contains three values, each value is equal to 
the number of tasks in the channel with 
corresponding number, while ||in_system|| = 0, N$$$$$ . 
The "served" vector contains two values, where 
each value is equal to the number of tasks served by 
corresponding subsystem, while ||served|| = 
0, N − ||ın_system||$$$$$$$$$$$$$$$$$$$$$$$$$. Where N is the total number 
of tasks that can enter to the system. At the input, 
system receives successive which depend on the 
number of tasks. Tasks are served in the first 
subsystem with intensities {µ1, µ2, … , µN}, and in 
the second subsystem with intensities {µ_main1, 
µ_main2, … , µ_main N},  which also depends on 
the number of tasks. 

 
3 Modification of the state list 
generation algorithm 

 
For a parallel-sequential model, the number of 
possible states is Ns = 
((N+1)*(N+2)*(N+3)*(N+4))/24, and depends on 

the number of tasks which can enter to the system. 
With a successive increase in the number of such 
tasks by 1, a sequence of numbers is formed from 
the values of Ns, which is on line 5 of Pascal’s 
triangle (sequence A000332 in the OEIS). 
The next step is to divide the states into N+1 groups 
so that each group has a constant value of “served” 
[out_main] and other parameters can be changed. 
Each group must be divided into N+1 subgroups so 
that each subgroup has a constant value of “served” 
[out_proxy] and remaining parameters can be 
changed. Each subgroup must be divided into N+1 
subgroups of the second order so that in each 
subgroup of second order there is a constant value 
||in_system|| and other parameters can be changed. 
Create an empty structure to store the list of states. 
Iterate through all possible combinations of 
parameters describing the state of the system. We 
consider a combination as new state if it satisfies 
the following conditions simultaneously: (1) in_1 + 
in_2 + out_proxy <= N; (2) in_3 = out_proxy - 
out_main. In this case, the generated state is placed 
in the list of states in the subgroup of the second 
order according to the order of grouping at the 
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address “states” [out_main] [out_proxy] 
[||in_system||]. After list of states generating using 
this algorithm, all states will be listed in order in 
sequential numbering, which allows not to sort the 
list and the matrix of coefficients additionally and 

provides convenient way to describe possible 
transitions between states. Figure 3 shows the 
flowchart of the algorithm for generating a list of 
states for a parallel-sequential model.

 

 
Figure 3: The flowchart of the sequential algorithm 

 
4 Formation of transition rules and 
matrix of coefficients 
In the previous step, a structured list of all possible 
states was obtained. Thanks to this grouping, you 
can easily derive the rules for transitions between 
states. Need to notice that the basic rules of 
transition between states can be represented as the 
life cycle of task that passes through the described 
QS: 

1. The new task enters the system on any of 
proxy servers, transition from the current state; 

2. The new task enters the system on any of 
proxy servers, transition to the next state; 

3. Task is served in the first subsystem (by any 
proxy server), transition from the current state; 

4. Task is served in the first subsystem (by any 
proxy server), transition to the next state; 

5. Task is served in the second subsystem (main 
server), transition from the current state; 

6. Task is served in the second subsystem (main 
server), transition to the next state. 

Also, by grouping the list of states, we can 
derive several rules: 

1. Transition within one subgroup of the second 
level is impossible; 

2. Within the subgroup “subgroup”, transition 
from the second level subgroup “under_subgroup” 
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to the state “i” and “i”+1 (if they exist) of the next 
second level subgroup “under_subgroup”+1 is 
possible, if that "under_subgroup" is not the last 
nonempty subgroup of the second level of the 
subgroup "subgroup". The trigger for such 
transition is the receipt of new task in the first 
subsystem; 

3. Within one group "group" transition is 
possible from any subgroup "subgroup" to 
subgroup "subgroup"+1. In this case, the transition 
is possible from the state "i" of the second level 
subgroup "under_subgroup" to the states "i" and 
"i"-1 (if they exist) the second level subgroup 
"under_subgroup". The trigger of such transition is 
the task completion in first subsystem and its 
transition to second subsystem;  

4.  Inside the list of states "states" transition is 
possible from group "group" to group "group"+1. 
The transition is possible from the state "i" of the 
subgroup of the second level "under_subgroup" of 
the subgroup "subgroup" to state "i" of the second 
level subgroup "under_subgroup" of the subgroup 
"subgroup". Such transition is im-possible from the 
first non-empty subgroups in the group. The trigger 
of such transition is the task completion in the main 
server. 
Figure 4 shows a simplified diagram of transitions 
between states for a parallel-sequential model with 
N = 3. As you can see, all states are irretrievable, 
which corresponds to the goal. 
 

 
 

Figure 4: Simplified state transition diagram with N = 3 
 

Consistently going through the states from 
generated list of states and applying the detected 
rules to each condition that suits the conditions, it 
becomes possible to simultaneously fill the matrix 
of coefficients. Each state is checked for 
compliance with certain conditions. The required 
changes are made to the coefficient matrix on the 

run. After making all changes in the matrix of 
coefficients, it remains only to solve the system of 
ordinary differential equations by a numerical-
analytical method. 

Figure 5 shows the flowchart for generating 
“matrixA” coefficient matrix. 
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Figure 5: The flowchart of the algorithm for generating matrix of coefficients 
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5 Conclusion 
 

For the first time, a parallel-sequential model of a 
non-stationary queue system was built, which 
simulating the operation of the Zabbix monitoring 
system based on a distributed architecture. To build 
the model, modified sequential algorithm for matrix 
of coefficients generating of ordinary differential 
equations was used, which accelerated the process 
of matrix formation in several times. In the 
modified algorithm, state transition rules derived in 
the paper were used.  

The further development of the model can be 
the introduction of a not instantaneous transition of 
each task to the second subsystem after servicing in 
the first subsystem. In this case, task will 
accumulate in the queue to the main server and 
arrive at it for processing by several pieces at once. 
Such addition will allow to more accurately 
simulate actual behavior of Zabbix monitoring 
system when using distributed architecture and 
increase the non-stationarity of system. 
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