
52

Integration of Big Data Processing Tools and Neural

Networks for Image Classification

Nikita E. Kosykh

Emperor Alexander I St. Petersburg

State Transport University,

Saint Petersburg, Russia
nikitosagi@mail.ru

Anatoly D. Khomonenko

Emperor Alexander I St. Petersburg State

Transport University,

Saint Petersburg, Russia
khomon@mail.ru

Alexander P. Bochkov

Peter the Great St. Petersburg

Polytechnic University,

Saint Petersburg, Russia

kostpea@mail.ru

Anatoly V. Kikot

Emperor Alexander I St. Petersburg State

Transport University,

Saint Petersburg, Russia

a.v.kikot@yandex.ru

Abstract

The issues of joint use of tools for
processing big data in solving problems of
artificial intelligence are becoming
increasingly important. The article
discusses the task of optimizing the
parameters of neural networks used for
image recognition using Matlab and
Hadoop systems, as well as the MNIST
(Modified National Institute of Standards
and Technology) database is a voluminous
database of handwritten number samples.
The results of calculating the optimal
number of neural network layers for
solving the classification problem of
images presented. We study the issues of
evaluating the accuracy of image
classification depending on the number of
network neurons, choosing the optimal
network training algorithm, and evaluating
the effect of parallelization[Sha09] using
MATLAB Distributed Computing Server in
the process of training a neural network on
computing performance.

1 Introduction

1The issues of joint use of tools for processing
big data[Bah15] in solving problems of artificial

intelligence are becoming increasingly important

Copyright c by the paper's authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 In: A. Khomonenko, B. Sokolov, K. Ivanova (eds.): Selected
Papers of the Models and Methods of Information Systems Research

Workshop, St. Petersburg, Russia, 4-5 Dec. 2019, published at

http://ceur-ws.org.

Deep learning of neural networks is a very popular
topic these days, especially in computer vision

applications. Until 2010, there was no
database[Liu16] sufficiently complete and
voluminous in order to train a neural network in a

high-quality way to solve certain problems related
to image recognition. Existing solutions had a high

level of inaccuracy. With the emergence of open
databases, such as Kaggle (big data bank) and
ImageNet (image bank), it is possible to train

neural networks and make practically error-free
decisions. The article discusses the task of

optimizing the parameters of neural networks used
for image recognition using Matlab and Hadoop
systems.

Justification of the choice of programming
environment. The Matlab 2016a[Kra18] chosen as

an integrated programming environment for
working with big data. It supports some tools for

solving problems, namely:

• Variables stored on the hard disk. Using the
matfile function, you can access MATLAB
variables directly from the MAT file on disk,

without loading the entire variable into
memory. This will allow processing of large

data sets that do not fit in memory.

• Datastore. The datastore function allows
you to access data that does not fit in
memory. This may include data from files,
sets or tables.

• Parallel computing. Parallel Computing
Toolbox implements parallel loops to run
MATLAB code on multi-core architectures.

Machine learning. Machine learning used to

develop predictive models for big data. The whole
range of machine learning algorithms is contained

in the Statistic Toolbox and Neural
Network[Pao89] Toolbox modules.

https://e.mail.ru/compose?To=kostpea@mail.ru

53

• hadoop. Using the MapReduce[Gha15] and
DataStore functionality built into MATLAB, you can
develop algorithms on a personal computer and
run them on Hadoop. You can request a piece of
data using the datastore function, and then using
the Distributed Computer Server, run the
algorithms within the Hadoop MapReduce
environment on the complete set of data.

2 MNIST Dataset of Digit Patterns

The MNIST (Modified National Institute of
Standards and Technology) database is a
voluminous database of handwritten number
samples. The database is a standard proposed by
the US National Institute of Standards and
Technology for the purpose of calibrating and
comparing image recognition methods using
machine learning, primarily based on neural
networks.

Neural networks tend to learn better from
specific examples. In the development of
neural[Nov15] network for pattern
recognition, we use the popular MNIST
handwritten data set (Hadoop, 2016). Kaggle's
open portal for distributing big data [Peh19]
uses this very kit in the Digit Recognizer
training contest. The set contains the following
components:

a) trainSet.csv – training data;
b) testSet.csv – test data for

presentation.

First you need to load the training data
into MATLAB (MATLAB, 2018). For this we use
the built-in function csvread.

M = csvread (filename, R1, C1)

trainSet = csvread (trainSet.csv, 1,0)

testSet = csvread (testSet.csv, 1,0)

trainSet = csvread ('trainSet.csv', 1,0)

subSet = csvread ('testSet.csv', 1, 0);

The first column in the trainset set is a label
that shows the correct number for each sample in
the data set, and each line is a sample. In the
remaining columns, the row is an image of the
handwritten digit 28x28, but all the pixels are
placed in one row, and not in the original
rectangular shape. To render the numbers, we need
to rebuild the rows into 28x28 matrices. To do this,
you can use the Reshape function, with the
exception that you need to transpose the matrix,
because the Reshape function works in columns
and not line by line.

To display an image, you need to create a
graphic context (window) using the function figure.
As parameters, you can pass properties for a
graphic context to a function. Initially handwritten
numbers are displayed in colors that are presented
in a color palette of green and blue shades (Fig. 1).

Figure. 1: Display the default set

For a better perception, we use the colormap ()
function, which sets the color map of the final
image.

Colormap (gray) – sets a linear palette in shades
of gray.

The following code fragment reads the first 16
lines of the data set, which are 16 digits. Converts
rows into matrices and displays the resulting
images on the screen, while the numbers on the top
show the object class numbers.

figure

colormap(gray)

for i = 1:25

subplot(5,5,i)

matrix = reshape(trainSet(i, 2:end),

[28,28])'

imagesc(matrix)

title(num2str(tr(i, 1)))

end

After the above code fragment executed, an
image of 16 handwritten numbers will appear on
the screen, placed on a single graphic screen in a
black and white palette (Fig. 2).

Figure. 2: Image handwritten numbers

54

To build the network[Kho15], we will use
the tool for pattern recognition ‘nprtool’ from
the Neural Network Toolbox module.

3 Data preparation

The input tool expects two sets of data:

a) input – a numeric matrix, each column
of which represents samples and rows.
These are scanned images of
handwritten numbers;

b) vectorLabels – matrix-row binary form
of 0 and 1, which is mapped to specific
labels that represent the image. It is
also called a dummy variable. Neural
Network ToolBox also expects tags to
be stored in columns and not in rows.

Class labels range from 0 to 9, as there are
exactly so many single-digit numbers. To solve
this problem, we will use “10” instead of “0”,
because MATLAB indexing starts from 1.

The trainSet dataset stores sample images
in rows, not columns, so the entire dataset
needs to transpose. The test set of data does
not come out in advance in the MNIST set. To
form it, we will hold 1/3 of each data set
(training, test).

n = size(trainSet, 1);

labels = trainSet(:,1);

labels(labels == 0) = 10;

labelsd = dummyvar(labels);

inputs = trainSet(:,2:end)

inputs = inputs'; % transposition of the

set of predictors

labels = labels';

labelsd = labelsd';

rng (1);

c = cvpartition (n, 'Holdout', n / 3);

XtrainSet = inputs (:, training (c));

YtrainSet = labelsd (:, training (c));

XtestSet = inputs (:, test (c));

YtestSet = labels (test (c));

YtestSetd = labelsd (:, test (c));

Explanation: The function c = cvpartition

(n, ‘Holdout, p) randomly creates a section for
validating validation during observations. This
section divides the array into tutorials and a
test set. Parameter p must be a scalar. When 0
<p <1, cvpartition randomly selects n cases for
the test set. The default is p = 1/10.

4 Using the Neural Network Toolboox

The following describes the steps to work with
the Matlab NNTool.

A. To start working with NNT, call the
nprtool method from the command window.

B. In the next menu, select Pattern
Recognition Tool to open the pattern
recognition tool.

C. On the welcome screen, go to “Select
data”.

D. For the input, choose XtrainSet and for
classes, YtrainSet.

E. After installing the arrays, go to the
“Data for verification” section. In this case, you
can leave the default values. This will divide
the data in the ratio of 70-15-15 into sets for
training, testing and testing.

F. In the network architecture section,
change the value of hidden layers to 100 and
go on.

G. For training, go to the Train Network
section and click “Train” to start training. Upon
completion of the operation, a window with
learning results will open. Numerical
indicators can viewed as graphs and charts.

H. On the last tab, you will prompted to
save the learning script for the model you just
created. (eg NeuralNetworkSctipt.m).

Below is a diagram of a model of an
artificial neural network (Figure 3.), which was
created using the pattern recognition tool. It
has 784 input neurons, 100 hidden layer
neurons and 10 output word neurons (which is
equal to the number of classes for prediction).

Figure. 3: Neural network model with

parameters

The model trained by adjusting the weights
for correct results. W in the diagram denotes
weights and b – displacement neuron, which
are part of individual neurons. Separate
neurons in the hidden layer are as follows: 784
input neurons and correspondingly the same
weights, 1 offset unit and 10 activation
outputs.

5 Data Visualization

For begin you should look inside the structure
of the NeuralNetworkSctipt.m file. There you
can see the generated variables, such as IW1_1
and x1_step1_keep, which are weights vectors
obtained in the process of training the
network. Since we have 784 inputs and 100
neurons, the complete hidden layer will consist
of a 100x784 matrix. Now you can clearly see
what they study neurons.
Copy the above variables from the file and
enter them into the workspace in the form of
matrices.
W1 = zeros (100, 28 * 28);

W1 (:, x1_step1_keep) = IW1_1;

Figure

colormap (gray)

for i = 1:16

subplot (4,4, i)

55

digit = reshape (W1 (i, :), [28,28])';

imagesc (digit)

end

6 Evaluation Of Classification Accuracy

Now you can use the previously prepared file to
predict the classes in the part of the Xtest file held
and compare them with the actual classes in the
Ytest set ‘. This gives a real picture of the
performance against the background of
unclassified data. After that we will execute the
commands that are from the 10x14000 matrix,
convert to 1x14000 by selecting only the values
with the maximum probability.

% predicts the probability for label

YpredSet =

neuralNetworkFunction(XtestSet);

% display the first 5 columns

YpredSet (:, 1: 5)

[~, YpredSet] = max(YpredSet);

It remains to compare the predicted network
indices and actual. To do this, we apply the formula
for assessing the quality of the algorithm, namely,
assessing the accuracy of data classification.

,
P

Accuracy
N

=

where: N is the size of the training sample; P is the
number of objects from the sample for which the
network made the right decision.

This formula must have interpreted into MatLab
code and our data sets, namely:

Accuracy = sum (YtestSet == YpredSet) /

length (YtestSet) % compare predicted

and actual

Accuracy = 0.9554.

The prediction accuracy rating is 95.5%, which
is good enough for a network with a minimum
number of manual settings.

7 Calculation The Optimal Number Of
Layers

It now remains to find out how the change in the
number of hidden neutrons will affect the accuracy
of data classification. The main thing is to fulfill the
inequality

outputshiddensInputs

In the previous experiment, 100 neurons of the
hidden layer were involved, we will try to find the
optimal value at which the accuracy factor will
improved, but there will be no effect of
reconfiguring the system.

As input parameters, we will set the number of
neurons in the hidden layer. The amount will vary
from 10 to 300 in increments of 25. All values will

written in the layers array. Further, in the loop, it
sets the values and the results of the accuracy of
the network estimate and writes them into the
Accuracy variable. Let as save a set of commands to
the nnscript.mlx script, so that we can repeat
requests.

layers = [15,50:30:290];

scores = zeros(length(layers), 1);

models = cell(length(layers), 1);

for i = 1:length(layers)

 hiddenLayerSize = layers(i);

 nn = patternnet(hiddenLayerSize)

 nn.divideParam.trainRatio = 0.7;

 nn.divideParam.valRatio = 0.15;

 nn.divideParam.testRatio = 0.15;

 nn = train(nn,XtrainSet,YtrainSet);

 p = nn(XtestSet)

 models{i} = nn,

 [~,p] = max(p)

 AccuracyScores(i) =

sum(YtestSet==p)/length(YtestSet)

end

figure

plot(layers, AccuracyScores, 'o-')

xlabel('Number of neurons')

ylabel(’Accuracy of classification’)

title('Number of neurons / accuracy')

As a result, of the execution of a sequence of
commands, we obtain a graph of the dependence of
the accuracy of the algorithm on the number of
neurons in the hidden layer (fig. 4).

Number of neurons

A
cc

u
ra

cy
 o

f
cl

as
si

fi
ca

ti
o

n

Figure. 4: The dependence of the classifier

accuracy on the number of neurons
Analyzing the graph, we can conclude that the

best result will be about 145 neurons, with an
accuracy of 0.957, then, with an increase in the
number of neurons in the hidden layer, the
accuracy remains the same, and performance
begins to decline markedly.

56

Note that we obtain greater accuracy with an
increase in the number of neurons, but at some
point the accuracy may fluctuate in the negative
direction (due to the accidental initialization of the
weights). As the number of neurons increases, the
model can capture more functions, but because of
their excess, you can eventually retrain your model
on one set, and this will have a bad effect on the
classification of new data.

Consider the question of justifying the choice of
the optimal learning algorithm.

8 Selection of the optimal learning
algorithm

The following algorithms were chosen for
network training, which are presented in Table
1. The preliminary selection was made on the
basis of the performance studies of algorithms
for solving various typical problems by the
MathWorks group.

Table 1: Neural Network Learning
Algorithms

Function Matlab Algorithm

‘trainscg’ Stochastic Gradient Descent
‘trainrp’ Resilient Propagation (Rprop)
‘traincgf’ Fletcher-Powell related

gradient method
‘traincgb’ Powell-Bill related gradient

method
'traincgp' Polac-Ryber method of

associated gradients
‘trainoss’ One-step algorithm of the

cutting planes method

funcArray={'trainscg','trainrp','traincg

b','traincgp','traincgf','trainoss'}'

All computational processes were
performed on a single personal computer
without the use of distributed computing, i.e.
without additional optimization.

model = cell(length(funcArray),1)

accuracyRate = cell(length(funcArray),

2);

for i = 1:length(funcArray)

net = patternnet(145,funcArray{i,1})

net.divideParam.trainRatio=0.7

net.divideParam.valRatio=0.15

net.divideParam.testRatio = 0.15;

rng(1);

tic % timer start

net = train(net,XtrainSet,YtrainSet)

toc% timer stop

timer1 = toc

model{i} = net

p = net(XtestSet);

[~,p] = max(p)

accuracyRate{i,1} = funcArray{i}

accuracyRate{i,2}=sum(YtestSet==p)/leng

th(YtestSet)

accuracyRate{i,3} = timer1

end

First, an array of cells is created to store future
models of trained networks. Each model contains a
trained network on a specific algorithm. Next, we
select the variable that will store the accuracy
estimates of the algorithm, the name of the
algorithm, and the network training time

The code in the loop performs network training
using a constant number of layers. Data for training
is divided in the classical proportion 70/15/15. We
loop through the data into the array of
accuracyRate cells.

To get the results in a time-sorted form, execute
the following command:

sortrows (accuracyRate, [3])
The test results of learning algorithms with no

parallel computing [39] are presented in table. 2

Table 2: Algorithm Test Results for
Conventional Computing

Learning
Algorithm

Classification
Accuracy

Learning
Time, sec.

‘trainrp’ 0.9038 71.0844
‘trainscg’ 0.9566 149.0134
‘traincgp’ 0.9558 249.0219
‘traincgb’ 0.9589 313.0135
‘traincgf’ 0.9612 409.3543
‘trainoss’ 0.9588 845.4352

The first column contains the names of the
algorithms, the second – the accuracy of data
classification, the third network training time in
seconds. As we can see, the Rrop turned out to be
the fastest method for learning, but the accuracy is
poor. The optimal approach, in terms of execution
time and accuracy, is stochastic gradient descent
with a result of 95.6%.

9 Distributed Learning Computing

Parallel Computing Toolbox allows training and
building a neural network using multiple processor
cores on a single PC or on multiple network
computers using the MATLAB Distributed
Computing Server.

Using multiple cores can speed up calculations.
Using multiple computers can solve the problem of
lack of RAM to accommodate too large data sets for
one computer.

The goal is to use the tool and identify patterns
between the number of cores involved and the
network learning rate on the above algorithms.

To manage cluster configurations, the Cluster
Profile Manager is used.

To open the pool of MATLAB workers, enable
the default cluster profile, which refers to the local
CPU core, use the following command:

pool = parpool

57

You must also indicate the number of
workstations involved, or in our case the cores,
by calling the command:

pool.NumWorkers

Now we can train the neural network by
sharing data among the CPU cores. To do this,
set the parameters for the training and testing
network functions.

net = train(net, XtrainSet,

YtrainSet, ‘UseParallel,‘ Yes ’)

p = net(XtestSet, ‘UseParallel,‘

Yes ’);

By starting the module using the
‘ShowResources’ argument, you can verify that
the calculations are performed on several
cores.

net = train(net, XtrainSet,

YtrainSet, 'useParallel', 'yes',

'showResources', 'yes')

p = net(XtestSet, 'useParallel',

'yes', 'showResources', 'yes');

MATLAB indicates which resources were
used.

When the training and testing methods of
the network are called, they divide the input
data into distributed composite values, after
performing the operations, they transform the
data back into an array view into the original
representation in the form of a matrix or an
array of cells.

Here are the results of comparing the
performance of computing the same
algorithms for training a neural network, but
using two physical cores to parallelize
operations (Table 3).

Table 3: Using Parallel Computing for
Network Learning

Algori
thm

Accura
cy

Time,
sec.

‘trainr
p’

0.9038 87.6

‘trains
cg’

0.9566 187.3

‘trainc
gp’

0.9558 268.9

‘trainc
gb’

0.9589 330.9

‘trainc
gf’

0.9612 371.6

‘traino
ss’

0.9588 638.5

At least we will build a Matlab bar chart

comparing the network training time using one
core and two processor cores (Fig. 5) of a
personal computer.

Figure. 5: Comparison of 2CPU and CPU
performance

Note that the effect of using distributed
computing becomes more noticeable when
using algorithms with greater convergence and
requiring more iterations to obtain a result.

A multilayer neural network has been built
to solve the problem of machine learning,
namely, optical recognition of handwritten
characters based on the training data set
MNIST.

In a number of experiments, optimal
parameters (the number of hidden neurons,
learning algorithm) were determined to
achieve good accuracy of the data classification
algorithm and network training time.

The trainrp function is the fastest pattern
recognition algorithm. Its performance also
deteriorates as the error value decreases. The
memory requirements for this algorithm are
relatively small compared to others.

In particular, trainscg, the stochastic
gradient descent algorithm, seems to have
done a good job with a large number of
weights. SCG works almost as fast with pattern
recognition as RProp, but performance does
not decrease when error is reduced.

Other algorithms become very slowly with
an increase in the number of neurons in the
network, however, they can be useful in
situations where a slower convergence of the
function is required.

When using tools for parallel[Sha09]
distributed computing, there is an increase in
productivity in the learning speed for complex
algorithms, based on connected gradients.
Observations must be carried out with a
minimum software load on the disk array;
otherwise the results will vary greatly during
idle and peak loads.

The stochastic gradient descent algorithm
is optimal for the task of pattern recognition
based on neural networks with an average
number of input neurons. Unlike other
algorithms, its performance does not decrease
with a decrease in error.

58

When using tools for parallel distributed
computing, there is an increase in productivity
in the learning speed for modified algorithms,
based on conjugate gradients.

At the preparatory stage, prior to building a
neural network, the Apache Hadoop
framework is deployed for the task of storing
data in a pseudo-cluster and providing access
to data through the Java interface.

A common advantage of the approach is its
versatility and the ability to integrate with the
existing infrastructure of the enterprise and its
cloud storage, and services. Due to the
abundance of existing libraries for working
with neural networks and big data, the idea can
interpreted for any high-level programming
language with the appropriate qualifications of
a programmer.

10 Conclusion

Matlab and Hadoop tool sharing technologies
discussed above can find application for
optimizing the process of using neural
networks to solve various applied problems of
artificial intelligence.

Acknowledgments

The work was partially supported by the
grant of the MES RK: project No.
AP05133699 "Research and development of
innovative information and telecommunication
technologies using modern cyber technical
means for the city's intelligent transport
system".

References

[Bah15] Bahrami M., Singhal M. The role of
cloud computing architecture in big
data. Information granularity, big
data, and computational intelligence.
Springer, Cham. Pp.275–295.

[Peh19] Pehcevski J. (2019). Big data analytics:
methods and applications. Arcler
Press. Canada. 430 p.

[Gha15] Ghazi M. R., Gangodkar D. Hadoop,
MapReduce and HDFS: a developers
perspective. Procedia Computer
Science. Pp. 45–50.

[Kra18] Krasnovidov, A.V., Khomonenko, A.D.,
Zabrodin, A.V., Smirnov, A.V. On the
peculiarities of the exchange of data
between applications in high-level
languages and Matlab functions.
CEUR Workshop Proceedings.
Workshop Computer Science and
Engineering in the framework of the
5 th International Scientific-
Methodical Conference "Problems of
Mathematical and Natural-Scientific
Training in Engineering Education.
St. Petersburg, Russia, November 8-
9, 2018. Vol. 2341, pp. 33-41.

[Liu16] Liu J. Rethinking big data: A review on
the data quality and usage issues.
ISPRS Journal of Photogrammetry
and Remote Sensing. 2016. Vol. 115.
Pp. 134–142.

[Nov15] Novikov P.A., Khomonenko A.D.,
Yakovlev E.L. Justification of the
choice of neural networks learning
algorithms for indoor mobile
positioning. Proceeding CEE-SECR
'15 Proceedings of the 11th Central &
Eastern European Software
Engineering Conference in Russia.
Moscow, Russian Federation.
October 22-24, 2015. ACM New York,
NY, USA ©2015. Article No. 9.

[Sha09] Sharma G., Martin J. MATLAB®: A
language for parallel computing.
International Journal of Parallel
Programming. 2009. Vol. 37. No 1.
Pp. 3–36.

[Pao89] Pao Y. Adaptive pattern recognition
and neural networks. Reading, MA:

Addison-Wesley, 1989. 309 p.

[Sha09] Sharma G., Martin J. MATLAB®: a

language for parallel computing.
International Journal of Parallel

Programming. 2009. Vol. 37. No. 1. –
Pp. 3-36.

[Kho15] Khomonenko A. D., Yakovlev E. L.
Neural network approximation of
characteristics of multi-channel non-

Markovian queuing systems. SPIIRAS
Proceedings. 2015. Issue 4(41).

Pp.81-93.

