Integration of Big Data Processing Tools and Neural Networks for Image Classification

Nikita E. Kosykh
Emperor Alexander I St. Petersburg State Transport University, Saint Petersburg, Russia
nikitosagi@mail.ru

Anatoly D. Khomonenko
Emperor Alexander I St. Petersburg State Transport University, Saint Petersburg, Russia
khomon@mail.ru

Alexander P. Bochkov
Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
kostpea@mail.ru

Anatoly V. Kikot
Emperor Alexander I St. Petersburg State Transport University, Saint Petersburg, Russia
a.v.kikot@yandex.ru

Abstract

The issues of joint use of tools for processing big data in solving problems of artificial intelligence are becoming increasingly important. The article discusses the task of optimizing the parameters of neural networks used for image recognition using Matlab and Hadoop systems, as well as the MNIST (Modified National Institute of Standards and Technology) database is a voluminous database of handwritten number samples. The results of calculating the optimal number of neural network layers for solving the classification problem of images presented. We study the issues of evaluating the accuracy of image classification depending on the number of network neurons, choosing the optimal network training algorithm, and evaluating the effect of parallelization using MATLAB Distributed Computing Server in the process of training a neural network on computing performance.

1 Introduction

The issues of joint use of tools for processing big data in solving problems of artificial intelligence are becoming increasingly important.
hadoop. Using the MapReduce [Gha15] and DataStore functionality built into MATLAB, you can develop algorithms on a personal computer and run them on Hadoop. You can request a piece of data using the datastore function, and then using the Distributed Computer Server, run the algorithms within the Hadoop MapReduce environment on the complete set of data.

2 MNIST Dataset of Digit Patterns

The MNIST (Modified National Institute of Standards and Technology) database is a voluminous database of handwritten number samples. The database is a standard proposed by the US National Institute of Standards and Technology for the purpose of calibrating and comparing image recognition methods using machine learning, primarily based on neural networks.

Neural networks tend to learn better from specific examples. In the development of neural [Nov15] network for pattern recognition, we use the popular MNIST handwritten data set (Hadoop, 2016). Kaggle’s open portal for distributing big data [Peh19] uses this very kit in the Digit Recognizer training contest. The set contains the following components:

a) trainSet.csv – training data;
b) testSet.csv – test data for presentation.

First you need to load the training data into MATLAB (MATLAB, 2018). For this we use the built-in function csvread.

\[M = \text{csvread}(\text{filename}, \text{R1}, \text{C1}) \]

\[\text{trainSet} = \text{csvread}(\text{trainSet.csv}, 1, 0) \]

\[\text{testSet} = \text{csvread}(\text{testSet.csv}, 1, 0) \]

\[\text{trainSet} = \text{csvread}('\text{trainSet.csv}', 1, 0) \]

\[\text{testSet} = \text{csvread}('\text{testSet.csv}', 1, 0) \]

The first column in the trainset set is a label that shows the correct number for each sample in the data set, and each line is a sample. In the remaining columns, the row is an image of the handwritten digit 28x28, but all the pixels are placed in one row, and not in the original rectangular shape. To render the numbers, we need to rebuild the rows into 28x28 matrices. To do this, you can use the reshape function, with the exception that you need to transpose the matrix, because the reshape function works in columns and not line by line.

To display an image, you need to create a graphic context (window) using the function figure. As parameters, you can pass properties for a graphic context to a function. Initially handwritten numbers are displayed in colors that are presented in a color palette of green and blue shades (Fig. 1).

For a better perception, we use the colormap() function, which sets the color map of the final image.

colormap (gray) – sets a linear palette in shades of gray.

The following code fragment reads the first 16 lines of the data set, which are 16 digits. Converts rows into matrices and displays the resulting images on the screen, while the numbers on the top show the object class numbers.

\[\text{figure} \]

\[\text{colormap(gray)} \]

\[\text{for} \ i = 1:25 \]

\[\text{subplot(5,5,i)} \]

\[\text{matrix} = \text{reshape(trainSet(i, 2:end), [28,28])'} \]

\[\text{imagesc(matrix)} \]

\[\text{title(num2str(tr(i, 1)))} \]

\[\text{end} \]

After the above code fragment executed, an image of 16 handwritten numbers will appear on the screen, placed on a single graphic screen in a black and white palette (Fig. 2).
To build the network [Kho15], we will use the tool for pattern recognition 'nprtool' from the Neural Network Toolbox module.

3 Data preparation

The input tool expects two sets of data:

a) **input** – a numeric matrix, each column of which represents samples and rows. These are scanned images of handwritten numbers;

b) **vectorLabels** – matrix-row binary form of 0 and 1, which is mapped to specific labels that represent the image. It is also called a dummy variable. Neural Network Toolbox also expects tags to be stored in columns and not in rows.

Class labels range from 0 to 9, as there are exactly so many single-digit numbers. To solve this problem, we will use “10” instead of “0”, because MATLAB indexing starts from 1.

The **trainSet** dataset stores sample images in rows, not columns, so the entire dataset needs to transpose. The test set of data does not come out in advance in the MNIST set. To form it, we will hold 1/3 of each data set (training, test).

```matlab
n = size(trainSet, 1);
labels = trainSet(:, 1);
labels(labels == 0) = 10;
labelsd = dummyvar(labels);
inputs = trainSet(:, 2:end);
inputs = inputs'; % transposition of the set of predictors
labels = labels';
labelsd = labelsd';
ng (1);
c = cvpartition (n, 'Holdout', n / 3);
XtrainSet = inputs (:, training (c));
YtrainSet = labelsd (:, training (c));
XtestSet = inputs (:, test (c));
YtestSet = labels (test (c));
YtestSetd = labelsd (:, test (c));
```

Explanation: The function `c = cvpartition (n, 'Holdout', p)` randomly creates a section for validating validation during observations. This section divides the array into tutorials and a validating validation during observations. This problem, we will use “10” instead of “0”, because MATLAB indexing starts from 1.

The **trainSet** dataset stores sample images in rows, not columns, so the entire dataset needs to transpose. The test set of data does not come out in advance in the MNIST set. To form it, we will hold 1/3 of each data set (training, test).

```matlab
n = size(trainSet, 1);
labels = trainSet(:, 1);
labels(labels == 0) = 10;
labelsd = dummyvar(labels);
inputs = trainSet(:, 2:end);
inputs = inputs'; % transposition of the set of predictors
labels = labels';
labelsd = labelsd';
ng (1);
c = cvpartition (n, 'Holdout', n / 3);
XtrainSet = inputs (:, training (c));
YtrainSet = labelsd (:, training (c));
XtestSet = inputs (:, test (c));
YtestSet = labels (test (c));
YtestSetd = labelsd (:, test (c));
```

5 Data Visualization

For begin you should look inside the structure of the **NeuralNetworkScript.m** file. There you can see the generated variables, such as `IW1_1` and `x1_step1_keep`, which are weights vectors obtained in the process of training the network. Since we have 784 inputs and 100 neurons, the complete hidden layer will consist of a 100x784 matrix. Now you can clearly see what they study neurons.

Copy the above variables from the file and enter them into the workspace in the form of matrices.

```matlab
W1 = zeros (100, 28 * 28);
W1 (:, x1_step1_keep) = IW1_1;
```

For training, go to the Train Network section and click "Train" to start training. Upon completion of the operation, a window with learning results will open. Numerical indicators can viewed as graphs and charts.

To start working with NNT, call the **nprtool** method from the command window.

B. In the next menu, select Pattern Recognition Tool to open the pattern recognition tool.

C. On the welcome screen, go to “Select data”.

D. For the input, choose XtrainSet and for classes, YtrainSet.

E. After installing the arrays, go to the “Data for verification” section. In this case, you can leave the default values. This will divide the data in the ratio of 70-15-15 into sets for training, testing and testing.

F. In the network architecture section, change the value of hidden layers to 100 and go on.

G. For training, go to the Train Network section and click “Train” to start training. Upon completion of the operation, a window with learning results will open. Numerical indicators can viewed as graphs and charts.

H. On the last tab, you will prompted to save the learning script for the model you just created. (eg NeuralNetworkScript.m).

Below is a diagram of a model of an artificial neural network (Figure 3.), which was created using the pattern recognition tool. It has 784 input neurons, 100 hidden layer neurons and 10 output word neurons (which is equal to the number of classes for prediction).

![Figure 3: Neural network model with parameters](image)

The model trained by adjusting the weights for correct results. W in the diagram denotes weights and b – displacement neuron, which are part of individual neurons. Separate neurons in the hidden layer are as follows: 784 input neurons, 100 hidden layer neurons and 10 activation outputs.
6 Evaluation Of Classification Accuracy

Now you can use the previously prepared file to predict the classes in the part of the Xtest file held and compare them with the actual classes in the Ytest set. This gives a real picture of the performance against the background of unclassified data. After that we will execute the commands that are from the 10x14000 matrix, convert to 1x14000 by selecting only the values with the maximum probability.

% predicts the probability for label
YpredSet = neuralNetworkFunction(XtestSet);
% display the first 5 columns
YpredSet (:, 1:5) = max(YpredSet);

It remains to compare the predicted network indices and actual. To do this, we apply the formula for assessing the quality of the algorithm, namely, assessing the accuracy of data classification.

\[
\text{Accuracy} = \frac{P}{N},
\]

where: \(N \) is the size of the training sample; \(P \) is the number of objects from the sample for which the network made the right decision.

This formula must have interpreted into MatLab code and our data sets, namely:

```matlab
Accuracy = sum(YtestSet == YpredSet) / length(YtestSet) % compare predicted and actual
Accuracy = 0.9554.
```

The prediction accuracy rating is 95.5% which is good enough for a network with a minimum number of manual settings.

7 Calculation The Optimal Number Of Layers

It now remains to find out how the change in the number of hidden neurons will affect the accuracy of data classification. The main thing is to fulfill the inequality

\[
\text{Inputs} \geq \text{hiddens} \leq \text{outputs}
\]

In the previous experiment, 100 neurons of the hidden layer were involved, we will try to find the optimal value at which the accuracy factor will improved, but there will be no effect of reconfiguring the system.

As input parameters, we will set the number of neurons in the hidden layer. The amount will vary from 10 to 300 in increments of 25. All values will written in the layers array. Further, in the loop, it sets the values and the results of the accuracy of the network estimate and writes them into the Accuracy variable. Let as save a set of commands to the nnsescript.mlx script, so that we can repeat requests.

```matlab
layers = [15, 50; 30:290];
scores = zeros(length(layers), 1);
models = cell(length(layers), 1);
for i = 1:length(layers)
    hiddenLayerSize = layers(i);
nn = patternnet(hiddenLayerSize);
nn.divideParam.trainRatio = 0.7;
nn.divideParam.valRatio = 0.15;
nn.divideParam.testRatio = 0.15;
nn = train(nn,XtrainSet,YtrainSet);
p = nn(XtestSet);
models{i} = nn;
 [~,p] = max(p)
AccuracyScores(i) =
    sum(YtestSet==p)/length(YtestSet)
end
figure
plot(layers, AccuracyScores, 'o-')
xlabel('Number of neurons')
ylabel('Accuracy of classification')
title('Number of neurons / accuracy')
```

As a result, of the execution of a sequence of commands, we obtain a graph of the dependence of the accuracy of the algorithm on the number of neurons in the hidden layer (fig. 4).

Figure 4: The dependence of the classifier accuracy on the number of neurons

Analyzing the graph, we can conclude that the best result will be about 145 neurons, with an accuracy of 0.957, then, with an increase in the number of neurons in the hidden layer, the accuracy remains the same, and performance begins to decline markedly.
Note that we obtain greater accuracy with an increase in the number of neurons, but at some point the accuracy may fluctuate in the negative direction (due to the accidental initialization of the weights). As the number of neurons increases, the model can capture more functions, but because of their excess, you can eventually retrain your model on one set, and this will have a bad effect on the classification of new data.

Consider the question of justifying the choice of the optimal learning algorithm.

8 Selection of the optimal learning algorithm

The following algorithms were chosen for network training, which are presented in Table 1. The preliminary selection was made on the basis of the performance studies of algorithms for solving various typical problems by the MathWorks group.

<table>
<thead>
<tr>
<th>Function Matlab</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>'trainscg'</td>
<td>Stochastic Gradient Descent</td>
</tr>
<tr>
<td>'trainrp'</td>
<td>Resilient Propagation (Rprop)</td>
</tr>
<tr>
<td>'traincgp'</td>
<td>Fletcher-Powell related gradient method</td>
</tr>
<tr>
<td>'traincgb'</td>
<td>Powell-Bill related gradient method</td>
</tr>
<tr>
<td>'traincgf'</td>
<td>Polac-Ryber method of associated gradients</td>
</tr>
<tr>
<td>'trainoss'</td>
<td>One-step algorithm of the cutting planes method</td>
</tr>
</tbody>
</table>

All computational processes were performed on a single personal computer without the use of distributed computing, i.e. without additional optimization.

model = cell(length(funcArray),1);
accuracyRate = cell(length(funcArray), 2);
for i = 1:length(funcArray);
net = patternnet(145,funcArray(i,1));
net.divideParam.trainRatio=0.7;
net.divideParam.valRatio=0.15;
net.divideParam.testRatio = 0.15;
rng(1);
tic % timer start
net = train(net,XtrainSet,YtrainSet);
toc % timer stop
timer1 = toc
model{i} = net;
p = net(XtestSet);
[~,p] = max(p);
accuracyRate{i,1} = funcArray{i}
accuracyRate{i,2}=sum(YtestSet==p)/length(YtestSet)
accuracyRate{i,3} = timer1
end

First, an array of cells is created to store future models of trained networks. Each model contains a trained network on a specific algorithm. Next, we select the variable that will store the accuracy estimates of the algorithm, the name of the algorithm, and the network training time.

The code in the loop performs network training using a constant number of layers. Data for training is divided in the classical proportion 70/15/15. We loop through the data into the array of accuracyRate cells.

To get the results in a time-sorted form, execute the following command:

sortrows (accuracyRate, [3])

The test results of learning algorithms with no parallel computing [3] are presented in table 2.

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Classification Accuracy</th>
<th>Learning Time, sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'trainrp'</td>
<td>0.9038</td>
<td>71.0844</td>
</tr>
<tr>
<td>'trainscg'</td>
<td>0.9566</td>
<td>149.0134</td>
</tr>
<tr>
<td>'traincgp'</td>
<td>0.9558</td>
<td>249.0219</td>
</tr>
<tr>
<td>'traincgb'</td>
<td>0.9589</td>
<td>313.0135</td>
</tr>
<tr>
<td>'traincgf'</td>
<td>0.9612</td>
<td>409.3543</td>
</tr>
<tr>
<td>'trainoss'</td>
<td>0.9588</td>
<td>845.4352</td>
</tr>
</tbody>
</table>

The first column contains the names of the algorithms, the second – the accuracy of data classification, the third network training time in seconds. As we can see, the Rrop turned out to be the fastest method for learning, but the accuracy is poor. The optimal approach, in terms of execution time and accuracy, is stochastic gradient descent with a result of 95.6%.

9 Distributed Learning Computing

Parallel Computing Toolbox allows training and building a neural network using multiple processor cores on a single PC or on multiple network computers using the MATLAB Distributed Computing Server.

Using multiple cores can speed up calculations. Using multiple computers can solve the problem of lack of RAM to accommodate too large data sets for one computer.

The goal is to use the tool and identify patterns between the number of cores involved and the network learning rate on the above algorithms.

To manage cluster configurations, the Cluster Profile Manager is used.

To open the pool of MATLAB workers, enable the default cluster profile, which refers to the local CPU core, use the following command:

pool = parpool
You must also indicate the number of workstations involved, or in our case the cores, by calling the command:

```matlab
pool.NumWorkers
```

Now we can train the neural network by sharing data among the CPU cores. To do this, set the parameters for the training and testing network functions.

```matlab
net = train(net, XtrainSet, YtrainSet, 'UseParallel', 'Yes');
p = net(XtestSet, 'UseParallel', 'Yes');
```

By starting the module using the 'ShowResources' argument, you can verify that the calculations are performed on several cores.

```matlab
net = train(net, XtrainSet, YtrainSet, 'useParallel', 'yes', 'showResources', 'yes');
p = net(XtestSet, 'useParallel', 'yes', 'showResources', 'yes');
```

MATLAB indicates which resources were used.

When the training and testing methods of the network are called, they divide the input data into distributed composite values, after performing the operations, they transform the data back into an array view into the original representation in the form of a matrix or an array of cells.

Here are the results of comparing the performance of computing the same algorithms for training a neural network, but using two physical cores to parallelize operations (Table 3).

Table 3: Using Parallel Computing for Network Learning

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy</th>
<th>Time, sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>'trainrp'</td>
<td>0.9038</td>
<td>87.6</td>
</tr>
<tr>
<td>'trainscg'</td>
<td>0.9566</td>
<td>187.3</td>
</tr>
<tr>
<td>'traincg'</td>
<td>0.9558</td>
<td>268.9</td>
</tr>
<tr>
<td>'traincgp'</td>
<td>0.9589</td>
<td>330.9</td>
</tr>
<tr>
<td>'traincggb'</td>
<td>0.9612</td>
<td>371.6</td>
</tr>
<tr>
<td>'traincgdf'</td>
<td>0.9588</td>
<td>638.5</td>
</tr>
</tbody>
</table>

At least we will build a Matlab bar chart comparing the network training time using one core and two processor cores (Fig. 5) of a personal computer.

![Figure 5: Comparison of 2CPU and CPU performance](image)

Note that the effect of using distributed computing becomes more noticeable when using algorithms with greater convergence and requiring more iterations to obtain a result.

A multilayer neural network has been built to solve the problem of machine learning, namely, optical recognition of handwritten characters based on the training data set MNIST.

In a number of experiments, optimal parameters (the number of hidden neurons, learning algorithm) were determined to achieve good accuracy of the data classification algorithm and network training time.

The `trainrp` function is the fastest pattern recognition algorithm. Its performance also deteriorates as the error value decreases. The memory requirements for this algorithm are relatively small compared to others.

In particular, `trainscg`, the stochastic gradient descent algorithm, seems to have done a good job with a large number of weights. **SCG** works almost as fast with pattern recognition as **RProp**, but performance does not decrease when error is reduced.

Other algorithms become very slowly with an increase in the number of neurons in the network, however, they can be useful in situations where a slower convergence of the function is required.

When using tools for parallel[Sha09] distributed computing, there is an increase in productivity in the learning speed for complex algorithms, based on connected gradients. Observations must be carried out with a minimum software load on the disk array; otherwise the results will vary greatly during idle and peak loads.

The stochastic gradient descent algorithm is optimal for the task of pattern recognition based on neural networks with an average number of input neurons. Unlike other algorithms, its performance does not decrease with a decrease in error.
When using tools for parallel distributed computing, there is an increase in productivity in the learning speed for modified algorithms, based on conjugate gradients.

At the preparatory stage, prior to building a neural network, the Apache Hadoop framework is deployed for the task of storing data in a pseudo-cluster and providing access to data through the Java interface.

A common advantage of the approach is its versatility and the ability to integrate with the existing infrastructure of the enterprise and its cloud storage, and services. Due to the abundance of existing libraries for working with neural networks and big data, the idea can be interpreted for any high-level programming language with the appropriate qualifications of a programmer.

10 Conclusion
Matlab and Hadoop tool sharing technologies discussed above can find application for optimizing the process of using neural networks to solve various applied problems of artificial intelligence.

Acknowledgments
The work was partially supported by the grant of the MES RK: project No. AP05133699 "Research and development of innovative information and telecommunication technologies using modern cyber technical means for the city's intelligent transport system".

References